4 He(22 O, 23 F γ) 2006Mi16

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia [#] , A. Chakraborty ^{##}	NDS 171, 1 (2021)	1-Jun-2020

Others: 2005Sh46, 2005Mi32, 2007Mi25 – All from the same research group and 2006Mi16 supersedes all the other papers. Based on XUNDL: Compiled by B. Singh and J. Roediger (McMaster), May 16, 2005.

Includes ⁴He-induced reactions in inverse kinematics: ⁴He(²²O,²³Fγ), ⁴He(²³F,²³Fγ), ⁴He(²⁴F,²³Fγ), and ⁴He(²⁵Ne,²³Fγ). Beams of ²²O, ²³F, ²⁴F, and ²⁵Ne were produced as secondary beams from 63 MeV/nucleon ⁴⁰Ar primary beam impinging on a ⁹Be target. Fragments were analyzed by RIPS separator at RIKEN facility. The secondary beam particles were identified event-by-event according to the energy loss signals from a silicon detector and the time of flight between two plastic scintillators at 5 meters apart along the beamline. The secondary beams were allowed to bombard a liquid helium target. The reaction products detected by a ΔE-E telescope. The identification of the reaction products were carried out using time-of-flight (TOF), energy loss(ΔE), and energy (E). The ΔE-E telescope consisted of 9 silicon (for ΔE measurement) and 36 NaI(TI) (for E measurement) detectors. The gamma rays from the reaction products were detected with an array (DALI2) of 150 NaI(TI) detectors. Measured Eγ, γγ, γ(θ) and angular distribution of the outgoing ²³F particles.

Relative cross sections of population of levels are given by 2006Mi16 in a bar chart.

²³F Levels

E(level) ^{<i>a</i>}	\mathbf{J}^{π}	L	Comments			
0.0	$(5/2^+)$	_	J^{π} : From Adopted Levels.			
2268 ^{†‡@} 21	(1/2+)	(0)	$(2J+1)C^2S=0.73 + 21-33$, C^2 =isospin Clebsch-Gordan coefficient. L: from observed population strength of the state in α inelastic scattering, proton transfer in $(^{22}O,^{23}F)$, DWBA comparison.			
2920 ^{‡#@} 22						
$3.38 \times 10^3 \frac{\&}{2} 3$						
3833 25						
$3.86 \times 10^{3} $ 4						
$3.96 \times 10^{3#} 4$						
4.06×10 ³ 4	(3/2+)	(2)	 (2J+1)C²S=0.95 +29-35, C²=isospin Clebsch-Gordan coefficient. L: from observed population strength of the state in α inelastic scattering, proton transfer in (²²O,²³F), DWBA comparison. Configuration: πd_{3/2} (2006Mi16). 			
4.62×10^{3}						
4.73×10 ³ 7						
4.92×10^{3}						
$5.54 \times 10^{3 \# @} 3$						
$5.56 \times 10^{37} 6$						
6.37×10^{3} 7						
6.63×10 ³ 4						
$6.91 \times 10^{-5+4}$ 6						
[†] Populated in $({}^{22}O, {}^{23}F\gamma)$. [‡] Domulated in $({}^{23}E, {}^{23}F\gamma)$.						
[#] Populated in $({}^{24}F^{23}F_{\gamma})$.						
^(a) Populated in $({}^{25}Ne, {}^{23}F\gamma)$.						
^{&} Populated in all four reactions.						
^{<i>a</i>} From $E\gamma$ and recoil correction.						

⁴He(²²O,²³Fγ) **2006Mi16** (continued)

$\gamma(^{23}F)$

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
913 10	3833		2920		E_{γ} : Uncertainty from 7 (stat) 7 (syst).
1240 15	4.62×10^{3}		3.38×10^{3}		E_{γ} : Uncertainty from 12 (stat) 9 (syst).
1696 28	3.96×10^{3}		2268	$(1/2^+)$	E_{γ} : Uncertainty from 25 (stat) 13 (syst).
1706 25	6.63×10^{3}		4.92×10^{3}		E_{γ} : Uncertainty from 21 (stat) 13 (syst).
1711 15	5.54×10^{3}		3833		E_{γ} : Uncertainty from 8 (stat) 13 (syst).
2003 19	4.92×10^{3}		2920		E_{γ} : Uncertainty from 12 (stat) 15 (syst).
2268 21	2268	$(1/2^+)$	0.0	$(5/2^+)$	E_{γ} : Uncertainty from 12 (stat) 17 (syst).
2644 53	5.56×10^{3}		2920		E_{γ} : Uncertainty from 49 (stat) 20 (syst).
2920 22	2920		0.0	$(5/2^+)$	E_{γ} : Uncertainty from 3 (stat) 22 (syst).
3378 28	3.38×10^{3}		0.0	$(5/2^+)$	E_{γ} : Uncertainty from 11 (stat) 26 (syst).
3445 60	6.37×10^{3}		2920		E_{γ} : Uncertainty from 54 (stat) 26 (syst).
3858 <i>3</i> 8	3.86×10^{3}		0.0	$(5/2^+)$	E_{γ} : Uncertainty from 24 (stat) 29 (syst).
3985 51	6.91×10^{3}		2920		E_{γ} : Uncertainty from 41 (stat) 30 (syst).
4059 33	4.06×10^{3}	$(3/2^+)$	0.0	$(5/2^+)$	E_{γ} : Uncertainty from 11 (stat) 31 (syst).
4732 69	4.73×10^{3}		0.0	$(5/2^+)$	E_{γ} : Uncertainty from 59 (stat) 36 (syst).

 † Statistical and systematic uncertainties in quadrature (systematic uncertainty 0.76% of E γ – Fig. 3. caption – 2006Mi16).

⁴He(²²O,²³Fγ) 2006Mi16

Level Scheme

 ${}^{23}_{9}F_{14}$