¹²C(²³Al,p²²Mg) **2005Go33,2011Ba27** Type Author Citation Literature Cutoff Date Full Evaluation M. S. Basunia[#], A. Chakraborty^{##} NDS 171, 1 (2021) 1-Jun-2020 Other references: 2005Go34, 2004Go34 - same research group and experiment of 2005Go33. 2005Go33: Pb(²³Al,p²²Mg): 50 MeV/nucleon secondary ²³Al beam produced by 135 MeV/nucleon ²⁸Si beam on a ⁹Be target. Si E-ΔE, plastic scintillator hodoscope, NaI(Tl) array. 2011Ba27: 12 C(23 Al,p 22 Mg): E=57 MeV/nucleon 23 Ar beam produced from fragmentation of an intense ($\approx 2\mu$ A) 32 S¹⁶⁺ beam at 95 MeV/nucleon on a thick carbon target at the GANIL coupled cyclotron facility. The secondary ion beams were collected using the SISSI device. Secondary target of a 175 mg/cm² thick carbon. Ions were identified at the focal plane of SPEG spectrometer using the energy loss in a ionization chamber and time-of-flight between a thick plastic stopping detector and the cyclotron radio frequency. Momentum distributions using the SPEG (FWHM $\approx 5 \times 10^{-3}$). Deduced ground state structure of 23 Al. ## ²³Al Levels E(level) J^{π} L Comments O.0 $5/2^{+}$ J^{π} : Proposed in 2011Ba27, based on experimental exclusive momentum distributions. Configuration=1d_{5/2}. E(level): From Adopted Levels. In 2005Go33: 400 keV (in relative energy scale – Fig 2.). L: From 2005Go33, from comparison of measured angular distribution of differential cross section, $d\sigma/\delta\Omega$ [mb/sr], and DWBA calculations. $\Gamma \gamma = 7.2 \times 10^{-7}$ eV 14: Deduced in 2005Go33 assuming spins and parities of the g.s. and 1st exited states are $5/2^+$ and $1/2^+$, respectively.