		Tupe	Auth	or	History	Citation	Litarotura	Cutoff Date
					NIDO			
	F	ull Evaluation	E. Browne,	J. K. Tuli	NDS	109,2657 (2008)	1-Jui	a-2008
$Q(\beta^{-})=-312 4$; S(Note: Current eval Additional information	n)= $5257 3$ uation has	S; S(p)=6599 3; Q used the followi	$Q(\alpha) = 5167.6$ ng Q record	0 <i>11</i> 2013 1 −311	2Wa38 3 5257	.0 27 6598.4 28	5167.6 10	2003Au03.
				229	Th Leve	els		
			(Cross Refer	ence (X	REF) Flags		
			A 233U B 229A C 229P	$\int \alpha \operatorname{decay} \alpha$ as $\beta^- \operatorname{decay} \alpha \varepsilon \beta$	D E	²³⁰ Th(d,t) Coulomb excita	ation	
E(level)	J^{π}	T _{1/2}	XREF			(Comments	
0.0 [#] 0.0076 [@] 5	5/2 ⁺ (3/2 ⁺)	7880 y <i>120</i>	ABCDE	%α = 100 μ = +0.46 4 Q = +4.3 9 $T_{1/2}$: From spectron in 1950 which i $T_{1/2}(^{233})$ about 5 such as J^{π} : Measur value. S Optical sp and 196 Optical sp E(level): 1 2^{233} U α	4 m 19890 metry. T Ha52. 7 s about ^U)=1.5 % may ²²⁸ Th. rred spin See 1972 sectrosco 54To02. pectrosco 54To02.	Go19. Measured This value is abou- This latter value 2% larger than t 92×10^5 y (2005) be due to an unco- n (1964Eg01). O 2E121 and 1976C opy (1974Ge06,1 opy (1974Ge06,1 opy (1974Ge06,1 opy (1974Ge06,1 opy (1974Ge06,1 opy (1974Ge06,1 opy (1974Ge06,1 opy (1974Ge06,1) opt (1974Ge06,1 opt (1974Ge06,1) opt (1974Ge06	specific activ at 7% larger is relative to he current ac Si15). The re lerestimation rbital assignr Ga35 for calc 989Ra17,200 989Ra17,200 asurement of pr value: 0.00	with mass than 7340 y <i>160</i> reported $T_{1/2}(^{233}U)=1.62\times10^5$ y, cepted value of maining discrepancy of of the effect of impurities, nent is from measured μ ulations. D5St24). See also 1964Eg01 D5St24). See also 1964Eg01. low-energy γ rays from D35 keV 10 (1994He08)
				J^{π} : 71.812 existence ground	$\frac{1}{2\gamma}$ from $\frac{1}{2\gamma}$ from $\frac{1}{2\gamma}$ state (2)	$(7/2^+)$ state is E very low-energy 008Bu14).	2. (d,t) data state practica	suggest the possible lly degenerate with the
29.1927 [@] 5	$(5/2^+)$		ABCDE	J^{π} : 29.185	51γ to (.	3/2 ⁺) is M1[+E2].	
42.4349# 2	7/2+	0.172 ns 6	ABCDE	$T_{1/2}$: from J^{π} : 42.434 233 U α	n 1970T 49γ M1- decay s	Col2 (by $(\alpha)(ce)(+E2)$ to $5/2^+$ g.s.; suggest same $5/2$	t)). Other val Low alpha h [633] configu	ue: <1.9 ns (1967Tr07). nindrance factor from iration.
71.8260 [@] 5	$(7/2^+)$		ABCDE	J ^π : 42.6γ	(M1) to	ο (5/2 ⁺), 71.8γ Ε	2 to $(3/2^+)$.	
97.13595# 24	9/2+	0.147 ns 12	AB DE	J^{π} : 54.7 γ	M1+E2	2 to $7/2^+$, 97.1γ l	E2 to $5/2^+$.	
125.4385 10	$(9/2)^+$		AB D	83.0γ M1	+E2 to	$7/2^+$, 125.4 γ E2	to $5/2^+$.	
146.3569^{a} 14 148 1730 ^a 22	(5/2) $(7/2^{-})$		ABC	J [*] : 146.3γ	/ EI to	$(3/2^{+}), 11/.1\gamma E$	1 to $(5/2^{+})$.	
$163.2542^{\#}$ 7	$(1/2^{+})$		AB DE	$J^{\pi}: 66.1\gamma$	(M1+E	2) to $9/2^+$, 120.8	γ E2 to 7/2 ⁺	
164.5317 ^{&} 4	$(3/2^{-})$		AB D	,	(_,,_,,	//_	
173.4837 ^{<i>a</i>} 22	(9/2-)		A					
189.99? 3 195.710/@K	$(11/2^+)$		A A					
$202.4^{a} 2$ $212.382 20$	$(11/2^{-})$ $(11/2^{-})$ $(5/2^{+})$		D A	J ^π : L=5 in	n ²³⁰ Th((d,t).		

Continued on next page (footnotes at end of table)

²²⁹Th Levels (continued)

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
217.1597 ^{&} 3	(5/2 ⁻)		AB	
235.1266 11	$(5/2^{-},7/2^{-})$		AB	
237.366° 5	(1/2)		AB A F	
255.957 15	$(3/2^+, 5/2^+, 7/2^+)$		AL	
261.964 ^C 4	$(1/2^+)$		AB D	
272.84? ^(@) 3	$(13/2^+)$		Α	
275 ^a 1 287 895 4	(15/2) $(7/2^{-})$		A D	
288.491 [°] 14	$(3/2^+)$		AB DE	
302.989 4	$(7/2^+)$		AB	
$317.1731^{\circ} 7$	$(5/2)^+$		AB DE	$J^{\pi}: 31/\gamma \text{ M1}+\text{E2 to } 5/2^{+}, 2/4\gamma \text{ M1}+\text{E2 to } 1/2^{+}.$
320.3483° /	$(5/2)^{+}$ $(15/2^{+})$		AB	J^{-1} : 2/8 γ M1+E2 to $1/2^{-1}$, 320 γ M1+E2 to $3/2^{-1}$.
347.800 20	$(13/2^{+})$ $(5/2^{+})$		A	
359.6044 ^C 20	$(7/2^+)$		A D	
365.8136 ^b 15	7/2+		AB	J ^{π} : M1+E2 γ rays to 5/2 ⁺ , 7/2 ⁺ , and 9/2 ⁺ states.
3/4.815 4	$(1/2^+)$ $(7/2^9/2.11/2^+)$		A A D	
425.877 ^b 10	$(9/2^+)$		A	See also 424.01 ($T_{1/2}$ =190 ps 8) and 425.33 ($T_{1/2}$ =290 ps 48) populated
				in ²²⁹ Ac β^- decay, but de-excited by different γ rays. A 424.1-keV
439.04.9	(5/2+)			level (L=1) is populated in 230 Th(d,t).
428.04 8	$(5/2^{-})$ $(7/2^{-})$		A A	
449.38 3	5/2+,7/2+		В	J^{π} : 406.4 γ M1+E2 to 7/2 ⁺ , 449.4 γ M1+E2 to 5/2 ⁺ .
449.6 ^{<i>f</i>} 5	1/2+		D	J^{π} : L=0 in ²³⁰ Th(d,t).
465.426 9	$(5/2^{-},7/2,9/2^{+})$ $5/2^{-},7/2^{-}$		A	I^{π} : I_{362} , E1 to $7/2^+$, I_{782} , E1 to $5/2^+$
478.649 8	$(7/2^+, 9/2^+)$	≤16 ps	AB	$T_{1/2}$: From 2006Ru07.
				A 479.1-keV (L=2) level is populated in ²³⁰ Th(d,t). Possible $3/2^+$ or $5/2^+$ member of a $K^{\pi}=1/2^+$ band, and a 480 keV 5 level in Coulomb Excitation
513.479 10	$(5/2^+, 7/2, 9/2^+)$		Α	A 512 keV 5 $(5/2^{-})$ level is populated in Coulomb Excitation.
526.516 9	$(5/2,7/2)^{-}$		AB	J^{π} : 526 γ E1 to 5/2 ⁺ , γ rays to J=7/2 states.
536.08 ^{<i>u</i>} 8 560.2721 ^{<i>e</i>} 12	$(1/2^{-})$ $3/2^{+} 5/2^{+}$		AB D	I^{π} : 560 M1 + E2 to 5/2 ⁺
509.2721 12	5/2 ,5/2		AD	A 562 keV 5 $(7/2^{-})$ level is populated in Coulomb Excitation.
571.2 ^d 6	(3/2-)		AB D	J^{π} : L=1 in ²³⁰ Th(d,t).
576.39 [‡] 6			В	220
585.237? 10	$(5/2^+, 7/2, 9/2^+)$		A	A 586.3-keV doublet (L=1(+3)) level is populated in 230 Th(d,t).
005.105 10	5/2*,7/2*		AB	A 611 keV 5 $(9/2^{-})$ level is populated in Coulomb Excitation.
620.837 16	$(5/2^+, 7/2)$		Α	
637.384 18	(5/2 ⁺ ,7/2,9/2 ⁺)		A	See 638.48-keV level populated in ²²⁹ Ac β^- decay, but de-excited by different γ rays. Also 638.3-keV level populated with L=1 in ²³⁰ Th(d,t).
653.79 [‡] 4			B D	
650.894	$(5/2^+, 7/2, 9/2^+)$		A	
664.98? 7	$(1/2, 3/2)^{-}$		A D	J^{π} : L=1 in ²³⁰ Th(d,t).
689.01 5	(-1-,-1-)		B D	

²²⁹Th Levels (continued)

E(level)	$J^{\pi \dagger}$	XREF	Comments
714.5 10		D	
743.4 12		D	
749.849 20	$(5/2^+, 7/2, 9/2^+)$	Α	
779.29 [‡] 7		ΒD	
815.1 <mark>8</mark> 8	$(3/2^{-})$	D	J^{π} : L=1 in ²³⁰ Th(d,t).
825.1 10		D	
843.4 <mark>8</mark> 13	$(5/2^{-})$	D	J^{π} : L=3 in ²³⁰ Th(d,t).
895.2 9		D	
929.1 10		D	
972.6 12		D	
982.6 11		D	
1019.0 11		D	
1051.7 13		D	
1061.8 <i>13</i>		D	
1093.8 11		D	
1104.1 11		D	
1121.3 11		D	
1135.5 <i>13</i>		D	
1192.6 15		D	
1207.3 13		D	
1241.6 <i>13</i>		D	
1266.4 14		D	
1302.5 14		D	
1336.0 14		D	
1382.8 15		D	
1406.9 <i>15</i>		D	
1463.8 15		D	
1500.9 15		D	
1513.0 15		D	
1538.5 <i>16</i>		D	
1575.8 17		D	
1628.3 16		D	

[†] Spin and parity assignments are based on rotational structure, γ -ray multipolarities, alpha-decay hindrance factors, measured angular momentum transferred (L) in ²³⁰Th(d,t), and on the systematic energies of single-particle Nilsson orbitals in this mass region. Specific arguments are given for individual levels de-excited by γ rays with experimentally determined multipolarities. The single-particle Nilsson orbital assignments shown in this evaluation represent the dominant configuration for each rotational band.

[‡] Observed only in ²²⁹Ac β^- decay (2002Gu15,2006Ru07).

[#] Band(A): 5/2[633].

- [@] Band(B): 3/2[631].
- [&] Band(C): 3/2[761].
- ^a Band(D): 5/2[752].
- ^b Band(E): 5/2[622].
- ^c Band(F): 1/2[631].
- d Band(G): 1/2[501].
- ^e Band(H): 3/2[642]?
- f Band(I): $K^{\pi} = 1/2^+$.
- ^g Band(J): 3/2[501].

					Adop	oted Levels,	Gammas (co	ontinued)	
						$\gamma(2)$	²²⁹ Th)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments
0.0076	$(3/2^+)$	(0.0076 5)		0.0	5/2+				
29.1927	(5/2+)	29.1851 [@] 4 (29.19)		0.0076 0.0	(3/2 ⁺) 5/2 ⁺	M1[+E2] [M1+E2]	0.145 [#]	225	
42.4349	7/2+	42.4349 [@] 2		0.0	5/2+	M1+E2	0.40 [#] 10	130 40	B(M1)(W.u.)=0.011 4; B(E2)(W.u.)=3.0×10 ² 16
71.8260	$(7/2^+)$	29.3911 [@] 4	6.1 11	42.4349	$7/2^{+}$				
		42.6333 [@] 2	100 5	29.1927	$(5/2^+)$	(M1)		45.8	
		71.812 ^b 8 71.8159 20	13.7 <i>11</i> 8.8 6	$\begin{array}{c} 0.0076\\ 0.0\end{array}$	(3/2 ⁺) 5/2 ⁺	E2		53.9	
97.13595	9/2+	25.3106 ^{c@} 8	10.4 [°] 6	71.8260	$(7/2^+)$	[M1]		213	B(M1)(W.u.)=0.0117 14
		54.7039 [@] 11	83 4	42.4349	7/2+	M1+E2	0.46 [#] 3	53 4	B(M1)(W.u.)=0.0076 <i>12</i> ; B(E2)(W.u.)=1.7×10 ² <i>3</i> Mult.,δ: From conversion electron data in 1959Tr31.
125 4385	$(0/2)^+$	67.9460 [@] 5 97.1346 3 (28.288)	1.6 <i>1</i> 100 <i>1</i>	29.1927 0.0 07.13505	$(5/2^+)$ $5/2^+$ $0/2^+$	E2 E2		70.2 12.91	B(E2)(W.u.)=6.2 8 B(E2)(W.u.)=65 7
125.4505	(9/2)	(28.288)	100.5	71 8260	$\frac{3}{2}$	(M1)	#	23.3	
		83 0125 20	576	12 13/0	(7/2)	$M1\pm F2$	0.62#	12.1	
		96.22 <i>3</i>	49 3	29.1927	$(5/2^+)$	E2	0.02	13.49	
		125.43 4	1.5 3	0.0	5/2+	E2		4.22	
146.3569	$(5/2^{-})$	74.542 [@] 5	23 1	71.8260	$(7/2^+)$	[E1]		0.255	
		117.162 [@] 2	44 2	29.1927	$(5/2^+)$	E1		0.336	
		146.3462 [@] 6	100 5	0.0076	$(3/2^+)$	E1		0.198	
148.1730	$(7/2^{-})$	76.350 [°] 4	8.3 ^c 8	71.8260	$(7/2^+)$	[E1]		0.240	
		118.968 [@] 5	100 5	29.1927	$(5/2^+)$	E1		0.325	
163 2542	$11/2^{+}$	148.20 2	110	0.0	$\frac{5}{2}$	[E1] [M1]		0.193	
105.2542	11/2	66 1183 [@] 6	38.2	97 13595	$9/2^+$	(M1+F2)	0.56 [#] 20	29.9	
		(91.433)	1.5 3	71.8260	$(7/2^+)$	[E2]	0.50 20	17.14	
		120.819 [@] 2	100 5	42.4349	7/2+	E2		4.95	
164.5317	$(3/2^{-})$	135.3390 [@] 5	33 2	29.1927	$(5/2^+)$	E1		0.239	
		164.5240 [@] 5	100 5	0.0076	$(3/2^+)$	E1		0.1500	
173.4837	(9/2-)	25.3106 ^{c@} 8	<5.8 [°]	148.1730	$(7/2^{-})$	[M1]		213	
		(27.119)	<2.9	146.3569	(5/2-)	[E2]		6.13×10^3	
		76.350 [°] 4	<29 [°]	97.13595	9/2 ⁺	[E1]		0.240	
		101.70 5	100 22	71.8260	$(1/2^+)$ $7/2^+$	[E1] [F1]		0.1123	
		131.22 0	25 5	42.4349	112	[131]		0.237	

4

 $^{229}_{90}{
m Th}_{139}$ -4

L

 $^{229}_{90}\mathrm{Th}_{139}$ -4

From ENSDF

$\gamma(^{229}\text{Th})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{a}	$I_{(\gamma+ce)}$
189.99?		92.85^{d} 3	100	97.13595	$9/2^{+}$				
195.7194	$(11/2^+)$	(32.453)	2.2 4	163.2542	$11/2^{+}$	[M1]		102.3	
		70.2813 13	80 <i>6</i>	125.4385	$(9/2)^+$	[M1+E2]	0.157 [#] 3	11.74	
		(98.565)	14 2	97.13595	9/2+	[M1+E2]	0.27 [#]	4.50	
		123.886 [@] 7	100 7	71.8260	$(7/2^+)$	[E2]		4.45	
		$153 \ 17^{b} \ 4$	514	42 4349	7/2+	[=_] [F2]		1 84	
212.382	$(5/2^+)$	87.25.4	68.17	125.4385	$(9/2)^+$	[E2]		21.4	
	(0/=)	212.36 3	100 5	0.0	5/2+	[M 1]		2.20	
217.1597	$(5/2^{-})$	52.60 <i>3</i>	0.10 3	164.5317	$(3/2^{-})$	[M1]		24.7	
		68.81 <i>3</i>	0.100 23	148.1730	$(7/2^{-})$	[M1]		11.23	
		145.35 2	53 2	71.8260	$(7/2^+)$	[E1]		0.202	
		187.9670 [@] 3	57 3	29.1927	$(5/2^+)$	[E1]		0.1093	
		217.151 [@] 4	100 5	0.0076	$(3/2^+)$	[E1]		0.0778	
235.1266	$(5/2^{-},7/2^{-})$	86.3 ^{bd} 3		148.1730	$(7/2^{-})$	[M1]	#	5.81 10	
		88.7 2	100	146.3569	$(5/2^{-})$	[M1]		5.40	
237.366	$(7/2^{-})$	25.02 ^d 5	4.4 17	212.382	$(5/2^+)$	[E1]		4.57	
		63.79 6	1.3 5	173.4837	$(9/2^{-})$	[M1]		14.02	
		(72.825)	<1.3	164.5317	$(3/2^{-})$	[E2]		50.4	
		89.39 7	12.7 15	148.1730	$(7/2^{-})$	[M1]		5.24	
		90.99 1	13.5 17	146.3569	$(5/2^{-})$	[M1]		4.98	
		111.93 <i>1</i>	17.5 13	125.4385	$(9/2)^+$	[E1]		0.372	
		165.61 3	17.8 10	71.8260	$(7/2^+)$	[E1]		0.1476	
		208.179 [@] 7	100 5	29.1927	$(5/2^+)$	[E1]		0.0859	
241.546	$13/2^{+}$	(45.855)	3.0 5	195.7194	$(11/2^+)$	[M1]		36.9	
		78.21 5	14.7 23	163.2542	$11/2^{+}$	[M1+E2]	0.56 <mark>#</mark>	14.45	
		116.3 [°] 2	1.6 ^C 3	125.4385	$(9/2)^+$	[E2]		5.84 10	
		144.42 2	100 10	97.13595	9/2+	[E2]		2.34	
255.957	$(3/2^+, 5/2^+, 7/2^+)$	43.69 3	60 20	212.382	$(5/2^+)$	[M1]		42.6	
		226.2 2	100 33	29.1927	$(5/2^+)$	[M1]		1.84	
2(1.0(4	(1/2+)	255.91 2	56 4	0.0	5/2*	[M1]		1.307	
261.964	$(1/2^{+})$	97.374	100 30	164.5317	(3/2)	[EI]		0.1259	
272.84?	$(13/2^+)$	261.957 [®] 4 77.12 <i>3</i>	14 7	0.0076 195.7194	$(3/2^+)$ $(11/2^+)$	M1+E2 [M1+E2]	0.93 7	0.78 <i>4</i> 23 <i>16</i>	
		146.9 ^d 5	100 9	125.4385	$(9/2)^+$				0.00035
287.895	$(7/2^{-})$	51.0 3	4.8 16	237.366	$(7/2^{-})$	[M1+E2]		1.5×10 ² 13	
		114.2 2	30 4	173.4837	$(9/2^{-})$	[M1]		12.68	
		139.722 [@] 3	15 3	148.1730	$(7/2^{-})$	[M1]		7.17	

					Adopted Levels,	Gammas (co	ontinued)		
					γ (²²⁹ Th) (continued)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments
287.895	(7/2 ⁻)	162.45 ^b 4 216.07 <i>1</i>	8.7 <i>9</i> 100 <i>5</i>	125.4385 71.8260	$(9/2)^+$ $(7/2^+)$	[E1] [E1]		0.1546 0.0787	
288.491	$(3/2^+)$	32.52 2	12 4	255.957	$(3/2^+, 5/2^+, 7/2^+)$	[M1]		101.7	α (N)=4.94 7; α (O)=1.171 17; α (P)=0.227 4; α (O)=0.0217 3
302.989	(7/2+)	141.95 <i>10</i> 259.31 <i>2</i> 288.50 <i>3</i> 65.62 <i>5</i> (129.514) 154.90 <i>3</i>	5.8 10 100 5 75 9 37 5 \approx 42 100 6	146.3569 29.1927 0.0076 237.366 173.4837 148.1730	$(5/2^{-}) (5/2^{+}) (3/2^{+}) (7/2^{-}) (9/2^{-}) (7/2^{-}) (0/2)^{+}$	 [E1] [M1] [M1] [E1] [E1] [E1] [E1] 		0.213 1.260 0.938 0.358 0.266 0.1732	
		$205.75^{b} 6$ 260.53 2	4.69 162 714	125.4385 97.13595 42.4349	9/2 ⁺ 7/2 ⁺	[M1] [M1] [M1]		3.62 2.40 1.244	
317.1731	(5/2)+	273.74 5 302.989 ^{b@&} 4 99.95 15 152.62 10	11 <i>I</i> 54 <i>3</i> 0.27 8 0.15 <i>4</i>	29.1927 0.0 217.1597 164.5317	$(5/2^+)$ $5/2^+$ $(5/2^-)$ $(3/2^-)$	[M1] [M1] [E1] [E1]		1.085 0.820 0.1176 0.179	
		169.002 [@] 5 170.809 [@] 24	0.58 8 1.41 8	148.1730 146.3569	(7/2 ⁻) (5/2 ⁻)	[E1] [E1]		0.1407 0.1372	
		245.350 [@] 1 274.735 [@] 1	50 <i>3</i>	71.8260 42.4349	$(7/2^+)$ $7/2^+$	M1+E2 M1+E2	0.76 <i>5</i> 1 07 <i>10</i>	1.05 <i>4</i>	
		288.0290 ^C [@] 9	12.8 [°] 7	29.1927	$(5/2^+)$	[M1+E2]	1.07 10	0.6 4	
320.5483	(5/2)+	317.169 ^c w 2 32.73 5 85.4221 9 103.73 10 156.19 5 172.39 10	$100^{c} \ 6$ 21 3 2.6 9 1.4 4 0.78 6 0.49 5	0.0 287.895 235.1266 217.1597 164.5317 148.1730	$5/2^{+} (7/2^{-}) (5/2^{-}, 7/2^{-}) (5/2^{-}) (3/2^{-}) (3/2^{-}) (7/2^{-})$	M1+E2 [E1] [E1] [E1] [E1] [E1]	1.24 9	0.371 22 2.26 0.1779 0.1066 0.1698 0.1342	
		174.192 [@] 2 223.37 <i>3</i>	3.7 <i>2</i> 0.52 <i>6</i>	146.3569 97.13595	(5/2 ⁻) 9/2 ⁺	[E1] [E2]		0.1309 0.443	
		248.724 ^{<i>c</i> @} 1	30 [°] 2	71.8260	$(7/2^+)$	[M1]		1.415	
		278.108 @ 2	24 1	42.4349	7/2+	M1+E2	1.14 10	0.57 4	
		$291.355^{\circ} 9$	100 [°] 5	29.1927	$(5/2^+)$	M1+E2	0.80 6	0.63 3	
277.9	(15/0+)	320.547 ° C 1	60 <i>3</i>	0.0	$5/2^{+}$	M1+E2	1.37 12	0.334 25	
321.8	(13/2.)	(132.1) (164.5)	1.3 <i>3</i> 100 <i>2</i>	241.540 195.7194 163.2542	$(11/2^+)$ $11/2^+$	[W1+E2] [E2] [E2]	0.44"	8.32 17 3.39 1.385	

From ENSDF

 $^{229}_{90}{
m Th}_{139}$ -6

L

γ (²²⁹Th) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments
347.800	$(5/2^+)$	44.80 2	85 27	302.989	$(7/2^+)$	[M1]		39.5	
		92.23 12	100 36	255.957	$(3/2^+, 5/2^+, 7/2^+)$	[M1]		4.79	
359.6044	$(7/2^+)$	142.69 1	13 2	217.1597	(5/2 ⁻)	[E1]		0.211	
		185.76 ^d 9	2.9 8	173.4837	(9/2-)	[E1]		0.1124	
		317.169 ^{c@} 2	100 ^C 40	42.4349	7/2+	[M1]		0.723	
		359.38 ^{&} 4	1.8 6	0.0	5/2+	[M1]		0.513	
365.8136	7/2+	153.17 ^{bd} 4		212.382	$(5/2^+)$				
		192.26 4	4.7 5	173.4837	(9/2 ⁻)	[E1]		0.1036	
		217.8 ^d 2	< 0.4	148.1730	$(7/2^{-})$	[E1]		0.0773	
		219.43 2	15.3 8	146.3569	(5/2 ⁻)	[E1]		0.0759	
		240.373 [@] 3	54 <i>3</i>	125.4385	$(9/2)^+$	M1+E2	0.79 7	1.09 6	
		268.675 [@] 2	32 2	97.13595	9/2+	M1+E2	0.75 7	0.82 5	
		293.996 [@] 9	16 <i>1</i>	71.8260	$(7/2^+)$	M1		0.890	
		323.381 [@] 14	100 5	42.4349	7/2+	M1+E2	1.67 12	0.280 17	
		336.63 1	75 4	29.1927	$(5/2^+)$	M1+E2	1.59 24	0.26 4	
		365.820 ^{@&} 3	100 5	0.0	5/2+	[M1]		0.489	
374.815	$(7/2^+)$	71.812 ^{bd} 8		302.989	$(7/2^+)$				
		86.3 [°] 3	100 ^c 23	288.491	$(3/2^+)$	[E2]		22.5 5	
		139.3 ^b 3		235.1266	$(5/2^-, 7/2^-)$	[E1]		0.223	
		302.989 ^{b@} 4		71.8260	$(7/2^+)$	[M1]		0.820	
		374.71 ^{&} 20	42	0.0	5/2+	[M1]		0.458	
382.54?	$(7/2^{-}, 9/2, 11/2^{+})$	209.08 8	50 8	173.4837	(9/2 ⁻)				
		310.71 5	100 8	71.8260	$(7/2^+)$				
425.877	$(9/2^{+})$	184.1 3	23 5	241.546	13/2+	[E2]		0.897	
		188.65 0	26 4	237.366	(1/2)	[EI]		0.1083	
		230.17 2	74 J 83 A	07 13505	(11/2) $9/2^+$	[M1+E2]		1.17 0.43	
		354.04 2	63 4	71.8260	$(7/2^+)$	[M1+E2]		0.32 22	
		383.43 3	100 5	42.4349	7/2+	[M1+E2]		0.26 18	
		396.62 <i>3</i>	4.5 10	29.1927	$(5/2^+)$	[E2]		0.0762	
428.04	$(5/2^+)$	125.04 23	49 15	302.989	$(7/2^+)$	[M1]		9.83	
		139.3 ⁶ 3	100 11	288.491	$(3/2^+)$	[M1]		7.24	
		210.90 8	67 12	217.1597	$(5/2^{-})$	[E1]		0.0833	
436.951	$(7/2^{-})$	77.12 3	100 9	359.6044	$(7/2^+)$	[E1]		0.233	E_{γ} : 77.142 and 77.198 form a doublet structure.
		116.3 ^c 2	28 [°] 3	320.5483	$(5/2)^+$	[E1]		0.342	
		224.33 19	0.30 9	212.382	$(5/2^+)$	[E1]		0.0721	

7

$\gamma(^{229}\text{Th})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α^{a}
436.951	(7/2-)	272.39 2	16.5 9	164.5317	(3/2-)	[E2]		0.228
		311.76 <i>3</i>	14.7 9	125.4385	$(9/2)^+$	[E1]		0.0341
		340.19 8	0.6 4	97.13595	9/2+	[E1]		0.0282
449.38	5/2+,7/2+	161.46 ^{&} 8	13 <i>3</i>	288.491	$(3/2^+)$			
		406.45 ^{<i>x</i>} 4	100 3	42.4349	7/2+	M1+E2	1.04 14	0.213 22
		420.70 ^{&} 5	6.0 <i>3</i>	29.1927	$(5/2^+)$			
		449.4 2	≈350	0.0	5/2+	M1+E2	1.30 16	0.139 15
465.426	$(5/2^-, 7/2, 9/2^+)$	162.45 ^b 4		302.989	$(7/2^+)$			
		291.93 4	100 15	173.4837	$(9/2^{-})$			
		393.60 1	13 I	71.8260	$(1/2^{+})$			
		425.09° 14 436.23° 2	$0.3^{\circ} I$	42.4349	$(5/2^+)$			
		450.25 2 465.37 <mark>&</mark> 12	0.5.2	0.0	(3/2)			
478.64	$5/2^{-}.7/2^{-}$	436.20 4	32.1	42.4349	$\frac{3}{2}^{+}$	E1		0.0166
.,	0/2 ,//2	478.64 4	100 3	0.0	5/2+	E1		0.0138
478.649	$(7/2^+, 9/2^+)$	157.98 ^{&} 11	5 1	320.5483	$(5/2)^+$			
		189.60 ^{&} 4	0.50 6	288.491	$(3/2^+)$			
		241.18 ^{&} 9	3.1 5	237.366	$(7/2^{-})$			
		261.80 ^{&} 9	3.3 5	217.1597	$(5/2^{-})$			
		315.39 13	4.5 6	163.2542	$11/2^{+}$	[M1]		0.734
		330.51 ^{&} 4	2.8 1	148.1730	$(7/2^{-})$			
		332.52 ^{&} 4	0.51 6	146.3569	$(5/2^{-})$			
		381.35 ^d 8		97.13595	9/2+			
		406.58 5	20 3	71.8260	$(7/2^+)$	[M1]		0.367
		436.23 ^{c&} 2	32 [°] 1	42.4349	7/2+	[M1]		0.303
		449.52 2	21 3	29.1927	$(5/2^+)$	[M1]		0.280
513 470	(5/2+7/2)(2+)	4/8.64 1	100 3	0.0	$5/2^{+}$	[MI]		0.236
515.479	(3/2 ,7/2,9/2)	416 31 3	655	97 13595	$9/2^+$			
		441.53 17	3.9 12	71.8260	$(7/2^+)$			
		471.06 1	100 10	42.4349	7/2+			
		513.20 ^{b&} 5	89 11	0.0	5/2+			
526.516	$(5/2,7/2)^{-}$	167.10 7	2.7 3	359.6044	$(7/2^+)$			
		205.75 ^b 6		320.5483	$(5/2)^+$			
		223.85 ^{&} 4		302.989	$(7/2^+)$			
		291.355 ^{c@} 9	100 ^C 40	235.1266	$(5/2^-, 7/2^-)$			

 ∞

γ (²²⁹Th) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments
526.516	(5/2,7/2)-	309.49 <i>3</i> 455.48 <i>25</i> 484.34 <i>3</i>	13 8 0.19 3 0.4 2	217.1597 71.8260 42.4349	(5/2 ⁻) (7/2 ⁺) 7/2 ⁺				
536.08	(1/2 ⁻)	526.89 ^{&} 7 371.34 9 536.44 <i>12</i>	100 <i>50</i> 33 <i>16</i>	0.0 164.5317 0.0076	5/2 ⁺ (3/2 ⁻) (3/2 ⁺)	E1 [M1] [E1]		0.0114 0.469 0.01098	
569.2721	3/2+,5/2+	203.47 ^{&} 6 248 724 ^{c@} 1	1.1 <i>1</i> 11 ^c 1	365.8136 320 5483	$7/2^+$ (5/2) ⁺	M1+E2	0877	0.94.5	
		252.07 ^{&} 4	34 11	317.1731	$(5/2)^+$	M1+E2	0.84 6	0.91 3	
		280.72 ^{&} 4 307.45 <i>19</i>	1.10 <i>3</i> 2.6 <i>1</i>	288.491 261.964	$(3/2^+)$ $(1/2^+)$ $(2/2^+, 5/2^+, 5/2^+)$	[M1,E2]		0.5 4	
		313.45° 18 352.07° 4 404.395 423.09° 14	2.1 I 9.0 2 7 0 ^C 2	255.957 217.1597 164.5317 146 3569	$(3/2^{-}, 5/2^{-}, 1/2^{-})$ $(5/2^{-})$ $(3/2^{-})$ $(5/2^{-})$	[E1] [E1]		0.0195	
		526.4 ^{&} 4	2.4 9	42.4349	7/2+	[21]		0.01771	
		540.08 ^{&} 7	3.4 10	29.1927	(5/2 ⁺)				
571.2	(3/2-)	569.19 ^{&} 2 307.45 <i>19</i>	100 2	0.0 261.964	5/2 ⁺ (1/2 ⁺)	M1+E2	1.66 12	0.063 4	
576.39		127.02 ^{&} 5	100 4	449.38	5/2+,7/2+	[D,E2]			I _γ : For 127.02+127.6.
585.237?	(5/2+,7/2,9/2+)	576.2 ^{&} 3 459.81 <i>1</i>	≈614 100 <i>15</i>	0.0 125.4385	5/2 ⁺ (9/2) ⁺				E_{γ} : E_{γ} for doublet=576.08 7.
		513.20 ⁰ 5 542.41 13	63	71.8260 42.4349	(7/2 ⁺) 7/2 ⁺				
		584.94 ⁰ 16	≈3	0.0	5/2+				
605.165	5/2+,7/2+	127.6°C I	2.40 8	478.64	$5/2^{-}, 7/2^{-}$				
		130.3^{-1} I 230 11° 1	0.723 371	449.58	5/2 ⁺ ,7/2 ⁺	$M1\pm F2$	0.82.6	1.08.5	
		239.41 + 4 284 67 $\frac{\&}{4}$	22 1	320 5483	$(5/2)^+$	M1+E2 M1+F2	1.00.8	0.59.4	
		$288.0290^{c@d}$ 9	7.1° 12	317.1731	$(5/2)^+$	1011 122	1.00 0	0.57 1	
		343.3 ^{&} 1	0.75 17	261.964	$(1/2^+)$				
		364.01 ^{<i>d</i>} 12		241.546	13/2+				
		367.83 ^{&} 4	3.8 1	237.366	$(7/2^{-})$				
		388.05 ^{&} 4	5.5 2	217.1597	(5/2 ⁻)				
		440.71 ^{&} 4	6.3 2	164.5317	(3/2 ⁻)				

9

 $^{229}_{90}{
m Th}_{139}$ -9

$\gamma(^{229}\text{Th})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult.‡	δ^{\ddagger}	α^{a}
605.165	5/2+,7/2+	456.87 16	12.0 4	148.1730	$(7/2^{-})$			
		458.87 ^{&} 5	0.67 4	146.3569	$(5/2^{-})$			
		533.53 5	17.0 4	71.8260	$(7/2^+)$	M1+E2	1.13 20	0.098 14
		562.61 6	32.0 8	42.4349	7/2+	M1+E2	1.36 16	0.075 8
		576.00 7	≈11	29.1927	$(5/2^+)$	M1+E2	1.55 22	0.064 8
		605.16 ^{&} 1	100 3	0.0	5/2+	M1+E2	1.10 13	0.072 7
620.837	$(5/2^+, 7/2)$	474.41 8	23 3	146.3569	$(5/2^{-})$			
		523.68 6	28 7	97.13595	9/2 ⁺			
		5/8.42 2	100 32	42.4349	$\frac{1}{2}$			
		391.047	21 /	29.1927	(3/2)			
627 284	$(5/2^+, 7/2, 0/2^+)$	620.81×3	44 18	0.0	$\frac{5}{2}$			
037.364	(3/2 ,1/2,9/2)	402.22 2	11 2	233.1200	$(5/2^+, 7/2^-)$			
		540.52.6	23.3	97.13595	$9/2^+$			
		608.15 5	6.5 30	29.1927	$(5/2^+)$			
		637.25 <mark>&</mark> 10	≈3	0.0	5/2+			
653.79		84.8 ^{&} 1		569.2721	3/2+,5/2+			
		489.21 ^{&} 4	100 6	164.5317	$(3/2^{-})$	[D,E2]		
		653.86 <mark>&</mark> 10	11 6	0.0	5/2+	[D,E2]		
656.89	$(5/2^+, 7/2, 9/2^+)$	177.91 ^b 16		478.649	$(7/2^+, 9/2^+)$			
		531.54 8	17.5 60	125.4385	$(9/2)^+$			
		559.87 18	≈6	97.13595	9/2+			
		584.94 ^b 16		71.8260	$(7/2^+)$			
		614.45 7	17.5 60	42.4349	7/2+			
		627.70 8	12 6	29.1927	$(5/2^+)$			
		656.89 ^{&} 5	100 25	0.0	5/2+			
661.780		444.40 ^{&} 4	84 <i>3</i>	217.1597	$(5/2^{-})$	[D,E2]		
		497.35 ^{&} 4	58 2	164.5317	$(3/2^{-})$	[D,E2]		
		515.25 ^{&} 7	100 3	146.3569	$(5/2^{-})$	[D,E2]		
		661.59 <mark>&</mark> 7	30 1	0.0	5/2+	[D,E2]		
664.98?	$(1/2, 3/2)^{-}$	500.40 9	100 32	164.5317	$(3/2^{-})$			
		665.03 ^{&} 10	≈33	0.0	5/2+			
689.01		83.9 <mark>&</mark> 2		605.165	$5/2^+, 7/2^+$			
		540.9 ^{&} 2	100 9	148.1730	$(7/2^{-})$	[D,E2]		
		542.68 ^{&} 7	77.2	146.3569	$(5/2^{-})$	[D.E2]		
		688.96	29.2	0.0	5/2+	[D,E2]		
		000.70 0	292	0.0	512	[12,122]		

L

γ ⁽²²⁹Th) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult.‡
749.849	$(5/2^+, 7/2, 9/2^+)$	514.81 11	100 16	235.1266	$(5/2^-, 7/2^-)$	
		652.79 19	≈ 2	97.13595	$9/2^{+}$	
		707.41 2	18 8	42.4349	$7/2^{+}$	
		720.62 11	4 2	29.1927	$(5/2^+)$	
		749.8 <mark>&</mark> 9	4 2	0.0	5/2+	
779.29		614.82 <mark>&</mark> 7	100 6	164.5317	$(3/2^{-})$	[D,E2]
		779.00 ^{&} 15	31 6	0.0076	$(3/2^+)$	[D,E2]

 † From $^{233}\mathrm{U}~\alpha$ decay or $^{229}\mathrm{Ac}~\beta^{-}$ decay, unless otherwise specified.

[‡] From ²²⁹Ac β^- decay (2002Gu15), unless otherwise specified. [#] Calculated from strong coupling rotational model (2003Ba78).

^(a) High-precision measurement using a micro-calorimeter (2007Be16). [&] From ²²⁹Ac β^- decay (2002Gu15,2006Ru07).

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed.

11

^c Multiply placed with intensity suitably divided.

^d Placement of transition in the level scheme is uncertain.

²²⁹₉₀Th₁₃₉-11

Level Scheme

Intensities: Relative photon branching from each level

 $^{229}_{90}{
m Th}_{139}$

²²⁹₉₀Th₁₃₉

 $^{229}_{90}{
m Th}_{139}$

 $^{229}_{90}{
m Th}_{139}$

17

From ENSDF

²²⁹₉₀Th₁₃₉-17

 $^{229}_{90}{\rm Th}_{139}$

Band(E): 5/2[622]

(9/2⁺) 425.877

 $^{229}_{90}{\rm Th}_{139}$

						Band(J)	3/2[501]
						(5/2-)	843.4
						(3/2-)	815.1
			D 1/10	2/25 / 1232			
			Band(H) 50^+ 70^+	: 3/2[642]?			
			5/2 ,//2	605.165			
	Band(G): 1/2[501]					
	(3/2-)	571.2	3/2+ 5/2+	5(0.2721			
			512 ,512	509.2721			
	(1/2-)	536.08					
					Band(I): K^π=1/2	F	
					<u>1/2</u> ⁺ 449	.6	
Band(F): 1/2[631]							
(7/2 ⁺) 359.6044							
(5/2)+ 317.1731							
(3/2+) 288.491							
(1/2 ⁺) 261.964							

 $^{229}_{90}{
m Th}_{139}$