233 U α decay 2003Ba78,2007Be16

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 109,2657 (2008)	1-Jun-2008

Parent: ²³³U: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=159.2\times10^3$ y 2; $Q(\alpha)=4908.5$ 12; % α decay=100

²³³U-T_{1/2}: From 2003Au02.

²³³U-O(α): From 2003Au02.

²³³U-% α decay: %SF<6×10⁻⁹.

Additional information 1. 2003Ba78: Isotopes of ²³³U were obtained by successive β^- decays of ²³³Th formed in the ²³²Th(n, γ) reaction. Other uranium isotopes, and their respective daughter nuclei were present despite fast separation methods employed.

Measured E γ , I γ , $\gamma\gamma$ coin. Singles γ -ray measurements were made using a planar LEPS and three coaxial HP germanium detectors. All counting sessions were performed with detectors shielded by a 5-10 cm thick lead wall. Coincidence γ -ray measurements were performed with four HP germanium detectors, three coaxial and one planar.

2007Be16: a 105-micro Curie ²³³U source was obtained from β^- decay of ²³³Pa which was chemically separated from products formed in the 232 Th(n, γ) reaction. The source was free of potentially interfering contaminants such as 232 U. This source was electro-deposited onto five aluminum planchets. Gamma rays were counted using nasa's x-ray spectrometer xrs, a system of 36 microcalorimeters. Resolution (FWHM)=6 eV at 60 mK and 0.1-10 keV bandpass. Photon energies up to 60 keV were measured at 90 mK with FWHM=26 eV.

1994He08: Measured singles spectra from a 233 U source. Determined precise γ -ray energies. Detectors; High-purity germanium coaxial, germanium planar, Si(Li) detector.

1992E101: Uranium was chemically separated and inmediately measured γ -ray spectra using germanium high-purity detectors.

1996Ko29: Uranium was continously separated chemically on a column of annion-exchange resin. Measured $E\gamma$, $I\gamma$. High-purity germanium detectors.

Calculated total average radiation energy of 4893 keV 2 agrees with $Q(\alpha)$ =4908.5 keV 12 from the mass adjustment (2003Au03), which suggest consistency and completeness of the decay scheme.

²²⁹Th Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	Comments
0.0#	$5/2^{+}$	7340 y <i>160</i>	%α=100
$0.0076^{@}5$	$(3/2^+)$		Additional information 2.
			E(level): From precise energy measurement of low-energy γ rays from ²³³ U α decay (2007Be16). Other value: 0.0035 keV 10 (1994He08).
20.2? 8	$(7/2^{-})$		
29.1927 [@] 5	$(5/2^+)$		Additional information 3.
42.4349 [#] 2	7/2+	0.172 ns 6	Additional information 4. $F(\text{level})$: From 42 4349 keV 2 γ ray to ground state (2007Be16)
67.8? 7			
71.8260 [@] 5	$(7/2^+)$		Additional information 5. E(level): From 29.3911 keV 4 γ ray to 42.4349-keV level, and 42.6333 keV 2 γ
75.1? 10	$(9/2^{-})$		Tay to 29.1927-kev level (2007Be10).
97.13595 [#] 24	$9/2^+$	0.147 ns 12	
$125.4385^{@}$ 10	$(9/2^+)$	01117 110 12	
140.9? 8	$(11/2^{-})$		
146.3569 ^a 14	$(5/2^{-})$		
148.1730^{a} 22	$(7/2^{-})$		
163.2542# 7	$11/2^{+}$		
164.5317 ^{&} 4	$(3/2^{-})$		
1/3.483/ ⁴⁴ /22 189.99? 3	(9/2)		

Continued on next page (footnotes at end of table)

		233 U α	decay 2003Ba78	8,2007Be16 (cont	inued)
			²²⁹ Th Levels ((continued)	
E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	J^{π}
195.7194 <i>16</i> 212.382 20 217.1597 <i>3</i> 235.1266 <i>11</i> 237.366 <i>5</i> 241.546 <i>19</i> 255.957 <i>15</i> 261.964 <i>4</i>	$(11/2^+)$ $(5/2^+)$ $(5/2^-)$ $(5/2^-,7/2^-)$ $(7/2^-)$ $13/2^+$ $(3/2^+,5/2^+,7/2^+)$ $(1/2^+)$	317.1731 ^c 7 320.5483 ^b 7 327.8 [#] 3 347.800 20 359.6044 20 365.8136 ^b 15 374.815 4 382.54? 5	$(5/2^{+})$ $(5/2^{+})$ $(15/2^{+})$ $(5/2^{+})$ $(7/2^{+})$ $(7/2^{+})$ $(7/2^{+})$ $(7/2^{-},9/2,11/2^{+})$	478.649 8 513.479 10 526.516 9 536.08 ^d 8 569.2721 ^e 12 585.237? 10 605.165 ^e 10 620.837 16	$(7/2^+,9/2^+)$ $(5/2^+,7/2,9/2^+)$ $(5/2,7/2)$ $(1/2^-)$ $(3/2,5/2^+)$ $(5/2^+,7/2,9/2^+)$ $(5/2,7/2)^+$ $(5/2^+,7/2)$
272.84? ⁽⁰⁾ 3 287.895 4 288.491 ^c 14 302.989 4	$(13/2^+) (7/2^-) (3/2^+) (7/2^+)$	425.877 ^{<i>b</i>} 10 428.04 8 436.951 15 465.426 9	$(9/2^+) (5/2^+) (7/2^-) (5/2^-, 7/2, 9/2^+)$	637.384 <i>18</i> 656.89 <i>4</i> 664.98? <i>7</i> 749.849 <i>20</i>	$\begin{array}{c} (5/2^+, 7/2, 9/2^+) \\ (5/2^+, 7/2, 9/2^+) \\ (1/2, 3/2, 5/2) \\ (5/2^+, 7/2, 9/2^+) \end{array}$

 † Deduced by evaluators from least-squares fit to $\gamma\text{-ray energies}.$

[‡] From Adopted Levels, Gammas.

Band(A): 5/2[633].

- [@] Band(B): 3/2[631].
- & Band(C): 3/2[761].
- ^a Band(D): 5/2[752].
- ^b Band(E): 5/2[622].
- ^c Band(F): 1/2[631].
- ^d Band(G): 1/2[501].
- ^e Band(H): 3/2[642]?

α radiations

Others: 1984Ah06, 1984Gl03, 1967Ga15, 1966Ah02, 1961Ru06, 1960Dz07, 1959Tr31, 1956Go43, 1955g057, 1953As40, 1948Cr12. $\alpha\gamma(t)$ 1970To12, 1967Tr07, 1967Hu03. $\alpha\gamma(\theta)$ 1968Ma42, 1967Hu03, 1958Ro64.

$E\alpha^{\dagger}$	E(level)	$\mathrm{I}\alpha^{\dagger \#}$	HF [‡]	Comments
4074	749.849	1.44×10 ⁻⁵ 21	13.2 20	$I\alpha = 1.44 \times 10^{-5} \% 21$, from γ -ray transition intensity balance.
4159	664.98?			I α =9.3×10 ⁻⁷ % 23, from γ -ray transition intensity balance.
4167	656.89			$I\alpha = 1.0 \times 10^{-5}\%$ 4, from γ -ray transition intensity balance.
4187	637.384			I α =1.03×10 ⁻⁵ % 15, from γ -ray transition intensity balance.
4203	620.837			$I\alpha = 7.3 \times 10^{-6}\%$ 13, from γ -ray transition intensity balance.
4219	605.165			$I\alpha = 1.0 \times 10^{-5}\%$ 4, from γ -ray transition intensity balance.
4239	585.237?			I α =8.3×10 ⁻⁶ % 12, from γ -ray transition intensity balance.
4255	569.2721			I α =2.0×10 ⁻⁵ % 2, from γ -ray transition intensity balance.
4288	536.08			$I\alpha=3.0\times10^{-6}\%$ 16, from γ -ray transition intensity balance.
4309 2	526.516	0.0009	16	I α =0.0007% 3, from γ -ray transition intensity balance.
4311	513.479			I α =5.0×10 ⁻⁵ % 5, from γ -ray transition intensity balance.
4345	478.649			I α =5.0×10 ⁻⁵ % 4, from γ -ray transition intensity balance.
4359	465.426			I α =0.00085% 6, from γ -ray transition intensity balance.
4387	436.951			I α =0.00085% 6, from γ -ray transition intensity balance.
4404 2	428.04	0.0003	279	I α =0.00029% 4, from γ -ray transition intensity balance.
4411 2	425.877	0.0004	218	I α =0.0054% 7, from γ -ray transition intensity balance.
4441	382.54?			$I\alpha = 5.7 \times 10^{-5}\%$ 5, from γ -ray transition intensity balance.
4457 2	374.815	0.0028	77	I α =0.0023% 6, from γ -ray transition intensity balance.

Continued on next page (footnotes at end of table)

233 U α decay 2003Ba78,2007Be16 (continued)

α radiations (continued)

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\dagger \#}$	HF^{\ddagger}	Comments
4465 2	365.8136	0.003	84	$I\alpha$ =0.0046 <i>l</i> from γ -ray transition intensity balance.
4483 2	347.800	0.0014	246	$I\alpha = 0.0013 \ 4$ from γ -ray transition intensity balance.
4503 2	327.8	0.001	488	$I\alpha = 0.00100 \ 4$ from γ -ray transition intensity balance.
4507 2	320.5483	0.012	46	$I\alpha = 0.0199$ 7 from γ -ray transition intensity balance.
4513 2	317.1731	0.018	33	$I\alpha = 0.0194$ 8 from γ -ray transition intensity balance.
4538 2	287.895	0.004	242	$I\alpha = 0.005\%$ 5, from γ -ray transition intensity balance.
4565 2	261.964	0.0023	654	$I\alpha(255)+I\alpha(262)=0.0027\%$ 7, from γ -ray transition intensity balance.
4572 2	255.957			
4582	241.546			$I\alpha = 0.00166\%$ 17. from γ -ray transition intensity balance.
4590 2	237.366	0.007	325	$I\alpha = 0.004\%$ 5, from γ -ray transition intensity balance.
4589	235.1266			$I\alpha = 0.0007\%$ 3, from γ -ray transition intensity balance.
4611 2	217.1597	0.006	532	$I\alpha = 0.0113\%$ 10. from γ -ray transition intensity balance.
4615 2	212.382	0.004	864	$I\alpha = 0.0006\%$ 9, from γ -ray transition intensity balance.
4634 2	195.7194	0.01	456	$I\alpha = 0.0131\%$ 7, from γ -ray transition intensity balance.
4641 2	189.99?	0.003	1669	
4656 2	173.4837	≈0.005	≈1315	$I\alpha = 0.003\%$ 3, from γ -ray transition intensity balance.
4659	164.5317			$I\alpha = 0.0036\%$ 12, from γ -ray transition intensity balance.
4664 2	163.2542	0.042	185	$I\alpha = 0.062\%$ 10, from γ -ray transition intensity balance.
4676	148.1730			$I\alpha = 0.0014\%$ 5, from γ -ray transition intensity balance.
4681	146.3569	0.01	1024	$I\alpha(146)+I\alpha(148)=0.004\%$ 4, from γ -ray transition intensity balance.
4687 2	140.9?	0.0028	3998	
4701 2	125.4385	0.06	240	$I\alpha = 0.091\%$ 6, from γ -ray transition intensity balance.
4729 2	97.13595	1.61	14	$I\alpha = 1.63\%$ 9, from γ -ray transition intensity balance.
4751 2	75.1?	0.01	3225	
4754 2	71.8260	0.163	210	$I\alpha = 0.29\%$ 5, from γ -ray transition intensity balance.
4758 2	67.8?	0.016	2264	
4783.5 12	42.4349	13.2	4.2	$E\alpha$: From 1968Ba25.
				$I\alpha = 9\%$ 3, from γ -ray transition intensity balance.
4796 2	29.1927	0.28	240	$I\alpha = 0.6\%$ 4, from γ -ray transition intensity balance.
4804	20.2?			
4824.2 12	0.0	84.3 6	1.24	
				$E\alpha$, I α , HF: for ground state + 7.6–eV level.

E*α*: From 1968Ba25.

I α =88% 3, from γ -ray transition intensity balance.

[†] From 1967Ba43, unless othewise specified. [‡] Using $r_0=1.5252$, average of $r_0(^{232}U)=1.5289$ and $r_0(^{234}U)=1.5216$ (1998Ak04). [#] Absolute intensity per 100 decays.

						233 U α d	ecay 200	3Ba78,2007B	e16 (continued)
								γ ⁽²²⁹ Th)	
I γ normalize Others: 199	ation: Fro 6Ko29, 19	m Ιγ(2 990Re	208γ)=0.00229 03, 1984Re05,	% <i>3</i> , meas 1976Kr03	ured and ro , 1977Ca04	eported ir , 1966Ał	n 1984Re05. n02, 1967Mo	o28, 1964Ba4	2, 1961Ru06, 1961An08, 1956Al30, 1952We27.
Εγ(1976Kr03	X rays x ray) 1979Ce0	(Th)	: Ιγ(%) 1966Ah02						
11.12 12.97 14.97 15.64 16.20 17.08 18.37 18.98 19.50 20.27 89.94 93.34	89.96 93.35 104.83 105.5 106.16 108.49		9.13 4 2.4 4 3.3 5 9.90 15 9.0096 10 9.0140 14 9.0058 6	$egin{array}{c} & L \\ L & \mathcal{L} & $	SI x	ray x ray+L β_4 x ray xy+L β_{10} xy x ray xy+L γ_3 xy x ray x ray x ray x ray	x ray x ray x ray x ray	ray γ +Lγ ₆ x	: ray
108.67 E _v †	108.69 I	eh	E_i (level)	K J ^π .	B ₂ x E _f	ray J ^π	Mult. [‡]	α^{j}	Comments
(0.0076) (13.244)	2.4	, 1 <i>f</i> 7	0.0076 42.4349	$\frac{i}{(3/2^+)}$ $7/2^+$ $(7/2^-)$	0.0 29.1927	$\frac{f}{5/2^+}$ (5/2 ⁺)	[M1] [M1]	358	E _γ : From decay scheme (2003Ba78). α (M)=266 4; α (N+)=91.6 13 α (N)=71.2 10; α (O)=16.86 24; α (P)=3.27 5; α (Q)=0.313 5
25.02^{m} 5	5 0.1	10 4	237.366	$(7/2^{-})$	212.382	$(5/2^+)$	[E1] [E1]	4.57	α (L)=3.41 5; α (M)=0.879 14; α (N+)=0.283 5 α (N)=0.227 4; α (O)=0.0480 8; α (P)=0.00710 11; α (Q)=0.000235 4
25.3106 ^{[‡}	# 8 2.1	11 ¹ 12	97.13595	9/2+	71.8260	$(7/2^+)$	[M1]	213	α (L)=160.7 23; α (M)=38.9 6; α (N+)=13.36 19 α (N)=10.38 15; α (O)=2.46 4; α (P)=0.477 7; α (Q)=0.0456 7
25.3106 ^{[‡}	# 8 <0.0	004 ¹	173.4837	(9/2 ⁻)	148.1730	(7/2 ⁻)	[M1]	213	α (L)=160.7 23; α (M)=38.9 6; α (N+)=13.36 19 α (N)=10.38 15; α (O)=2.46 4; α (P)=0.477 7; α (Q)=0.0456 7
25.311 ^m	4		67.8?		42.4349	7/2+	[M1+E2]	4.×10 ³ 5	α (L)=3.E3 3; α (M)=9.E2 9; α (N+)=3.E2 3 α (N)=2.3×10 ² 23; α (O)=5.E1 5; α (P)=9 9; α (Q)=0.040 6

From ENSDF

				23	³ U α decay 200	3Ba78,2007B	e16 (conti	nued)	
					$\gamma(^{229}]$	Гh) (continued)		
E_{γ}^{\dagger}	I_{γ}^{eh}	E _i (level)	J_i^π	E_{f}	J_f^{π}	Mult. [‡]	- δ [‡]	α^{j}	Comments
(27.119)	<0.002	173.4837	(9/2 ⁻)	146.3569	(5/2 ⁻)	[E2]		6.13×10 ³	$\alpha(L)=4.50\times10^{3} 7; \ \alpha(M)=1225 \ 18; \\ \alpha(N+)=412 \ 6 \\ \alpha(N)=327 \ 5; \ \alpha(O)=72.6 \ 11; \ \alpha(P)=11.93 \ 17; \\ \alpha(Q)=0.0250 \ 4$
(28.288)	0.036 ^f 9	125.4385	(9/2+)	97.13595	9/2+	[M1]		153.4	α (L)=115.8 <i>17</i> ; α (M)=28.0 <i>4</i> ; α (N+)=9.61 <i>14</i> α (N)=7.47 <i>11</i> ; α (O)=1.769 <i>25</i> ; α (P)=0.343 <i>5</i> ; α (Q)=0.0328 <i>5</i>
29.1851 ^{&} 4	7.8 10	29.1927	(5/2+)	0.0076	(3/2+)	M1[+E2] ^b	0.145 ^b	225	α(L)=168.0 24; α(M)=42.6 6; α(N+)=14.49 21 α(N)=11.36 16; α(O)=2.62 4; α(P)=0.478 7; α(Q)=0.0296 5 $ E_{\gamma}: Measured value of 29.1856 keV 5 corrected for expected 29.19γ to ground state (2007Be16). $
(29.190)	2.7 ^{<i>f</i>} 5	29.1927	(5/2+)	0.0	5/2+	M1		139.8	$\alpha(L)=105.6 \ 15; \ \alpha(M)=25.5 \ 4; \ \alpha(N+)=8.76$ 13 $\alpha(N)=6.80 \ 10; \ \alpha(O)=1.612 \ 23; \ \alpha(P)=0.313$ 5; $\alpha(Q)=0.0299 \ 5$
29.3911 ^{&} 4	0.80 ^{<i>f</i>} 14	71.8260	(7/2+)	42.4349	7/2+	[M1]		137.0	$ \begin{aligned} &\alpha(L) = 103.5 \ 15; \ \alpha(M) = 25.0 \ 4; \ \alpha(N+) = 8.58 \\ &12 \\ &\alpha(N) = 6.67 \ 10; \ \alpha(O) = 1.579 \ 23; \ \alpha(P) = 0.306 \\ &5; \ \alpha(Q) = 0.0293 \ 4 \end{aligned} $
(32.453)	$0.016^{f} 3$	195.7194	(11/2+)	163.2542	11/2+	[M1]		102.3	α (L)=77.3 <i>11</i> ; α (M)=18.6 <i>3</i> ; α (N+)=6.40 <i>9</i> α (N)=4.97 <i>7</i> ; α (O)=1.178 <i>17</i> ; α (P)=0.229 <i>4</i> ; α (Q)=0.0218 <i>3</i>
32.52 2	0.018 ^g 6	288.491	(3/2 ⁺)	255.957	(3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺)	[M1]		101.7	α (L)=76.8 <i>11</i> ; α (M)=18.5 <i>3</i> ; α (N+)=6.36 <i>9</i> α (N)=4.94 <i>7</i> ; α (O)=1.171 <i>17</i> ; α (P)=0.227 <i>4</i> ; α (O)=0.0217 <i>3</i>
32.73 5 *36.516 23	0.97 <i>12</i> 0.14 <i>3</i>	320.5483	(5/2+)	287.895	(7/2 ⁻)	[E1]		2.26	$\begin{array}{l} \alpha(\mathrm{L}) = 1.697 \ 25; \ \alpha(\mathrm{M}) = 0.427 \ 7; \\ \alpha(\mathrm{N}+) = 0.1388 \ 21 \\ \alpha(\mathrm{N}) = 0.1110 \ 17; \ \alpha(\mathrm{O}) = 0.0239 \ 4; \\ \alpha(\mathrm{P}) = 0.00372 \ 6; \ \alpha(\mathrm{Q}) = 0.0001390 \ 20 \end{array}$
x36.95 3 37.80 3	0.12 <i>3</i> 0.25 <i>4</i>	163.2542	11/2+	125.4385	(9/2+)	[M1]		65.2	$ \begin{array}{l} \alpha(\text{L}){=}49.3 \ 7; \ \alpha(\text{M}){=}11.87 \ 17; \ \alpha(\text{N}{+}){=}4.08 \ 6 \\ \alpha(\text{N}){=}3.17 \ 5; \ \alpha(\text{O}){=}0.750 \ 11; \ \alpha(\text{P}){=}0.1457 \\ 21; \ \alpha(\text{Q}){=}0.01390 \ 20 \end{array} $
(42.431)	$0.34 \ 4 \ 0.18^{f} \ 5$	42.4349	7/2+	0.0076	(3/2+)	[E2]		683	α (L)=500 7; α (M)=136.7 20; α (N+)=46.0 7

S

			²³³ U	α decay	2003Ba78	,2007Be16 (c	continued)		
				<u>γ(</u>	²²⁹ Th) (co	ntinued)			
${\rm E_{\gamma}}^{\dagger}$	I_{γ} <i>eh</i>	E _i (level)	J_i^π	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{j}	Comments
42.4349 ^{&} 2	72 4	42.4349	7/2+	0.0	5/2+	M1+E2 ^b	0.40 ^b 10	1.3×10 ² 4	$\alpha(N)=36.5 \ 6; \ \alpha(O)=8.12 \ 12; \\ \alpha(P)=1.337 \ 19; \ \alpha(Q)=0.00336 \ 5 \\ \alpha(L)=1.0\times10^2 \ 3; \ \alpha(M)=26 \ 8; \\ \alpha(N+)=9 \ 3 \\ \alpha(N)=7.0 \ 22; \ \alpha(O)=1.6 \ 5; \ \alpha(P)=0.27 \\ 8; \ \alpha(O)=0.0090 \ 5 \\ \end{array}$
42.6333 ^{&} 2	13.2 7	71.8260	(7/2+)	29.1927	(5/2+)	(M1) ^b	b	45.8	Mult., δ : From conversion electron data in 1959Tr31. α (L)=34.6 5; α (M)=8.33 12; α (N+)=2.86 4 α (N)=2.22 4; α (O)=0.526 8; α (P)=0.1021 15; α (Q)=0.00974 14
43.69 ^{km} 3 43.69 ^k 3	0.042 14	140.9? 255.957	$(11/2^{-})$ $(3/2^{+}, 5/2^{+}, 7/2^{+})$	97.13595 212.382	9/2 ⁺ (5/2 ⁺)	[M1]		42.6	α (L)=32.2 5; α (M)=7.75 11; α (N+)=2.66 4 α (N)=2.07 3; α (Q)=0.490 7;
44.80 2	0.028 ^g 9	347.800	(5/2+)	302.989	(7/2+)	[M1]		39.5	$\begin{array}{l} \alpha(\mathrm{N})=2.07 \ \text{s}, \ \alpha(\mathrm{O})=0.490 \ \text{7}, \\ \alpha(\mathrm{P})=0.0950 \ 14; \ \alpha(\mathrm{Q})=0.00907 \ 13 \\ \alpha(\mathrm{L})=29.9 \ \text{5}; \ \alpha(\mathrm{M})=7.20 \ 11; \\ \alpha(\mathrm{N}+)=2.47 \ 4 \\ \alpha(\mathrm{N})=1.92 \ 3; \ \alpha(\mathrm{O})=0.455 \ 7; \\ \alpha(\mathrm{P})=0.0883 \ 13; \ \alpha(\mathrm{O})=0.00842 \ 12 \end{array}$
(45.855)	0.0091 ^{<i>f</i>} 16	241.546	13/2+	195.7194	(11/2+)	[M1]		36.9	$\alpha(L)=27.9 \ 4; \ \alpha(M)=6.72 \ 10; \\ \alpha(N+)=2.31 \ 4 \\ \alpha(N)=1.79 \ 3; \ \alpha(O)=0.425 \ 6; \\ \alpha(P)=0.0824 \ 12; \ \alpha(O)=0.00786 \ 11 \\ \alpha(P)=0.0824 \ 12; \ \alpha(P)=0.00786 \ 11 \\ \alpha(P)=0.0824 \ 12; \ \alpha(P)=0.0824 \ 1$
51.0 3	0.03 1	287.895	(7/2 ⁻)	237.366	(7/2 ⁻)	[M1+E2]		1.5×10 ² 13	$\alpha(L)=1.1\times10^{2} \ 10; \ \alpha(M)=3.E1 \ 3; \\ \alpha(N+)=10 \ 9 \\ \alpha(N)=8 \ 7; \ \alpha(O)=1.8 \ 16; \ \alpha(P)=0.30 $
52.60 3	0.10 3	217.1597	(5/2 ⁻)	164.5317	(3/2 ⁻)	[M1]		24.7	25; $\alpha(Q)=0.0036$ 22 $\alpha(L)=18.6$ 3; $\alpha(M)=4.49$ 7; $\alpha(N+)=1.542$ 22 $\alpha(N)=1.198$ 17; $\alpha(O)=0.284$ 4; $\alpha(P)=0.0550$ 8; $\alpha(Q)=0.00525$ 8
^x 53.18 [@] 1 53.6106 [#] 11	0.32 3.47 <i>18</i>	125.4385	(9/2+)	71.8260	(7/2+)	(M1) ^b	b	23.3	α (L)=17.63 25; α (M)=4.24 6; α (N+)=1.458 21 α (N)=1.133 16; α (O)=0.268 4; α (P)=0.0521 8; α (Q)=0.00496 7
54.7039 ^{k#m} 11 54.7039 ^{k#} 11	16.8 8	75.1? 97.13595	(9/2 ⁻) 9/2 ⁺	20.2? 42.4349	(7/2 ⁻) 7/2 ⁺	M1+E2 ^b	0.46 ^b 3	53 4	α (L)=39 3; α (M)=10.3 7;

				233	$\mathbf{U} \alpha$ deca	ay 2003Ba	78,2007Be16	(continued)	
						$\gamma(^{229}\text{Th})$ (continued)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{eh}	E _i (level)	J_i^π	E_{f}	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{j}	Comments
									α (N+)=3.48 24 α (N)=2.75 19; α (O)=0.62 5; α (P)=0.109 7; α (Q)=0.00405 9 Mult., δ : From conversion electron data in 1959Tr31.
x57.72 [@] 1 63.79 6	1.5 0.029 <i>11</i>	237.366	(7/2 ⁻)	173.4837	(9/2 ⁻)	[M1]		14.02	α (L)=10.59 <i>16</i> ; α (M)=2.55 <i>4</i> ; α (N+)=0.876 <i>13</i> α (N)=0.680 <i>10</i> ; α (O)=0.1611 <i>23</i> ; α (P)=0.0313 <i>5</i> ; α (O)=0.00298 <i>5</i>
65.62 ^{km} 5		140.9?	$(11/2^{-})$	75.1?	(9/2 ⁻)				
65.62 ^k 5	0.05 1	302.989	(7/2 ⁺)	237.366	(7/2 ⁻)	[E1]		0.358	α (L)=0.270 4; α (M)=0.0661 10; α (N+)=0.0219 3 α (N)=0.01731 25; α (O)=0.00388 6; α (P)=0.000659 10; α (Q)=3.28×10 ⁻⁵ 5
66.1183 [#] 6	1.06 6	163.2542	11/2+	97.13595	9/2+	(M1+E2) ^b	0.56 ^b 20	29 9	α (L)=21 7; α (M)=5.6 18; α (N+)=1.9 6 α (N)=1.5 5; α (O)=0.34 11; α (P)=0.059 17; α (O)=0.0022 3
67.943 ^m 7		67.8?		0.0	5/2+	[M1+E2]		4.×10 ¹ 3	$\begin{array}{l} \alpha(L)=30 \ 22; \ \alpha(M)=8 \ 6; \ \alpha(N+)=2.7 \ 21 \\ \alpha(N)=2.2 \ 16; \ \alpha(O)=0.5 \ 4; \ \alpha(P)=0.08 \ 6; \ \alpha(Q)=0.0015 \\ 11 \end{array}$
67.9460 [#] 5	0.320 23	97.13595	9/2+	29.1927	(5/2+)	E2		70.2	α (L)=51.3 8; α (M)=14.08 20; α (N+)=4.75 7 α (N)=3.77 6; α (O)=0.839 12; α (P)=0.1387 20; α (O)=0.000438 7
68.81 <i>3</i>	0.100 23	217.1597	(5/2 ⁻)	148.1730	(7/2 ⁻)	[M1]		11.23	$\begin{array}{l} \alpha(L)=8.49 \ 12; \ \alpha(M)=2.04 \ 3; \ \alpha(N+)=0.702 \ 10 \\ \alpha(N)=0.545 \ 8; \ \alpha(O)=0.1291 \ 19; \ \alpha(P)=0.0251 \ 4; \\ \alpha(Q)=0.00239 \ 4 \end{array}$
70.2813 13	0.58 4	195.7194	(11/2 ⁺)	125.4385	(9/2+)	[M1+E2] ^b	0.157 ^b 3	11.74	α (L)=8.84 <i>13</i> ; α (M)=2.16 <i>4</i> ; α (N+)=0.741 <i>11</i> α (N)=0.577 <i>9</i> ; α (O)=0.1356 <i>20</i> ; α (P)=0.0258 <i>4</i> ; α (O)=0.00220 <i>3</i>
71.812 ^k 8	1.81 <i>14</i>	71.8260	(7/2 ⁺)	0.0076	(3/2 ⁺)	E2 ^{<i>a</i>}		53.9	α (L)=39.4 6; α (M)=10.81 <i>16</i> ; α (N+)=3.65 6 α (N)=2.90 4; α (O)=0.644 9; α (P)=0.1066 <i>15</i> ; α (O)=0.000350 5
71.812 ^m 8		374.815	$(7/2^+)$	302.989	$(7/2^+)$				u(Q) 0.000000 5
71.8159 20	1.16 ^f 12	71.8260	(7/2+)	0.0	5/2+	[M1+E2] ^b	0.25 ^b	12.50	$ \begin{array}{l} \alpha(\text{L}) = 9.37 \ 14; \ \alpha(\text{M}) = 2.33 \ 4; \ \alpha(\text{N}+) = 0.798 \ 12 \\ \alpha(\text{N}) = 0.623 \ 9; \ \alpha(\text{O}) = 0.1452 \ 21; \ \alpha(\text{P}) = 0.0271 \ 4; \\ \alpha(\text{Q}) = 0.00200 \ 3 \end{array} $
^x 72.74 ^{^w} 1 (72.825)	0.76 <0.03	237.366	(7/2 ⁻)	164.5317	(3/2 ⁻)	[E2]		50.4	α (L)=36.8 6; α (M)=10.12 15; α (N+)=3.41 5 α (N)=2.71 4; α (O)=0.603 9; α (P)=0.0997 14; α (O)=0.000330 5
74.542 [#] 5	1.49 8	146.3569	(5/2-)	71.8260	$(7/2^+)$	[E1]		0.255	α (L)=0.193 3; α (M)=0.0470 7; α (N+)=0.01561 22

From ENSDF

²²⁹₉₀Th₁₃₉-7

				²³³ U <i>c</i>	α decay 20	03Ba78,2007I	Be16 (cor	ntinued)	
					$\gamma(^{229})$	Th) (continue	d)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ} <i>eh</i>	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{j}	Comments
					<u>/</u>				α (N)=0.01233 18; α (O)=0.00277 4; α (P)=0.000478 7; α (Q)=2.49×10 ⁻⁵ 4
76.350 ^l 4	0.30 ^{<i>l</i>} 3	148.1730	(7/2 ⁻)	71.8260	(7/2+)	[E1]		0.240	$ \begin{array}{l} \alpha(\text{L}) = 0.181 \ 3; \ \alpha(\text{M}) = 0.0441 \ 7; \ \alpha(\text{N}+) = 0.01465 \ 21 \\ \alpha(\text{N}) = 0.01157 \ 17; \ \alpha(\text{O}) = 0.00260 \ 4; \\ \alpha(\text{P}) = 0.000450 \ 7; \ \alpha(\text{Q}) = 2.36 \times 10^{-5} \ 4 \end{array} $
76.350 ¹ 4	< 0.02 ^{<i>l</i>}	173.4837	(9/2 ⁻)	97.13595	9/2+	[E1]		0.240	α (L)=0.181 3; α (M)=0.0441 7; α (N+)=0.01465 21 α (N)=0.01157 17; α (O)=0.00260 4; α (D)=0.000450 7; α (O)=2.26×10 ⁻⁵ 4
77.12 3		272.84?	(13/2 ⁺)	195.7194	(11/2+)	[M1+E2]		23 16	$\alpha(\mathbf{L})=17 \ 11; \ \alpha(\mathbf{M})=5 \ 4; \ \alpha(\mathbf{N}+)=1.6 \ 11 \\ \alpha(\mathbf{N})=1.2 \ 9; \ \alpha(\mathbf{O})=0.28 \ 19; \ \alpha(\mathbf{P})=0.05 \ 3;$
77.12 3	0.43 4	436.951	(7/2 ⁻)	359.6044	$(7/2^+)$	[E1]		0.233	α (Q)=0.0010 8 α (L)=0.1761 25; α (M)=0.0429 6; α (N+)=0.01426 20
									α (N)=0.01127 <i>16</i> ; α (O)=0.00254 <i>4</i> ; α (P)=0.000438 7; α (Q)=2.31×10 ⁻⁵ <i>4</i> E _y : 77.142 and 77.198 form a doublet structure.
78.21 5	0.044 7	241.546	13/2+	163.2542	11/2+	[M1+E2] ^b	0.56 ^b	14.45	α (L)=10.71 <i>16</i> ; α (M)=2.79 <i>4</i> ; α (N+)=0.948 <i>14</i> α (N)=0.746 <i>11</i> ; α (O)=0.1702 <i>25</i> ; α (P)=0.0301 <i>5</i> ; α (Q)=0.001309 <i>19</i>
						1	1		I_{γ} : 0.038 7 listed in table VI of 2003Ba78.
83.0125 20	0.197 22	125.4385	(9/2+)	42.4349	7/2+	M1+E2 ^D	0.62 ^b	12 1	$\begin{array}{l} \alpha(L)=9.0 \ 1; \ \alpha(M)=2.4 \ 1; \ \alpha(N+)=0.6 \ 1 \\ \alpha(N)=0.9 \ 6; \ \alpha(O)=0.20 \ 13; \ \alpha(P)=0.034 \ 20; \\ \alpha(Q)=0.0008 \ 6 \end{array}$
x84.29 [@] 4 85.4221 9	0.082 0.12 <i>4</i>	320.5483	(5/2+)	235.1266	(5/2 ⁻ ,7/2 ⁻)	[E1]		0.1779	α (L)=0.1343 <i>19</i> ; α (M)=0.0327 <i>5</i> ; α (N+)=0.01089 <i>16</i>
						,	,		α (N)=0.00859 <i>12</i> ; α (O)=0.00194 <i>3</i> ; α (P)=0.000338 <i>5</i> ; α (Q)=1.85×10 ⁻⁵ <i>3</i>
86.3 ^{<i>km</i>} 3		235.1266	(5/2 ⁻ ,7/2 ⁻)	148.1730	(7/2 ⁻)	[M1] ^b	Ь	5.81 10	$\begin{array}{l} \alpha(\text{L})=4.39 \ 8; \ \alpha(\text{M})=1.056 \ 19; \ \alpha(\text{N}+)=0.363 \ 7 \\ \alpha(\text{N})=0.282 \ 5; \ \alpha(\text{O})=0.0667 \ 12; \ \alpha(\text{P})=0.01295 \ 23; \\ \alpha(\text{Q})=0.001232 \ 22 \end{array}$
86.3 ¹ 3	0.038 ^{lf} 3	327.8	(15/2+)	241.546	13/2+	[M1+E2] ^b	0.44 ^b	8.52 17	α (L)=6.35 <i>12</i> ; α (M)=1.62 <i>3</i> ; α (N+)=0.551 <i>11</i> α (N)=0.433 <i>9</i> ; α (O)=0.0997 <i>19</i> ; α (P)=0.0181 <i>4</i> ; α (Q)=0.001060 <i>19</i>
86.3 ¹ 3	0.099 ¹ 23	374.815	(7/2 ⁺)	288.491	(3/2 ⁺)	[E2]		22.5 5	α (L)=16.5 4; α (M)=4.52 10; α (N+)=1.53 4 α (N)=1.21 3; α (O)=0.270 6; α (P)=0.0447 10; α (O)=0.000170 4
87.25 4	0.088 22	212.382	(5/2 ⁺)	125.4385	(9/2+)	[E2]		21.4	$\alpha(L)=15.63\ 23;\ \alpha(M)=4.29\ 6;\ \alpha(N+)=1.449\ 21$ $\alpha(N)=1.150\ 17;\ \alpha(O)=0.256\ 4;\ \alpha(P)=0.0425\ 6;$ $\alpha(Q)=0.0001629\ 23$

 $^{229}_{90}{
m Th}_{139}$ -8

				233 U α d	lecay 2003Ba78	,2007Be16 (co	ontinued)		
					γ ⁽²²⁹ Th) (co	ntinued)			
${\rm E_{\gamma}}^{\dagger}$	I_{γ} <i>eh</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{j}	Comments
89.39 7	0.26 3	237.366	(7/2 ⁻)	148.1730	(7/2 ⁻)	[M1]		5.24	$\alpha(L)=3.96 \ 6; \ \alpha(M)=0.954 \ 14; \\ \alpha(N+)=0.327 \ 5 \\ \alpha(N)=0.254 \ 4; \ \alpha(O)=0.0603 \ 9; \\ \alpha(D)=0.0603 \$
89.9568 ^c 24	0.229 23	235.1266	(5/2 ⁻ ,7/2 ⁻)	146.3569	(5/2 ⁻)	[M1]		5.40	$\alpha(P)=0.01169 I7; \alpha(Q)=0.001113 I6$ $\alpha(L)=4.08 6; \alpha(M)=0.983 I4; \alpha(N+)=0.337 5$ $\alpha(N)=0.262 4; \alpha(Q)=0.0621 9; \alpha(Q)=0.0621 I; \alpha(Q)=0.0621$
90.99 1	0.31 4	237.366	(7/2 ⁻)	146.3569	(5/2 ⁻)	[M1]		4.98	$\alpha(P)=0.01205 I'; \alpha(Q)=0.001146 I6$ $\alpha(L)=3.76 6; \alpha(M)=0.906 I3;$ $\alpha(N+)=0.311 5$ $\alpha(N)=0.242 4; \alpha(O)=0.0572 8;$ $\alpha(P)=0.01110 I6; \alpha(Q)=0.001057 I5$
(91.433)	0.041 ^{<i>f</i>} 7	163.2542	11/2+	71.8260	(7/2 ⁺)	[E2]		17.14	$\alpha(L) = 12.54 \ 18; \ \alpha(M) = 3.44 \ 5; \alpha(N+) = 1.163 \ 17 \alpha(N) = 0.923 \ 13; \ \alpha(O) = 0.206 \ 3; \ \alpha(P) = 0.0341 5; \ \alpha(O) = 0.0001268 \ 20$
92.23 12	0.033 12	347.800	(5/2+)	255.957	(3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺)	[M1]		4.79	$\alpha(L)=3.62 \ 6; \ \alpha(M)=0.871 \ 13; \\ \alpha(N+)=0.299 \ 5 \\ \alpha(N)=0.232 \ 4; \ \alpha(O)=0.0550 \ 8; \\ \alpha(P)=0.01068 \ 16; \ \alpha(O)=0.001016 \ 15 $
92.85 ^m 3 96.22 3	0.26 <i>3</i> 1.70 <i>9</i>	189.99? 125.4385	(9/2+)	97.13595 29.1927	9/2 ⁺ (5/2 ⁺)	E2		13.49	$\alpha(L)=9.87 \ I4; \ \alpha(M)=2.71 \ 4; \ \alpha(N+)=0.915$ $I3$ $\alpha(N)=0.726 \ I1; \ \alpha(O)=0.1619 \ 23;$ $\alpha(P)=0.0269 \ 4; \ \alpha(Q)=0.0001135 \ I6$
^x 96.69 7 97.1346 <i>3</i>	0.190 <i>25</i> 20.3 <i>10</i>	97.13595	9/2+	0.0	5/2+	E2 ^{<i>a</i>}		12.91	α (L)=9.44 <i>14</i> ; α (M)=2.59 <i>4</i> ; α (N+)=0.876 <i>13</i> α (N)=0.695 <i>10</i> ; α (Q)=0.1549 22;
97.37 4	2.0 6	261.964	(1/2+)	164.5317	(3/2 ⁻)	[E1]		0.1259	$\begin{array}{l} \alpha(N)=0.055\ 16,\ \alpha(Q)=0.1547\ 22,\\ \alpha(P)=0.0257\ 4;\ \alpha(Q)=0.0001097\ 16\\ \alpha(L)=0.0951\ 14;\ \alpha(M)=0.0231\ 4;\\ \alpha(N+)=0.00771\ 11\\ \alpha(N)=0.00608\ 9;\ \alpha(Q)=0.001379\ 20;\\ \alpha(P)=0.000243\ 4;\ \alpha(Q)=1.387\times10^{-5}\ 20 \end{array}$
^x 98.37 [@] 2 (98.565)	0.13 0.097 ^{<i>f</i>} 16	195.7194	(11/2 ⁺)	97.13595	9/2+	[M1+E2] ^b	0.27 ^b	4.50	$\alpha(L)=3.38 5; \alpha(M)=0.834 12; \alpha(N+)=0.285 4 \alpha(N)=0.223 4; \alpha(O)=0.0521 8; 0.00000000000000000000000000000000000$
99.95 15	0.019 6	317.1731	(5/2+)	217.1597	(5/2 ⁻)	[E1]		0.1176	$\alpha(\mathbf{r})=0.00984\ 14;\ \alpha(\mathbf{Q})=0.000788\ 11$ $\alpha(\mathbf{L})=0.0888\ 13;\ \alpha(\mathbf{M})=0.0216\ 4;$ $\alpha(\mathbf{N}+)=0.00720\ 11$

From ENSDF

 $^{229}_{90}\mathrm{Th}_{139}$ -9

				²³³ U	Jα deca	y 2003	Ba78,2007B	e16 (continued)
						γ (²²⁹ Th) (continued	<u>D</u>
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{eh}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{j}	Comments
101.70 5	0.069 15	173.4837	(9/2 ⁻)	71.8260	(7/2+)	[E1]	0.1123	$\begin{aligned} &\alpha(\mathrm{N}) = 0.00567 \; 9; \; \alpha(\mathrm{O}) = 0.001288 \; 19; \; \alpha(\mathrm{P}) = 0.000227 \; 4; \\ &\alpha(\mathrm{Q}) = 1.309 \times 10^{-5} \; 19 \\ &\alpha(\mathrm{L}) = 0.0848 \; 12; \; \alpha(\mathrm{M}) = 0.0206 \; 3; \; \alpha(\mathrm{N}+) = 0.00688 \; 10 \\ &\alpha(\mathrm{N}) = 0.00542 \; 8; \; \alpha(\mathrm{O}) = 0.001231 \; 18; \; \alpha(\mathrm{P}) = 0.000217 \; 3; \end{aligned}$
103.73 10	0.063 19	320.5483	(5/2+)	217.1597	(5/2 ⁻)	[E1]	0.1066	$\begin{aligned} &\alpha(\mathbf{Q}) = 1.260 \times 10^{-5} \ 18 \\ &\alpha(\mathbf{L}) = 0.0805 \ 12; \ \alpha(\mathbf{M}) = 0.0196 \ 3; \ \alpha(\mathbf{N}+) = 0.00653 \ 10 \\ &\alpha(\mathbf{N}) = 0.00514 \ 8; \ \alpha(\mathbf{O}) = 0.001169 \ 17; \ \alpha(\mathbf{P}) = 0.000207 \ 3; \\ &\alpha(\mathbf{Q}) = 1.206 \times 10^{-5} \ 17 \end{aligned}$
^x 109.41 [@] 5 111.93 <i>I</i>	0.25 0.40 <i>3</i>	237.366	(7/2 ⁻)	125.4385	(9/2+)	[E1]	0.372	$\alpha(K)=0.284$ 4; $\alpha(L)=0.0660$ 10; $\alpha(M)=0.01600$ 23; $\alpha(N+)=0.00535$
114.2.2	0 183 23	287 895	$(7/2^{-})$	173 4837	$(9/2^{-})$	[M1]	12 68	α (N)=0.00421 6; α (O)=0.000959 14; α (P)=0.0001705 24; α (Q)=1.019×10 ⁻⁵ 15 α (K)=10 10 15; α (L)=1.95 3; α (M)=0.469 7; α (N+)=0.1612 24
117.2 2	0.105 25	201.095	(1/2)	175.4057	()/2)		12.00	$\alpha(N)=0.101252$ 19; $\alpha(O)=0.0297$ 5; $\alpha(P)=0.00575$ 9; $\alpha(Q)=0.000547$ 9
116.3 ^{<i>l</i>} 2	0.0047 ^{lf} 9	241.546	13/2+	125.4385	(9/2+)	[E2]	5.84 10	α (K)=0.245 4; α (L)=4.09 7; α (M)=1.124 19; α (N+)=0.380 7 α (N)=0.301 5; α (O)=0.0672 11; α (P)=0.01118 18; α (Q)=5.91×10 ⁻⁵ 9
116.3 ¹ 2	0.121 ¹ 23	436.951	(7/2 ⁻)	320.5483	(5/2+)	[E1]	0.342	α (K)=0.263 4; α (L)=0.0597 9; α (M)=0.01447 22; α (N+)=0.00484 8 α (N)=0.00381 6; α (O)=0.000869 13; α (P)=0.0001548 23; α (Q)=9.36×10 ⁻⁶ 14
117.162 [#] 2	2.87 14	146.3569	(5/2 ⁻)	29.1927	(5/2+)	E1	0.336	α (K)=0.259 4; α (L)=0.0586 9; α (M)=0.01419 20; α (N+)=0.00475 7 α (N)=0.00374 6; α (O)=0.000852 12; α (P)=0.0001519 22; α (O)=9.21×10 ⁻⁶ 13
118.968 [#] 5	3.63 18	148.1730	(7/2 ⁻)	29.1927	(5/2+)	(E1)	0.325	$\alpha(K)=0.250 \ 4; \ \alpha(L)=0.0563 \ 8; \ \alpha(M)=0.01363 \ 19; \ \alpha(N+)=0.00456 \ 7 \ \alpha(N)=0.00359 \ 5; \ \alpha(O)=0.000819 \ 12; \ \alpha(P)=0.0001462 \ 21; \ \alpha(O)=8.90 \times 10^{-6} \ 13$
120.819 ^{km} 2		140.9?	$(11/2^{-})$	20.2?	$(7/2^{-})$			
120.819 ^{k#} 2	2.82 15	163.2542	11/2+	42.4349	7/2+	E2 ^a	4.95	α (K)=0.257 4; α (L)=3.43 5; α (M)=0.943 14; α (N+)=0.319 5 α (N)=0.253 4; α (O)=0.0564 8; α (P)=0.00939 14; α (Q)=5.22×10 ⁻⁵ 8
123.886 [#] 7	0.72 5	195.7194	$(11/2^+)$	71.8260	$(7/2^+)$	[E2]	4.45	$\alpha(K)=0.2614; \alpha(L)=3.065; \alpha(M)=0.84112; \alpha(N+)=0.2844$
125.04 23	0.010 3	428.04	(5/2 ⁺)	302.989	$(7/2^+)$	[M1]	9.83	$\alpha(N)=0.2254; \alpha(O)=0.05057; \alpha(P)=0.0003812; \alpha(Q)=4.61\times10^{-7}$ $\alpha(K)=7.8412; \alpha(L)=1.50323; \alpha(M)=0.3626; \alpha(N+)=0.124219$ $\alpha(N)=0.006515; \alpha(Q)=0.02284; \alpha(N)=0.004217; \alpha(Q)=0.0004217$
125.43 <i>4</i>	0.051 10	125.4385	(9/2+)	0.0	5/2+	E2	4.22	$\alpha(N)=0.0505\ 15,\ \alpha(O)=0.0228\ 4;\ \alpha(P)=0.00445\ 7;\ \alpha(Q)=0.000421\ 7$ $\alpha(K)=0.262\ 4;\ \alpha(L)=2.89\ 4;\ \alpha(M)=0.794\ 12;\ \alpha(N+)=0.268\ 4$ $\alpha(N)=0.213\ 3;\ \alpha(O)=0.0475\ 7;\ \alpha(P)=0.00792\ 12;\ \alpha(Q)=4.63\times10^{-5}\ 7$
(129.514)	0.18 ≈0.06	302.989	(7/2+)	173.4837	(9/2-)	[E1]	0.266	$ \begin{aligned} &\alpha(\text{K}) = 0.206 \ 3; \ \alpha(\text{L}) = 0.0451 \ 7; \ \alpha(\text{M}) = 0.01092 \ 16; \ \alpha(\text{N}+) = 0.00366 \ 6 \\ &\alpha(\text{N}) = 0.00288 \ 4; \ \alpha(\text{O}) = 0.000658 \ 10; \ \alpha(\text{P}) = 0.0001180 \ 17; \\ &\alpha(\text{Q}) = 7.37 \times 10^{-6} \ 11 \end{aligned} $

 $^{229}_{90}$ Th $_{139}$ -10

L

 $^{229}_{90}\mathrm{Th}_{139}$ -10

From ENSDF

				233	U α decay	2003Ba78	,2007E	Be16 (con	tinued)
					<u>γ(</u>	²²⁹ Th) (co	ntinue	d)	
E_{γ}^{\dagger}	I_{γ} <i>eh</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{j}	Comments
131.22 8	0.0174 22	173.4837	(9/2 ⁻)	42.4349	7/2+	[E1]	_	0.257	$\begin{aligned} \alpha(\text{K}) = 0.200 \ 3; \ \alpha(\text{L}) = 0.0436 \ 7; \ \alpha(\text{M}) = 0.01055 \ 15; \\ \alpha(\text{N}+) = 0.00354 \ 5 \\ \alpha(\text{N}) = 0.00278 \ 4; \ \alpha(\text{O}) = 0.000636 \ 9; \ \alpha(\text{P}) = 0.0001142 \ 16; \\ \alpha(\text{Q}) = 7.16 \times 10^{-6} \ 10 \end{aligned}$
(132.1)	0.0035 ^{<i>f</i>} 7	327.8	(15/2+)	195.7194	(11/2+)	[E2]		3.39	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.263 \; 4; \; \alpha(\mathrm{L}) = 2.28 \; 4; \; \alpha(\mathrm{M}) = 0.627 \; 9; \; \alpha(\mathrm{N}+) = 0.212 \; 3 \\ \alpha(\mathrm{N}) = 0.1681 \; 24; \; \alpha(\mathrm{O}) = 0.0375 \; 6; \; \alpha(\mathrm{P}) = 0.00626 \; 9; \\ \alpha(\mathrm{Q}) = 3.94 \times 10^{-5} \; 6 \end{array} $
135.3390 [#] 5	1.97 10	164.5317	(3/2 ⁻)	29.1927	(5/2 ⁺)	E1		0.239	α (K)=0.186 3; α (L)=0.0403 6; α (M)=0.00974 14; α (N+)=0.00327 5 α (N)=0.00257 4; α (O)=0.000587 9; α (P)=0.0001057 15; α (Q)=6.68×10 ⁻⁶ 10
139.3 ^k 3		374.815	(7/2+)	235.1266	(5/2 ⁻ ,7/2 ⁻)	[E1]		0.223	$\alpha(K)=0.174 \ 3; \ \alpha(L)=0.0374 \ 6; \ \alpha(M)=0.00903 \ 14; \ \alpha(N+)=0.00303 \ 5 \ \alpha(N)=0.00238 \ 4; \ \alpha(O)=0.000546 \ 9; \ \alpha(P)=9.83\times10^{-5} \ 15; \ \alpha(O)=6.27\times10^{-6} \ 10$
139.3 ^k 3	0.0206 23	428.04	(5/2+)	288.491	(3/2+)	[M1]		7.24	$\alpha(K)=5.78 \ 9; \ \alpha(L)=1.103 \ 17; \ \alpha(M)=0.265 \ 4; \ \alpha(N+)=0.0911$ 14 $\alpha(N)=0.0708 \ 11; \ \alpha(O)=0.0168 \ 3; \ \alpha(P)=0.00325 \ 5;$ $\alpha(Q)=0.000309 \ 5$
139.722 [#] 3	0.090 18	287.895	(7/2 ⁻)	148.1730	(7/2 ⁻)	[M1]		7.17	$\alpha(K)=5.73 \ 8; \ \alpha(L)=1.093 \ 16; \ \alpha(M)=0.263 \ 4; \ \alpha(N+)=0.0903 \ 13 \ \alpha(N)=0.0701 \ 10; \ \alpha(O)=0.01661 \ 24; \ \alpha(P)=0.00322 \ 5; \ \alpha(O)=0.000306 \ 5$
141.95 10	0.0090 15	288.491	(3/2+)	146.3569	(5/2 ⁻)	[E1]		0.213	$\alpha(K)=0.1663\ 24;\ \alpha(L)=0.0356\ 5;\ \alpha(M)=0.00860\ 13;\alpha(N+)=0.00289\ 4\alpha(N)=0.00227\ 4;\ \alpha(O)=0.000520\ 8;\ \alpha(P)=9.38\times10^{-5}\ 14;\alpha(O)=6\ 01\times10^{-6}\ 9$
142.69 ^c 1	0.034 5	359.6044	(7/2+)	217.1597	(5/2 ⁻)	[E1]		0.211	$\alpha(Q) = 0.161 \times 10^{-5} \text{ (M)} = 0.00849 \ 12;$ $\alpha(N+) = 0.00285 \ 4$ $\alpha(N) = 0.00224 \ 4; \ \alpha(O) = 0.000513 \ 8; \ \alpha(P) = 9.25 \times 10^{-5} \ 13;$ $\alpha(Q) = 5.04 \times 10^{-6} \ 0$
144.42 2	0.30 3	241.546	13/2+	97.13595	9/2+	[E2]		2.34	$\alpha(Q)=5.94 \times 10^{-5} \text{ g}$ $\alpha(K)=0.250 4; \ \alpha(L)=1.527 22; \ \alpha(M)=0.419 6; \ \alpha(N+)=0.1416$ 20 $\alpha(N)=0.1123 16; \ \alpha(O)=0.0251 4; \ \alpha(P)=0.00419 6;$ $\alpha(O)=3.01 \times 10^{-5} 5$
145.35 2	1.73 7	217.1597	(5/2-)	71.8260	(7/2+)	[E1]		0.202	$\alpha(\mathbf{X}) = 0.1574 \ 22; \ \alpha(\mathbf{L}) = 0.0335 \ 5; \ \alpha(\mathbf{M}) = 0.00809 \ 12; \\ \alpha(\mathbf{N}+) = 0.00272 \ 4 \\ \alpha(\mathbf{N}) = 0.00213 \ 3; \ \alpha(\mathbf{O}) = 0.000489 \ 7; \ \alpha(\mathbf{P}) = 8.84 \times 10^{-5} \ 13; \\ \alpha(\mathbf{O}) = 5.70 \times 10^{-6} \ 8 $
146.3462 ^{#c} 6	6.5 3	146.3569	(5/2 ⁻)	0.0076	$(3/2^+)$	(E1)		0.198	α (K)=0.1549 22; α (L)=0.0329 5; α (M)=0.00795 12;

 $^{229}_{90}\mathrm{Th}_{139}$ -11

L

 $^{229}_{90}\mathrm{Th}_{139}$ -11

From ENSDF

				233 U α d	lecay	2003Ba78	,2007Be1	<mark>6</mark> (continued	1)
					γ	(²²⁹ Th) (co	ontinued)		
E_{γ}^{\dagger}	I_{γ}^{eh}	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^π	Mult. [‡]	α^{j}	$I_{(\gamma+ce)}^{i}$	Comments
146.9 ^{<i>m</i>} 5 148.20 2	0.116 10 0.397 20	272.84? 148.1730	(13/2 ⁺) (7/2 ⁻)	125.4385 0.0	(9/2 ⁺) 5/2 ⁺	[E1]	0.193	0.00035	$\begin{aligned} &\alpha(\text{N}+)=0.00267 \ 4\\ &\alpha(\text{N})=0.00210 \ 3; \ \alpha(\text{O})=0.000481 \ 7; \ \alpha(\text{P})=8.69\times10^{-5}\\ &I_3; \ \alpha(\text{Q})=5.62\times10^{-6} \ 8\\ &I_{\gamma}: \ 0.119 \ \text{in table VI of } 2003\text{Ba78.}\\ &\alpha(\text{K})=0.1504 \ 21; \ \alpha(\text{L})=0.0319 \ 5; \ \alpha(\text{M})=0.00770 \ 11;\\ &\alpha(\text{N}+)=0.00259 \ 4\\ &\alpha(\text{N})=0.00203 \ 3; \ \alpha(\text{O})=0.000466 \ 7; \ \alpha(\text{P})=8.42\times10^{-5}\\ &I_2; \ \alpha(\text{Q})=5.46\times10^{-6} \ 8 \end{aligned}$
152.62 10	0.095 8	317.1731	(5/2+)	164.5317	(3/2 ⁻)	[E1]	0.179		α (K)=0.1404 20; α (L)=0.0295 5; α (M)=0.00714 10; α (N)=0.00240 4 α (N)=0.00188 3; α (O)=0.000432 6; α (P)=7.82×10 ⁻⁵ 11; α (Q)=5.12×10 ⁻⁶ 8
153.17 ^{km} 4 153.17 ^k 4	0.037 3	173.4837 195.7194	(9/2 ⁻) (11/2 ⁺)	20.2? 42.4349	(7/2 ⁻) 7/2 ⁺	[E2]	1.84		$\begin{aligned} &\alpha(\mathbf{K}) = 0.236 \ 4; \ \alpha(\mathbf{L}) = 1.174 \ 17; \ \alpha(\mathbf{M}) = 0.322 \ 5; \\ &\alpha(\mathbf{N}+) = 0.1088 \ 16 \\ &\alpha(\mathbf{N}) = 0.0862 \ 13; \ \alpha(\mathbf{O}) = 0.0193 \ 3; \ \alpha(\mathbf{P}) = 0.00323 \ 5; \\ &\alpha(\mathbf{Q}) = 2.53 \times 10^{-5} \ 4 \end{aligned}$
153.17 ^{km} 4 154.90 3	0.143 8	365.8136 302.989	(7/2 ⁺) (7/2 ⁺)	212.382 148.1730	(5/2 ⁺) (7/2 ⁻)	[E1]	0.1732		$\alpha(K)=0.1356 \ 19; \ \alpha(L)=0.0284 \ 4; \ \alpha(M)=0.00687 \ 10; \ \alpha(N+)=0.00231 \ 4 \ \alpha(N)=0.00181 \ 3; \ \alpha(O)=0.000416 \ 6; \ \alpha(P)=7.54\times10^{-5} \ M_{\odot} = 0.00181 \ 3; \ \alpha(O)=0.000416 \ 6; \ \alpha(P)=7.54\times10^{-5} \ M_{\odot} = 0.00181 \ 3; \ \alpha(O)=0.000416 \ 6; \ \alpha(P)=7.54\times10^{-5} \ M_{\odot} = 0.00181 \ 3; \ \alpha(O)=0.000416 \ 6; \ \alpha(P)=7.54\times10^{-5} \ M_{\odot} = 0.00181 \ 3; \ \alpha(O)=0.000416 \ 6; \ \alpha(P)=7.54\times10^{-5} \ M_{\odot} = 0.00181 \ 3; \ \alpha(O)=0.000416 \ 6; \ \alpha(P)=7.54\times10^{-5} \ M_{\odot} = 0.00181 \ 3; \ \alpha(O)=0.000416 \ 6; \ \alpha(P)=7.54\times10^{-5} \ M_{\odot} = 0.00181 \ 3; \ \alpha(O)=0.000416 \ 6; \ \alpha(P)=7.54\times10^{-5} \ M_{\odot} = 0.00181 \ 3; \ \alpha(O)=0.000416 \ 6; \ \alpha(P)=7.54\times10^{-5} \ M_{\odot} = 0.00181 \ M_{$
156.19 5	0.036 3	320.5483	(5/2+)	164.5317	(3/2 ⁻)	[E1]	0.1698		11; $\alpha(Q)=4.95\times10^{-6}$ / $\alpha(K)=0.1330$ 19; $\alpha(L)=0.0278$ 4; $\alpha(M)=0.00672$ 10; $\alpha(N+)=0.00226$ 4 $\alpha(N)=0.001774$ 25; $\alpha(O)=0.000407$ 6; $\alpha(P)=7.39\times10^{-5}$ 11: $\alpha(Q)=4.86\times10^{-6}$ 7
162.45 ^k 4	0.054 5	287.895	(7/2 ⁻)	125.4385	(9/2+)	[E1]	0.1546		$\alpha(K)=0.1213 \ 17; \ \alpha(L)=0.0252 \ 4; \ \alpha(M)=0.00608 \ 9; \ \alpha(N)=0.001604 \ 23; \ \alpha(O)=0.000369 \ 6; \ \alpha(P)=6.70\times10^{-5} \ 10; \ \alpha(Q)=4.46\times10^{-6} \ 7$
162.45 ^{<i>k</i>} 4 ^{<i>x</i>} 163.72 3	0.117 6	465.426	(5/2 ⁻ ,7/2,9/2 ⁺)	302.989	$(7/2^+)$				
(164.5 ^{<i>l</i>})	0.261 ¹ 5	327.8	(15/2+)	163.2542	11/2+	[E2]	1.385		$ \begin{aligned} &\alpha(\text{K}) = 0.216 \ 3; \ \alpha(\text{L}) = 0.856 \ 12; \ \alpha(\text{M}) = 0.234 \ 4; \\ &\alpha(\text{N}+) = 0.0792 \ 11 \\ &\alpha(\text{N}) = 0.0628 \ 9; \ \alpha(\text{O}) = 0.01405 \ 20; \ \alpha(\text{P}) = 0.00236 \ 4; \\ &\alpha(\text{Q}) = 2.07 \times 10^{-5} \ 3 \end{aligned} $
164.5240 ^{<i>l</i>#} 5	6.0^{l} 3	164.5317	(3/2 ⁻)	0.0076	(3/2 ⁺)	(E1) ^{<i>a</i>}	0.1500		α (K)=0.1177 <i>17</i> ; α (L)=0.0244 <i>4</i> ; α (M)=0.00588 <i>9</i> ; α (N+)=0.00198 <i>3</i>

From ENSDF

 $^{229}_{90}\mathrm{Th}_{139}$ -12

				233 U α d	ecay 2003	Ba78,2007	Be16 (con	ntinued)
					γ (²²⁹ Th	a) (continu	ed)	
${\rm E_{\gamma}}^{\dagger}$	Ι _γ <i>eh</i>	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α^{j}	Comments
165.61 <i>3</i>	0.407 23	237.366	(7/2 ⁻)	71.8260	(7/2 ⁺)	[E1]	0.1476	$\begin{aligned} &\alpha(N)=0.001553\ 22;\ \alpha(O)=0.000357\ 5;\ \alpha(P)=6.49\times10^{-5}\ 9;\\ &\alpha(Q)=4.33\times10^{-6}\ 6\\ &\alpha(K)=0.1159\ 17;\ \alpha(L)=0.0240\ 4;\ \alpha(M)=0.00579\ 9;\\ &\alpha(N+)=0.00195\ 3\\ &\alpha(N)=0.001527\ 22;\ \alpha(O)=0.000351\ 5;\ \alpha(P)=6.39\times10^{-5}\ 9;\\ &\alpha(Q)=4.27\times10^{-6}\ 6\end{aligned}$
167.10 7	0.0165 14	526.516	(5/2,7/2)	359.6044	$(7/2^+)$			$u(Q) = 1.27 \times 10^{-10}$
169.002 [#] 5	0.041 6	317.1731	(5/2+)	148.1730	(7/2 ⁻)	[E1]	0.1407	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.1106 \ 16; \ \alpha(\mathbf{L}) = 0.0228 \ 4; \ \alpha(\mathbf{M}) = 0.00549 \ 8; \\ &\alpha(\mathbf{N}+) = 0.00185 \ 3 \\ &\alpha(\mathbf{N}) = 0.001450 \ 21; \ \alpha(\mathbf{O}) = 0.000334 \ 5; \ \alpha(\mathbf{P}) = 6.07 \times 10^{-5} \ 9; \\ &\alpha(\mathbf{Q}) = 4.08 \times 10^{-6} \ 6 \end{aligned} $
170.809 [#] 24	0.100 6	317.1731	(5/2+)	146.3569	(5/2 ⁻)	[E1]	0.1372	$\alpha(K)=0.1078 \ 16; \ \alpha(L)=0.0222 \ 4; \ \alpha(M)=0.00535 \ 8; \\ \alpha(N+)=0.00180 \ 3 \\ \alpha(N)=0.001412 \ 20; \ \alpha(O)=0.000325 \ 5; \ \alpha(P)=5.92\times10^{-5} \ 9; \\ \alpha(O)=3.99\times10^{-6} \ 6 $
172.39 10	0.0228 22	320.5483	(5/2+)	148.1730	(7/2 ⁻)	[E1]	0.1342	$\alpha(K) = 0.1055 \ 15; \ \alpha(L) = 0.0217 \ 3; \ \alpha(M) = 0.00522 \ 8; \\ \alpha(N+) = 0.001758 \ 25 \\ \alpha(N) = 0.001379 \ 20; \ \alpha(O) = 0.000317 \ 5; \ \alpha(P) = 5.78 \times 10^{-5} \ 9; \\ \alpha(O) = 3.91 \times 10^{-6} \ 6$
174.192 [#] 2	0.170 9	320.5483	(5/2+)	146.3569	(5/2 ⁻)	[E1]	0.1309	$\alpha(\mathbf{K}) = 0.1030 \ 15; \ \alpha(\mathbf{L}) = 0.0211 \ 3; \ \alpha(\mathbf{M}) = 0.00509 \ 8; \\ \alpha(\mathbf{N}+) = 0.001712 \ 24 \\ \alpha(\mathbf{N}) = 0.001343 \ 19; \ \alpha(\mathbf{O}) = 0.000309 \ 5; \ \alpha(\mathbf{P}) = 5.64 \times 10^{-5} \ 8; \\ \alpha(\mathbf{O}) = 3.82 \times 10^{-6} \ 6$
^x 176.10 5	0.016 5							
177.91 ^k 16	0.0066 13	302.989	(7/2+)	125.4385	(9/2+)	[M1]	3.62	$\alpha(K)=2.895; \alpha(L)=0.5498; \alpha(M)=0.132019; \alpha(N+)=0.0453$ $\alpha(N)=0.03525; \alpha(O)=0.0083412; \alpha(P)=0.00161823;$
177.91 ^k 16 184.1 3	0.022 5	656.89 425.877	(5/2 ⁺ ,7/2,9/2 ⁺) (9/2 ⁺)	478.649 241.546	(7/2 ⁺ ,9/2 ⁺) 13/2 ⁺	[E2]	0.897	$\alpha(Q)=0.0001356\ 22$ $\alpha(K)=0.182\ 3;\ \alpha(L)=0.523\ 9;\ \alpha(M)=0.1429\ 23;$ $\alpha(N+)=0.0484\ 8$ $\alpha(N)=0.0282\ 6;\ \alpha(Q)=0.00858\ 14;\ \alpha(D)=0.001445\ 22;$
185.76 ^m 9	0.0078 21	359.6044	(7/2 ⁺)	173.4837	(9/2 ⁻)	[E1]	0.1124	$\begin{aligned} \alpha(\text{N}) = 0.5385 \ 6; \ \alpha(\text{O}) = 0.00838 \ 14; \ \alpha(\text{P}) = 0.001445 \ 23; \\ \alpha(\text{Q}) = 1.523 \times 10^{-5} \ 23 \\ \alpha(\text{K}) = 0.0886 \ 13; \ \alpha(\text{L}) = 0.0179 \ 3; \ \alpha(\text{M}) = 0.00432 \ 6; \\ \alpha(\text{N}+) = 0.001456 \ 21 \\ \alpha(\text{N}) = 0.001422 \ 16; \ \alpha(\text{O}) = 0.000263 \ 4; \ \alpha(\text{P}) = 4.81 \times 10^{-5} \ 7; \end{aligned}$
^x 187.12.3	0.032.4							$\alpha(\mathbf{Q})=3.32\times10^{-6}$ 5
187.9670 [#] 3	1.87 9	217.1597	(5/2 ⁻)	29.1927	(5/2+)	[E1]	0.1093	$\alpha(K)=0.0862 \ 12; \ \alpha(L)=0.01741 \ 25; \ \alpha(M)=0.00420 \ 6;$

From ENSDF

 $^{229}_{90}$ Th $_{139}$ -13

				233 U α de	cay 2	003Ba78,2	2007Be16	(continued)
					$\gamma(22)$	²⁹ Th) (con	tinued)	
E_{γ}^{\dagger}	I_{γ}^{eh}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult.‡	α^{j}	Comments
188.65 6	0.025 4	425.877	(9/2+)	237.366	(7/2-)	[E1]	0.1083	$ \begin{array}{c} \alpha(N+)=0.001414\ 20 \\ \alpha(N)=0.001108\ 16;\ \alpha(O)=0.000256\ 4;\ \alpha(P)=4.68\times10^{-5}\ 7; \\ \alpha(Q)=3.23\times10^{-6}\ 5 \\ \alpha(K)=0.0855\ 12;\ \alpha(L)=0.01725\ 25;\ \alpha(M)=0.00416\ 6; \\ \alpha(N+)=0.001401\ 20 \\ \alpha(N)=0.001098\ 16;\ \alpha(O)=0.000253\ 4;\ \alpha(P)=4.63\times10^{-5}\ 7; \end{array} $
192.26 <i>4</i>	0.036 4	365.8136	(7/2+)	173.4837	(9/2-)	[E1]	0.1036	$\begin{array}{l} \alpha(\mathrm{Q}) = 3.20 \times 10^{-6} \ 5 \\ \alpha(\mathrm{K}) = 0.0818 \ 12; \ \alpha(\mathrm{L}) = 0.01645 \ 23; \ \alpha(\mathrm{M}) = 0.00396 \ 6; \\ \alpha(\mathrm{N}+) = 0.001336 \ 19 \\ \alpha(\mathrm{N}) = 0.001047 \ 15; \ \alpha(\mathrm{O}) = 0.000242 \ 4; \ \alpha(\mathrm{P}) = 4.42 \times 10^{-5} \ 7; \\ \alpha(\mathrm{Q}) = 3.07 \times 10^{-6} \ 5 \end{array}$
205.75^k 6	0.0038 13	302.989	(7/2 ⁺)	97.13595	9/2+	[M1]	2.40	α (K)=1.92 3; α (L)=0.364 6; α (M)=0.0875 13; α (N+)=0.0300 5 α (N)=0.0233 4; α (O)=0.00553 8; α (P)=0.001072 15; α (Q)=0.0001018 15
205.75 ^k 6 ^x 207.25 9	0.032 5	526.516	(5/2,7/2)	320.5483	$(5/2^+)$			
208.179 [#] 7	2.29 11	237.366	(7/2 ⁻)	29.1927	(5/2+)	[E1]	0.0859	$\begin{aligned} &\alpha(\mathrm{K}) = 0.0680 \ 10; \ \alpha(\mathrm{L}) = 0.01350 \ 19; \ \alpha(\mathrm{M}) = 0.00325 \ 5; \\ &\alpha(\mathrm{N}+) = 0.001096 \ 16 \\ &\alpha(\mathrm{N}) = 0.000858 \ 12; \ \alpha(\mathrm{O}) = 0.000198 \ 3; \ \alpha(\mathrm{P}) = 3.65 \times 10^{-5} \ 6; \\ &\alpha(\mathrm{Q}) = 2.58 \times 10^{-6} \ 4 \end{aligned}$
209.08 8 210.90 8	0.019 <i>3</i> 0.0137 <i>24</i>	382.54? 428.04	$(7/2^{-},9/2,11/2^{+})$ $(5/2^{+})$	173.4837 217.1597	(9/2 ⁻) (5/2 ⁻)	[E1]	0.0833	α (K)=0.0660 <i>10</i> ; α (L)=0.01307 <i>19</i> ; α (M)=0.00315 <i>5</i> ; α (N+)=0.001061 <i>15</i> α (N)=0.000831 <i>12</i> ; α (O)=0.000192 <i>3</i> ; α (P)=3.53×10 ⁻⁵ <i>5</i> ;
212.36 3	0.130 7	212.382	(5/2 ⁺)	0.0	5/2+	[M1]	2.20	$\alpha(Q)=2.51\times10^{-6} 4$ $\alpha(K)=1.759 25; \ \alpha(L)=0.333 5; \ \alpha(M)=0.0801 12; \ \alpha(N+)=0.0275 4$ $\alpha(N)=0.0214 3; \ \alpha(O)=0.00506 7; \ \alpha(P)=0.000981 14; $ $\alpha(Q)=9.31\times10^{-5} 13$
^x 214.98 <i>11</i> 216.07 <i>1</i>	0.0058 <i>16</i> 0.62 <i>3</i>	287.895	(7/2-)	71.8260	(7/2+)	[E1]	0.0787	$\alpha(K)=0.0624 \ 9; \ \alpha(L)=0.01231 \ 18; \ \alpha(M)=0.00296 \ 5; \ \alpha(N+)=0.001000 \ 14 \ \alpha(N)=0.000783 \ 11; \ \alpha(O)=0.000181 \ 3; \ \alpha(P)=3.33\times10^{-5} \ 5; \ \alpha(Q)=2.38\times10^{-6} \ 4$
217.151 [#] 4	3.28 16	217.1597	(5/2 ⁻)	0.0076	(3/2+)	[E1]	0.0778	$\alpha(K)=0.0617 \; 9; \; \alpha(L)=0.01216 \; 17; \; \alpha(M)=0.00293 \; 4; \\ \alpha(N+)=0.000987 \; 14 \\ \alpha(N)=0.000773 \; 11; \; \alpha(O)=0.000179 \; 3; \; \alpha(P)=3.29\times10^{-5} \; 5; \\ \alpha(Q)=2.36\times10^{-6} \; 4$

 $^{229}_{90}$ Th $_{139}$ -14

				233 U α dec	ay 200.	3Ba78,2007H	Be16 (cont	inued)	
					γ ⁽²²⁹ T	h) (continue	d)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ} <i>eh</i>	E _i (level)	J_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{j}	Comments
217.8 ^m 2	<0.003	365.8136	(7/2+)	148.1730	(7/2 ⁻)	[E1]		0.0773	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0617 \; 9; \; \alpha(\mathrm{L}) = 0.01216 \; 17; \; \alpha(\mathrm{M}) = 0.00293 \; 4; \\ \alpha(\mathrm{N}+) = 0.000987 \; 14 \\ \alpha(\mathrm{N}) = 0.000773 \; 11; \; \alpha(\mathrm{O}) = 0.000179 \; 3; \\ \alpha(\mathrm{P}) = 3.29 \times 10^{-5} \; 5; \; \alpha(\mathrm{Q}) = 2.36 \times 10^{-6} \; 4 \\ \alpha(\mathrm{K}) = 0.0613 \; 9; \; \alpha(\mathrm{L}) = 0.01207 \; 18; \; \alpha(\mathrm{M}) = 0.00290 \; 5; \\ \alpha(\mathrm{N}+) = 0.000980 \; 14 \end{array} $
219.43 2	0.118 6	365.8136	(7/2 ⁺)	146.3569	(5/2 ⁻)	[E1]		0.0759	$\begin{aligned} \alpha(N) &= 0.000768 \ I1; \ \alpha(O) &= 0.000177 \ 3; \\ \alpha(P) &= 3.27 \times 10^{-5} \ 5; \ \alpha(Q) &= 2.34 \times 10^{-6} \ 4 \\ \alpha(K) &= 0.0603 \ 9; \ \alpha(L) &= 0.01185 \ 17; \ \alpha(M) &= 0.00285 \ 4; \\ \alpha(N+) &= 0.000962 \ I4 \\ \alpha(N) &= 0.000754 \ I1; \ \alpha(O) &= 0.0001743 \ 25; \end{aligned}$
223.37 3	0.024 3	320.5483	(5/2 ⁺)	97.13595	9/2+	[E2]		0.443	α (P)=3.21×10 ⁻⁵ 5; α (Q)=2.30×10 ⁻⁶ 4 α (K)=0.1295 19; α (L)=0.230 4; α (M)=0.0625 9; α (N+)=0.0212 3 α (N)=0.01676 24; α (Q)=0.00376 6; α (P)=0.000639
224.33 19	0.0013 4	436.951	(7/2 ⁻)	212.382	(5/2+)	[E1]		0.0721	9; $\alpha(Q)=9.24\times10^{-6}$ 13 $\alpha(K)=0.0573$ 8; $\alpha(L)=0.01123$ 16; $\alpha(M)=0.00270$ 4; $\alpha(N+)=0.000911$ 13 $\alpha(N)=0.000714$ 11; $\alpha(O)=0.0001651$ 24;
226.2 2	0.070 23	255.957	(3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺)	29.1927	(5/2+)	[M1]		1.84	$\begin{array}{l} \alpha(\mathrm{P})=3.05\times10^{-5} \ 5; \ \alpha(\mathrm{Q})=2.20\times10^{-6} \ 4\\ \alpha(\mathrm{K})=1.475 \ 21; \ \alpha(\mathrm{L})=0.279 \ 4; \ \alpha(\mathrm{M})=0.0670 \ 10; \\ \alpha(\mathrm{N}+)=0.0230 \ 4\\ \alpha(\mathrm{N})=0.0179 \ 3; \ \alpha(\mathrm{O})=0.00423 \ 6; \ \alpha(\mathrm{P})=0.000821 \end{array}$
230.17 2	0.071 5	425.877	(9/2+)	195.7194	(11/2+)	[M1+E2]		1.1 7	12; $\alpha(Q)=7.79 \times 10^{-5}$ 11 $\alpha(K)=0.8$ 7; $\alpha(L)=0.23$ 4; $\alpha(M)=0.059$ 5; $\alpha(N+)=0.0203$ 17 $\alpha(N)=0.0159$ 12; $\alpha(O)=0.0037$ 4; $\alpha(P)=0.00067$ 11;
^x 230.97 9 ^x 237.49 10	0.0086 22 0.0051 17								$\alpha(Q)=4.E-54$
240.373 [#] 3	0.413 22	365.8136	(7/2 ⁺)	125.4385	(9/2+)	M1+E2	0.79 7	1.09 6	α (K)=0.81 5; α (L)=0.210 4; α (M)=0.0525 9; α (N+)=0.0179 3 α (N)=0.01402 23; α (O)=0.00326 6; α (P)=0.000608
$240.90^{m} 4$	0.038 5	382.54?	(7/2 ⁻ ,9/2,11/2 ⁺)	140.9?	(11/2 ⁻)				13; $\alpha(Q)=4.3\times10^{-5}$ 3
245.350 [#] 1	3.57 18	317.1731	(5/2+)	71.8260	(7/2 ⁺)	M1+E2	0.76 5	1.05 4	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.79 \; 4; \; \alpha(\mathbf{L}) = 0.198 \; 4; \; \alpha(\mathbf{M}) = 0.0493 \; 8; \\ &\alpha(\mathbf{N}+) = 0.0169 \; 3 \\ &\alpha(\mathbf{N}) = 0.01318 \; 21; \; \alpha(\mathbf{O}) = 0.00307 \; 5; \; \alpha(\mathbf{P}) = 0.000574 \\ &11; \; \alpha(\mathbf{Q}) = 4.20 \times 10^{-5} \; 18 \end{aligned} $

 $^{229}_{90}\mathrm{Th}_{139}$ -15

L

				233 U α dec	ay <mark>20</mark>	03Ba78,200)7Be16 (coi	ntinued)	
					$\gamma(^{229}$	Th) (contin	ued)		
E_{γ}^{\dagger}	I _γ <i>eh</i>	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{j}	Comments
248.724 ^{k#} 1	1.40 7	320.5483	(5/2+)	71.8260	(7/2+)	[M1]		1.415	$\begin{aligned} &\alpha(\text{K})=1.132 \ 16; \ \alpha(\text{L})=0.214 \ 3; \ \alpha(\text{M})=0.0514 \ 8; \\ &\alpha(\text{N}+)=0.01763 \ 25 \\ &\alpha(\text{N})=0.01370 \ 20; \ \alpha(\text{O})=0.00324 \ 5; \ \alpha(\text{P})=0.000629 \\ &9; \ \alpha(\text{Q})=5.97\times10^{-5} \ 9 \end{aligned}$
248.724 ^{k#} 1		569.2721	(3/2,5/2 ⁺)	320.5483	(5/2+)	M1+E2	0.87 7	0.94 5	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.69 \ 5; \ \alpha(\mathbf{L}) = 0.185 \ 4; \ \alpha(\mathbf{M}) = 0.0465 \ 8; \\ &\alpha(\mathbf{N}+) = 0.0159 \ 3 \\ &\alpha(\mathbf{N}) = 0.01242 \ 22; \ \alpha(\mathbf{O}) = 0.00289 \ 6; \ \alpha(\mathbf{P}) = 0.000536 \\ &12; \ \alpha(\mathbf{Q}) = 3.70 \times 10^{-5} \ 22 \end{aligned} $
x252.05 8 255.91 2	0.009 0.0393 <i>25</i>	255.957	(3/2+,5/2+,7/2+)	0.0	5/2+	[M1]		1.307	$\alpha(K)=1.046 \ 15; \ \alpha(L)=0.197 \ 3; \ \alpha(M)=0.0474 \ 7; \ \alpha(N+)=0.01628 \ 23 \ \alpha(N)=0.01265 \ 18; \ \alpha(O)=0.00300 \ 5; \ \alpha(P)=0.000581 \ 9; \ \alpha(O)=5.51\times10^{-5} \ 8$
259.31 2	0.155 8	288.491	(3/2+)	29.1927	(5/2+)	[M1]		1.260	$\alpha(K) = 1.009 \ 15; \ \alpha(L) = 0.190 \ 3; \ \alpha(M) = 0.0457 \ 7; \ \alpha(N+) = 0.01569 \ 22 \ \alpha(N) = 0.01219 \ 17; \ \alpha(O) = 0.00289 \ 4; \ \alpha(P) = 0.000560 \ 8; \ \alpha(O) = 5 \ 31 \times 10^{-5} \ 8$
260.53 2	0.102 6	302.989	(7/2+)	42.4349	7/2+	[M1]		1.244	$\alpha(K) = 0.996 \ 14; \ \alpha(L) = 0.188 \ 3; \ \alpha(M) = 0.0451 \ 7; \alpha(N+) = 0.01549 \ 22 \alpha(N) = 0.01203 \ 17; \ \alpha(O) = 0.00285 \ 4; \ \alpha(P) = 0.000553 8; \ \alpha(Q) = 5.25 \times 10^{-5} \ 8$
261.957 [#] 4	0.278 14	261.964	(1/2 ⁺)	0.0076	(3/2+)	M1+E2	0.93 7	0.78 4	$\alpha(K)=0.57 4; \alpha(L)=0.155 4; \alpha(M)=0.0389 8; \alpha(N+)=0.01327 25 \alpha(N)=0.01038 19; \alpha(O)=0.00241 5; \alpha(P)=0.000447 11; \alpha(O)=3.06\times10^{-5} 18$
268.675 [#] 2	0.246 12	365.8136	(7/2 ⁺)	97.13595	9/2+	M1+E2	0.75 7	0.82 5	$\alpha(K) = 0.62 4; \ \alpha(L) = 0.149 4; \ \alpha(M) = 0.0370 8; \ \alpha(N+) = 0.0127 3 \ \alpha(N) = 0.00989 20; \ \alpha(O) = 0.00231 5; \ \alpha(P) = 0.000434 \ \mu_{1} = \alpha(O) = 3.20 \times 10^{-5} 10$
272.39 2	0.071 4	436.951	(7/2 ⁻)	164.5317	(3/2 ⁻)	[E2]		0.228	$\alpha(K) = 0.0882 \ I3; \ \alpha(L) = 0.1027 \ I5; \ \alpha(M) = 0.0277 \ 4; \ \alpha(N+) = 0.00938 \ I4 \ \alpha(N) = 0.00742 \ I1; \ \alpha(O) = 0.001672 \ 24; \ \alpha(P) = 0.000287 \ 4; \ \alpha(O) = 5.70 \times 10^{-6} \ 8$
273.74 5	0.0155 17	302.989	(7/2 ⁺)	29.1927	(5/2+)	[M1]		1.085	$\alpha(K)=0.868 \ 13; \ \alpha(L)=0.1636 \ 23; \ \alpha(M)=0.0393 \ 6; \ \alpha(N+)=0.01349 \ 19 \ \alpha(N)=0.01048 \ 15; \ \alpha(O)=0.00248 \ 4; \ \alpha(P)=0.000482 \ 7; \ \alpha(O)=4 \ 57 \times 10^{-5} \ 7$
274.735 [#] 1	0.420 22	317.1731	(5/2 ⁺)	42.4349	7/2+	M1+E2	1.07 10	0.62 5	$\alpha(K)=0.45 \ 4; \ \alpha(L)=0.129 \ 4; \ \alpha(M)=0.0324 \ 8; \ \alpha(N+)=0.0111 \ 3$

			:	233 U α deca	y 2003Ba'	78,2007Be16	(continued)	
					γ ⁽²²⁹ Th) (continued)			
${\rm E_{\gamma}}^{\dagger}$	I _γ eh	E _i (level)	J_i^π	E_{f}	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{j}	Comments
278.108 [#] 2	1.13 6	320.5483	(5/2+)	42.4349	7/2+	M1+E2	1.14 10	0.57 4	$\begin{aligned} &\alpha(N) = 0.00866\ 20;\ \alpha(O) = 0.00201\ 5;\\ &\alpha(P) = 0.000370\ 11;\ \alpha(Q) = 2.41 \times 10^{-5}\ 20\\ &\alpha(K) = 0.41\ 4;\ \alpha(L) = 0.122\ 4;\ \alpha(M) = 0.0308\ 7;\\ &\alpha(N+) = 0.01050\ 25\\ &\alpha(N) = 0.00822\ 19;\ \alpha(O) = 0.00190\ 5; \end{aligned}$
284.29 ^m 11	0.0089 16	359.6044	(7/2 ⁺)	75.1?	(9/2 ⁻)	[E1]		0.0419	$\begin{aligned} &\alpha(P) = 0.000350 \ 11; \ \alpha(Q) = 2.21 \times 10^{-5} \ 18 \\ &\alpha(K) = 0.0335 \ 5; \ \alpha(L) = 0.00635 \ 9; \\ &\alpha(M) = 0.001522 \ 22; \ \alpha(N+) = 0.000515 \ 8 \\ &\alpha(N) = 0.000403 \ 6; \ \alpha(O) = 9.36 \times 10^{-5} \ 14; \\ &\alpha(P) = 1.742 \times 10^{-5} \ 25; \ \alpha(Q) = 1.323 \times 10^{-6} \ 19 \end{aligned}$
^x 287.32 <i>14</i> 288.0290 ^{k#c} 9	0.015 7 0.91 5	317.1731	(5/2+)	29.1927	(5/2+)	[M1+E2]		0.6 4	α (K)=0.4 4; α (L)=0.11 3; α (M)=0.028 6; α (N+)=0.0096 21 α (N)=0.0075 16; α (O)=0.0017 4; α (P)=0.00032 10; α (O)=2.2×10 ⁻⁵ 18
288.0290 ^{k#m} 9 288.50 <i>3</i>	0.117 14	605.165 288.491	(5/2,7/2) ⁺ (3/2 ⁺)	317.1731 0.0076	(5/2 ⁺) (3/2 ⁺)	[M1]		0.938	$\alpha(K)=0.751 \ 11; \ \alpha(L)=0.1414 \ 20; \\ \alpha(M)=0.0340 \ 5; \ \alpha(N+)=0.01166 \ 17 \\ \alpha(N)=0.00906 \ 13; \ \alpha(O)=0.00215 \ 3; \\ \alpha(P)=0.000416 \ 6; \ \alpha(Q)=3.95\times10^{-5} \ 6$
² 290.62 3 291.355 ^{1#} 9	0.109 7 $4.63^{l} 25$	320.5483	(5/2+)	29.1927	(5/2 ⁺)	M1+E2	0.80 6	0.63 3	α (K)=0.476 25; α (L)=0.115 3; α (M)=0.0284 6; α (N+)=0.00972 21 α (N)=0.00759 16; α (O)=0.00177 4; α (P)=0.000333 9; α (O)=2.53×10 ⁻⁵ 13
291.355 ^{l#} 9 291.93 4	0.62 ^{lg} 25 0.102 15	526.516 465.426	(5/2,7/2) $(5/2^{-},7/2,9/2^{+})$	235.1266 173.4837	$(5/2^-, 7/2^-)$ $(9/2^-)$				$u(1) = 0.00055557, u(Q) = 2.55 \times 10^{-15}$
293.996 [#] 9	0.122 7	365.8136	(7/2 ⁺)	71.8260	(7/2 ⁺)	M1		0.890	α (K)=0.713 <i>10</i> ; α (L)=0.1342 <i>19</i> ; α (M)=0.0322 <i>5</i> ; α (N+)=0.01106 <i>16</i> α (N)=0.00860 <i>12</i> ; α (O)=0.00204 <i>3</i> ; α (P)=0.000395 <i>6</i> ; α (Q)=3.75×10 ⁻⁵ <i>6</i>
302.989 ^{k#d} 4	0.078 4	302.989	(7/2+)	0.0	5/2+	[M1]		0.820	$\alpha(K)=0.656 \ 10; \ \alpha(L)=0.1235 \ 18; \ \alpha(M)=0.0296 \ 5; \ \alpha(N+)=0.01018 \ 15 \ \alpha(N)=0.00791 \ 11; \ \alpha(O)=0.00187 \ 3; \ \alpha(P)=0.000363 \ 5; \ \alpha(Q)=3.45\times10^{-5} \ 5$
302.989 ^{k#} 4		374.815	(7/2+)	71.8260	(7/2 ⁺)	[M1]		0.820	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.656 \ 10; \ \alpha(\mathbf{L}) = 0.1235 \ 18; \\ &\alpha(\mathbf{M}) = 0.0296 \ 5; \ \alpha(\mathbf{N}+) = 0.01018 \ 15 \\ &\alpha(\mathbf{N}) = 0.00791 \ 11; \ \alpha(\mathbf{O}) = 0.00187 \ 3; \\ &\alpha(\mathbf{P}) = 0.000363 \ 5; \ \alpha(\mathbf{Q}) = 3.45 \times 10^{-5} \ 5 \end{aligned} $

From ENSDF

			1	233 U α deca	y 2003Ba78,20	07Be16 (coi	ntinued)			
					γ ⁽²²⁹ Th) (conti	nued)				
E_{γ}^{\dagger}	I_{γ}^{eh}	E _i (level)	J^π_i	E_f	${ m J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	α^{j}	$I_{(\gamma+ce)}^{i}$	Comments
307.45 19	0.0050 14	569.2721	(3/2,5/2 ⁺)	261.964	(1/2 ⁺)	[M1,E2]		0.5 4		$\begin{aligned} \alpha(K) = 0.3 \ 3; \ \alpha(L) = 0.09 \ 3; \\ \alpha(M) = 0.023 \ 6; \\ \alpha(N+) = 0.0078 \ 20 \\ \alpha(N) = 0.0061 \ 15; \\ \alpha(O) = 0.0014 \ 4; \\ \alpha(P) = 0.00026 \ 9; \\ \alpha(Q) = 1.9 \times 10^{-5} \ 15 \end{aligned}$
310.71 5 311.76 3	0.038 3 0.063 4	382.54? 436.951	$(7/2^{-},9/2,11/2^{+})$ $(7/2^{-})$	71.8260	$(7/2^+)$ $(9/2^+)$	[E1]		0.0341		$\alpha(K)=0.0274 \ 4;$ $\alpha(L)=0.00512 \ 8;$ $\alpha(M)=0.001225 \ 18;$ $\alpha(N+)=0.000415 \ 6$ $\alpha(N)=0.000324 \ 5;$ $\alpha(O)=7.54\times10^{-5} \ 11;$ $\alpha(P)=1.409\times10^{-5} \ 20;$ $\alpha(Q)=1.091\times10^{-6} \ 16$
313.45 <i>18</i> 315.39 <i>13</i>	0.0056 <i>11</i> 0.0100 <i>15</i>	569.2721 478.649	(3/2,5/2 ⁺) (7/2 ⁺ ,9/2 ⁺)	255.957 163.2542	(3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺) 11/2 ⁺	[M1]		0.734		$\begin{aligned} &\alpha(\mathbf{K}) = 0.588 \ 9; \ \alpha(\mathbf{L}) = 0.1105 \\ &I6 \ \alpha(\mathbf{M}) = 0.0265 \ 4; \\ &\alpha(\mathbf{N}+) = 0.00911 \ I3 \\ &\alpha(\mathbf{N}) = 0.00707 \ I0; \\ &\alpha(\mathbf{O}) = 0.001675 \ 24; \\ &\alpha(\mathbf{P}) = 0.000325 \ 5; \\ &\alpha(\mathbf{Q}) = 3.08 \times 10^{-5} \ 5 \end{aligned}$
^x 316.30 4 317.169 ^{l#cd} 2	0.094 7 $7.1^{l} 4$	317.1731	(5/2+)	0.0	5/2+	M1+E2	1.24 9	0.371 22		$\alpha(K)=0.268 \ 20;$ $\alpha(L)=0.0774 \ 22;$ $\alpha(M)=0.0195 \ 5;$ $\alpha(N+)=0.00666 \ 17$ $\alpha(N)=0.00522 \ 13;$ $\alpha(O)=0.00121 \ 4;$ $\alpha(P)=0.000223 \ 7;$ $\alpha(Q)=1.44\times10^{-5} \ 10$
317.169 ^{l#} 2	0.27 ¹ 11	359.6044	(7/2 ⁺)	42.4349	7/2+	[M1]		0.723		$\alpha(K)=0.579 \ 9; \ \alpha(L)=0.1088$ 16; \ \alpha(M)=0.0261 \ 4; \ \alpha(N+)=0.00897 \ 13 \ \alpha(N)=0.00697 \ 10; \ \ \alpha(O)=0.001649 \ 23; \ \ \alpha(P)=0.000320 \ 5; \ \ \alpha(Q)=3.04 \times 10^{-5} \ 5
320.547 ^{#d} 1	2.78 14	320.5483	(5/2+)	0.0	5/2+	M1+E2	1.37 12	0.334 25		$\alpha(K)=0.237\ 22;$

²²⁹₉₀Th₁₃₉-18

I

				²³³ U	α decay	2003Ba78	8,2007Be16	(continued)	
						γ ⁽²²⁹ Th) (co	ontinued)		
${\rm E_{\gamma}}^{\dagger}$	Ι _γ <i>eh</i>	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [‡]	δ^{\ddagger}	α^{j}	Comments
									$\begin{array}{c} \alpha(\text{L}) = 0.0724 \ 24; \ \alpha(\text{M}) = 0.0184 \ 6; \ \alpha(\text{N}+) = 0.00626 \ 19 \\ \alpha(\text{N}) = 0.00491 \ 14; \ \alpha(\text{O}) = 0.00114 \ 4; \ \alpha(\text{P}) = 0.000208 \ 8; \\ \alpha(\text{Q}) = 1.28 \times 10^{-5} \ 11 \end{array}$
323.381 [#] 14	0.77 4	365.8136	(7/2+)	42.4349	7/2+	M1+E2	1.67 12	0.280 17	$\alpha(K)=0.191 \ 15; \ \alpha(L)=0.0662 \ 18; \ \alpha(M)=0.0169 \ 4; \ \alpha(N+)=0.00577 \ 14 \ \alpha(N)=0.00453 \ 11; \ \alpha(O)=0.00104 \ 3; \ \alpha(P)=0.000189 \ 6; \ \alpha(O)=1.04 \times 10^{-5} \ 8$
328.758 19	0.080 4	425.877	(9/2+)	97.13595	9/2+	[M1+E2]		0.4 3	$\begin{aligned} &\alpha(Q) = 1.04 \times 10^{-8} & \delta \\ &\alpha(K) = 0.29 \ 24; \ \alpha(L) = 0.074 \ 25; \ \alpha(M) = 0.018 \ 6; \\ &\alpha(N+) = 0.0063 \ 18 \\ &\alpha(N) = 0.0049 \ 14; \ \alpha(Q) = 0.0011 \ 4; \ \alpha(P) = 0.00021 \ 8; \\ &\alpha(Q) = 1.6 \times 10^{-5} \ 12 \end{aligned}$
x335.68 8 336.63 1	0.0081 <i>19</i> 0.58 <i>3</i>	365.8136	(7/2+)	29.1927	(5/2+)	M1+E2	1.59 24	0.26 4	$\alpha(K)=0.18 \ 3; \ \alpha(L)=0.059 \ 4; \ \alpha(M)=0.0150 \ 8; \ \alpha(N+)=0.0051 \ 3 \ \alpha(N)=0.00401 \ 20; \ \alpha(O)=0.00092 \ 5; \ \alpha(P)=0.000169 \ 11; \ \alpha(O)=0.000169 \ 10.0000169 \ 10.0000169 \ 10.0000169 \ 10.0000169 \ 10.0000169 \ 10.0000169 \ 10.0000169 \ 10.0000169 \ 10.0000169 \ 10.0000169 \ 10.0000000000000000000000000000000000$
340.19 8	0.0025 16	436.951	(7/2-)	97.13595	9/2+	[E1]		0.0282	$\alpha(Q) = 9.8 \times 10^{-7} 10^{-7} 10^{-7} (Q) = 9.001001 14;$ $\alpha(K) = 0.00227 4; \alpha(L) = 0.00419 6; \alpha(M) = 0.001001 14;$ $\alpha(N) = 0.000265 4; \alpha(O) = 6.18 \times 10^{-5} 9;$ $\alpha(R) = 0.1157 \times 10^{-5} 17; \alpha(O) = 0.11 \times 10^{-7} 12$
$x_{340.20}^{a}$ 5	0.09 2								$u(\mathbf{r}) = 1.157 \times 10^{-17}, u(\mathbf{Q}) = 9.11 \times 10^{-15}$
354.04 2	0.060 4	425.877	(9/2+)	71.8260	(7/2 ⁺)	[M1+E2]		0.32 22	$\alpha(K)=0.24$ 19; $\alpha(L)=0.059$ 22; $\alpha(M)=0.015$ 5; $\alpha(N+)=0.0050$ 16 $\alpha(N)=0.0039$ 13; $\alpha(O)=0.0009$ 3; $\alpha(P)=0.00017$ 7; $\alpha(O)=1.3\times10^{-5}$ 10
359.38 ^d 4	0.0049 15	359.6044	(7/2+)	0.0	5/2+	[M1]		0.513	$\alpha(Q) = 0.411 \ 6; \ \alpha(L) = 0.0771 \ 11; \ \alpha(M) = 0.0185 \ 3; \ \alpha(N+) = 0.00635 \ 9 \ \alpha(N) = 0.00494 \ 7; \ \alpha(O) = 0.001169 \ 17; \ \alpha(P) = 0.000227 \ 4; \ \alpha(O) = 2.15 \times 10^{-5} \ 3$
364.01 ^{<i>m</i>} 12 365 820 ^{#d} 3	0.0064 <i>16</i> 0 77 <i>4</i>	605.165 365.8136	$(5/2,7/2)^+$ $(7/2^+)$	241.546	$13/2^+$ $5/2^+$	[M1]		0 489	$\alpha(K) = 0.392.6; \ \alpha(L) = 0.0734.11; \ \alpha(M) = 0.01763.25;$
x367 705 8		202.0120	(12)	0.0	512	[****]		0.102	$\alpha(N+)=0.00605 \ 9$ $\alpha(N)=0.00470 \ 7; \ \alpha(O)=0.001113 \ 16; \ \alpha(P)=0.000216 \ 3;$ $\alpha(Q)=2.05\times10^{-5} \ 3$ From 1994He08
371.34 9	0.0014 7	536.08	(1/2 ⁻)	164.5317	(3/2 ⁻)	[M1]		0.469	$\begin{aligned} &\alpha(\mathrm{K}) = 0.376\ 6;\ \alpha(\mathrm{L}) = 0.0705\ 10;\ \alpha(\mathrm{M}) = 0.01692\ 24;\\ &\alpha(\mathrm{N}+) = 0.00581\ 9\\ &\alpha(\mathrm{N}) = 0.00451\ 7;\ \alpha(\mathrm{O}) = 0.001068\ 15;\ \alpha(\mathrm{P}) = 0.000207\ 3;\\ &\alpha(\mathrm{Q}) = 1.97 \times 10^{-5}\ 3 \end{aligned}$

From ENSDF

 $^{229}_{90}$ Th $_{139}$ -19

				233 U α dec	ay 2003Ba	78,2007Be10	6 (continue	<u>d)</u>
					$\gamma(^{229}\text{Th})$	(continued)		
${\rm E_{\gamma}}^{\dagger}$	I _γ eh	E _i (level)	J_i^π	E_{f}	J_f^π	Mult. [‡]	α^{j}	Comments
374.71 ^{<i>d</i>} 20	0.0038 20	374.815	(7/2+)	0.0	5/2+	[M1]	0.458	$\alpha(K)=0.367 \ 6; \ \alpha(L)=0.0688 \ 10; \ \alpha(M)=0.01650 \ 24; \\ \alpha(N+)=0.00566 \ 8 \\ \alpha(N)=0.00440 \ 7; \ \alpha(O)=0.001042 \ 15; \ \alpha(P)=0.000202 \ 3; \\ \alpha(O)=1.02\times10^{-5} \ 3 $
381.35 8	0.0039 13	478.649	(7/2+,9/2+)	97.13595	9/2+	[M1]	0.437	$\alpha(Q)=1.592\times10^{-5}$ $\alpha(K)=0.3505; \alpha(L)=0.065510; \alpha(M)=0.0157322;$ $\alpha(N+)=0.005408$ $\alpha(N)=0.004196; \alpha(O)=0.00099314; \alpha(P)=0.0001933;$ $\alpha(O)=183\times10^{-5}3$
383.43 <i>3</i>	0.096 5	425.877	(9/2+)	42.4349	7/2+	[M1+E2]	0.26 18	$\alpha(\mathbf{K}) = 0.19 \ 15; \ \alpha(\mathbf{L}) = 0.046 \ 18; \ \alpha(\mathbf{M}) = 0.012 \ 4; \\ \alpha(\mathbf{N}+) = 0.0039 \ 14 \\ \alpha(\mathbf{N}) = 0.0031 \ 11; \ \alpha(\mathbf{O}) = 0.0007 \ 3; \ \alpha(\mathbf{P}) = 0.00013 \ 6; \\ \alpha(\mathbf{O}) = 1.0 \times 10^{-5} \ 8 $
387.86 <i>12</i> 393.60 <i>1</i>	0.0012 <i>3</i> 0.0130 <i>12</i>	513.479 465.426	$(5/2^+, 7/2, 9/2^+)$ $(5/2^-, 7/2, 9/2^+)$	125.4385 71.8260	(9/2 ⁺) (7/2 ⁺)			
396.62 <i>3</i>	0.0044 10	425.877	(9/2+)	29.1927	(5/2 ⁺)	[E2]	0.0762	$\alpha(K)=0.0421 \ 6; \ \alpha(L)=0.0252 \ 4; \ \alpha(M)=0.00666 \ 10; \\ \alpha(N+)=0.00226 \ 4 \\ \alpha(N)=0.001783 \ 25; \ \alpha(O)=0.000406 \ 6; \ \alpha(P)=7.12\times10^{-5} \\ 10; \ \alpha(O)=2 \ 43\times10^{-6} \ 4$
^x 398.26 [@] 11	0.004							
402.22 2 404.39 5	0.0072 <i>14</i> 0.0013 <i>4</i>	637.384 569.2721	$(5/2^+,7/2,9/2^+)$ $(3/2,5/2^+)$	235.1266 164.5317	(5/2 ⁻ ,7/2 ⁻) (3/2 ⁻)	[E1]	0.0195	$\alpha(K)=0.01574\ 22;\ \alpha(L)=0.00284\ 4;\ \alpha(M)=0.000679\ 10;\ \alpha(N+)=0.000230\ 4$ $\alpha(N)=0.000180\ 3;\ \alpha(Q)=4.20\times10^{-5}\ 6;\ \alpha(P)=7.91\times10^{-6}$
406.58 5	0.0015 4	478.649	(7/2+,9/2+)	71.8260	(7/2+)	[M1]	0.367	11; $\alpha(Q)=6.43\times10^{-7}$ 9 $\alpha(K)=0.294$ 5; $\alpha(L)=0.0550$ 8; $\alpha(M)=0.01320$ 19; $\alpha(N+)=0.00453$ 7 $\alpha(N)=0.00352$ 5; $\alpha(O)=0.000833$ 12; $\alpha(P)=0.0001617$ 23; $\alpha(Q)=1.534\times10^{-5}$ 22
416.31 <i>3</i>	0.0120 10	513.479	(5/2+,7/2,9/2+)	97.13595	9/2+			$a(Q) = 1.534 \times 10^{-5} 22$
423.09 ^k 14	0.00052 14	465.426	$(5/2^-, 7/2, 9/2^+)$	42.4349	7/2+			
423.09 ^k 14		569.2721	(3/2,5/2 ⁺)	146.3569	(5/2 ⁻)	[E1]	0.01774	$\alpha(K)=0.01434\ 20;\ \alpha(L)=0.00258\ 4;\ \alpha(M)=0.000614\ 9;\ \alpha(N+)=0.000209\ 3$ $\alpha(N)=0.0001628\ 23;\ \alpha(O)=3.80\times10^{-5}\ 6;\ \alpha(P)=7.18\times10^{-6}$ $10:\ \alpha(O)=5.88\times10^{-7}\ 9$
425.46 10	0.00080 14	637.384	$(5/2^+, 7/2, 9/2^+)$	212.382	$(5/2^+)$			
436.23^{k} 2	0.00351 9	465.426	$(5/2^-, 7/2, 9/2^+)$	29.1927	$(5/2^+)$			
436.23 ^{<i>k</i>} 2		478.649	(7/2 ⁺ ,9/2 ⁺)	42.4349	7/2+	[M1]	0.303	$\begin{aligned} &\alpha(\mathbf{K}) = 0.243 \ 4; \ \alpha(\mathbf{L}) = 0.0454 \ 7; \ \alpha(\mathbf{M}) = 0.01089 \ 16; \\ &\alpha(\mathbf{N}+) = 0.00374 \ 6 \\ &\alpha(\mathbf{N}) = 0.00290 \ 4; \ \alpha(\mathbf{O}) = 0.000687 \ 10; \ \alpha(\mathbf{P}) = 0.0001334 \ 19; \\ &\alpha(\mathbf{Q}) = 1.266 \times 10^{-5} \ 18 \end{aligned}$

From ENSDF

 $^{229}_{90}$ Th $_{139}$ -20

			233 U α dec	ay 2003Ba	178,2007Be	16 (continu	(ed)	
				γ ⁽²²⁹ Th)	(continued)			
I_{γ}^{eh}	E _i (level)	J_i^{π}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{j}	Comments
0.006								
0.00073 <i>22</i> 0.0064 <i>8</i>	513.479 478.649	$(5/2^+,7/2,9/2^+)$ $(7/2^+,9/2^+)$	71.8260 29.1927	(7/2 ⁺) (5/2 ⁺)	[M1]		0.280	$\alpha(K)=0.224 4; \alpha(L)=0.0418 6; \alpha(M)=0.01004$ 14; $\alpha(N+)=0.00344 5$ $\alpha(N)=0.00268 4; \alpha(O)=0.000634 9;$ $\alpha(P)=0.0001229 18; \alpha(O)=1.167 \times 10^{-5} 17$
0.00117 21	526.516	(5/2,7/2)	71.8260	$(7/2^+)$				$u(1) = 0.0001229 10, u(Q) = 1.107 \times 10^{-11}$
0.00044 21	605.165	$(5/2,7/2)^+$	148.1730	$(7/2^{-})$				
0.0076 11	585.237?	$(5/2^+, 7/2, 9/2^+)$	125.4385	$(9/2^+)$				
0.00047 23	465.426	$(5/2^-, 7/2, 9/2^+)$	0.0	5/2+				
0.0185 18	513.479	$(5/2^+, 7/2, 9/2^+)$	42.4349	7/2+				
$0.0030\ 13$ $0.00077\ 11$	620 837	$(5/2^+, 7/2)$	146 3569	$(5/2^{-})$				
0.0148 12	478.649	$(7/2^+, 9/2^+)$	0.0	(<i>3</i> /2 ⁺) 5/2 ⁺	[M1]		0.236	$\alpha(K)=0.189 \ 3; \ \alpha(L)=0.0353 \ 5; \ \alpha(M)=0.00846$ $I2; \ \alpha(N+)=0.00290 \ 4$ $\alpha(N)=0.00226 \ 4; \ \alpha(O)=0.000534 \ 8;$ $\alpha(P)=0.0001037 \ I5; \ \alpha(O)=9.84\times10^{-6} \ 14$
0.0023 10	526.516 664.982	(5/2,7/2) (1/2,3/2,5/2)	42.4349	$7/2^+$				
0.0165.21	513 /70	(1/2, 3/2, 3/2) $(5/2^+, 7/2, 9/2^+)$	0.0	(3/2)				
0.0105 21	585 2379	$(5/2^+,7/2,9/2^+)$	71.8260	$(7/2^+)$				
0.0112 18	749.849	$(5/2^+, 7/2, 9/2^+)$	235.1266	$(7/2^{-})$ $(5/2^{-},7/2^{-})$				
0.00094 24	620.837	$(5/2^+, 7/2)$	97.13595	9/2+				
0.00070 23	656.89	$(5/2^+, 7/2, 9/2^+)$	125.4385	$(9/2^+)$				
0.00117 23	605.165	(5/2,7/2)+	71.8260	(7/2+)	M1+E2	1.13 20	0.098 14	$\alpha(K)=0.076 \ 12; \ \alpha(L)=0.0169 \ 17; \ \alpha(M)=0.0042$ $4; \ \alpha(N+)=0.00142 \ 13$ $\alpha(N)=0.00111 \ 10; \ \alpha(O)=0.000259 \ 25;$ $\alpha(P)=4.9\times10^{-5} \ 5; \ \alpha(O)=4.0\times10^{-6} \ 6$
0.00047 23	536.08	(1/2 ⁻)	0.0076	(3/2 ⁺)	[E1]		0.01098	$\alpha(K) = 0.00892 \ 13; \ \alpha(L) = 0.001558 \ 22; \alpha(M) = 0.000370 \ 6; \ \alpha(N+) = 0.0001260 \ 18 \alpha(N) = 9.82 \times 10^{-5} \ 14; \ \alpha(O) = 2.30 \times 10^{-5} \ 4; \alpha(P) = 4.37 \times 10^{-6} \ 7; \ \alpha(O) = 3.72 \times 10^{-7} \ 6$
0.00164 <i>23</i> 0.00047 <i>23</i>	637.384 585.237?	$(5/2^+,7/2,9/2^+)$ $(5/2^+,7/2,9/2^+)$	97.13595 42.4349	9/2 ⁺ 7/2 ⁺				
≈0.00023	656.89	$(5/2^+, 7/2, 9/2^+)$	97,13595	$9/2^{+}$				
0.0014 7	605.165	(5/2,7/2)+	42.4349	7/2+	M1+E2	1.36 <i>16</i>	0.075 8	$\begin{aligned} &\alpha(\mathbf{K}) = 0.057 \ 6; \ \alpha(\mathbf{L}) = 0.0133 \ 9; \ \alpha(\mathbf{M}) = 0.00327 \\ &21; \ \alpha(\mathbf{N}+) = 0.00112 \ 7 \\ &\alpha(\mathbf{N}) = 0.00087 \ 6; \ \alpha(\mathbf{O}) = 0.000204 \ 13; \\ &\alpha(\mathbf{P}) = 3.8 \times 10^{-5} \ 3; \ \alpha(\mathbf{Q}) = 3.0 \times 10^{-6} \ 3 \end{aligned}$
	$I_{y}eh$ 0.006 0.00073 22 0.0064 8 0.00117 21 0.00044 21 0.0076 11 0.00047 23 0.0185 18 0.00077 11 0.0148 12 0.00070 23 0.0165 21 0.0112 18 0.00070 23 0.00117 23 0.00017 23 0.00117 23 0.00047 23 0.00047 23 0.0007 ≈0.00023 0.0014 7	$I_{\gamma}eh$ $E_i(\text{level})$ 0.006513.4790.00073 22513.4790.0064 8478.6490.00117 21526.5160.00044 21605.1650.0076 11585.237?0.00047 23465.4260.0185 18513.4790.0030 15620.8370.00148 12478.6490.0023 10526.5160.00070 23664.98?0.0165 21513.479585.237?0.0112 18749.849620.8370.00094 24620.8370.00094 23656.890.00117 23605.1650.00047 23536.080.00014 7637.3840.00072656.890.0014 7605.165	$I_{\gamma}eh$ $E_i(\text{level})$ J_i^{π} 0.006513.479 $(5/2^+,7/2,9/2^+)$ 0.0064 8478.649 $(7/2^+,9/2^+)$ 0.00117 21526.516 $(5/2,7/2)$ 0.00044 21605.165 $(5/2,7/2)^+$ 0.00047 23465.426 $(5/2^-,7/2,9/2^+)$ 0.00047 23465.426 $(5/2^+,7/2,9/2^+)$ 0.0030 15513.479 $(5/2^+,7/2,9/2^+)$ 0.00077 11620.837 $(5/2^+,7/2,9/2^+)$ 0.0112 18749.849 $(7/2^+,9/2^+)$ 0.0112 18749.849 $(5/2^+,7/2,9/2^+)$ 0.00070 23656.89 $(5/2,7/2)^+$ 0.00047 23536.08 $(1/2^-)$ 0.00047 23536.08 $(1/2^-)$ 0.00047 23536.08 $(1/2^-)$ 0.00047 23637.384 $(5/2^+,7/2,9/2^+)$ 0.00047 23636.89 $(5/2^+,7/2,9/2^+)$ 0.00047 23636.89 $(5/2^+,7/2,9/2^+)$ 0.00047 23636.08 $(1/2^-)$	$\begin{array}{c ccccc} \underline{I_{y}ch} & \underline{E_{i}(\text{level})} & \underline{J_{i}^{\pi}} & \underline{E_{f}} \\ \hline 0.006 \\ 0.00073 \ 22 & 513.479 & (5/2^{+},7/2,9/2^{+}) & 71.8260 \\ 0.0064 \ 8 & 478.649 & (7/2^{+},9/2^{+}) & 29.1927 \\ \hline 0.00117 \ 21 & 526.516 & (5/2,7/2) & 71.8260 \\ 0.00044 \ 21 & 605.165 & (5/2,7/2)^{+} & 148.1730 \\ 0.0076 \ 11 & 585.237? & (5/2^{+},7/2,9/2^{+}) & 125.4385 \\ 0.00047 \ 23 & 465.426 & (5/2^{-},7/2,9/2^{+}) & 0.0 \\ 0.0185 \ 18 & 513.479 & (5/2^{+},7/2,9/2^{+}) & 42.4349 \\ 0.0030 \ 15 & & & & & & & & & & & & & & \\ 0.00077 \ 11 & 620.837 & (5/2^{+},7/2,9/2^{+}) & & & & & & & & & & & & & & & & & & &$	$\frac{\chi(^{229}\text{Th})}{\chi(^{229}\text{Th})}$ $\frac{I_y e^{f_1}}{0.006} = \frac{E_i(\text{level})}{0.0064.8} = \frac{J_i^{\pi}}{478.649} = \frac{J_i^{\pi}}{(7/2^+,9/2^+)} = \frac{E_f}{29.1927} = \frac{J_f^{\pi}}{(5/2^+)}$ $\frac{0.00117.21}{0.00044.21} = \frac{526.516}{65.165} = \frac{(5/2,7/2)}{(7/2^+,9/2^+)} = \frac{71.8260}{29.1927} = \frac{(7/2^+)}{(5/2^+)}$ $\frac{0.00117.23}{0.00047.23} = \frac{465.426}{465.426} = \frac{(5/2^-,7/2,9/2^+)}{(5/2^+,7/2,9/2^+)} = \frac{125.4385}{125.4385} = \frac{(9/2^+)}{(9/2^+)}$ $\frac{0.00047.23}{0.00077} = \frac{465.426}{11} = \frac{(5/2^+,7/2,9/2^+)}{(7/2^+,9/2^+)} = \frac{148.1730}{0.00} = \frac{(7/2^+)}{(7/2^+,9/2^+)}$ $\frac{0.0023.10}{0.00077} = \frac{526.516}{10} = \frac{(5/2^+,7/2,9/2^+)}{(7/2^+,9/2^+)} = \frac{146.3569}{0.00} = \frac{(5/2^-)}{(7/2^+)}$ $\frac{0.0023.10}{0.0077} = \frac{526.516}{10} = \frac{(5/2^+,7/2,9/2^+)}{(7/2^+,9/2^+)} = \frac{146.3569}{0.00} = \frac{(5/2^-)}{(7/2^+)}$ $\frac{0.0023.10}{0.0077} = \frac{526.516}{10} = \frac{(5/2^+,7/2,9/2^+)}{(7/2^+,9/2^+)} = \frac{146.3569}{0.00} = \frac{(5/2^-)}{(7/2^+)}$ $\frac{0.0023.10}{0.0077} = \frac{526.516}{10} = \frac{(5/2^+,7/2,9/2^+)}{(7/2^+,9/2^+)} = \frac{146.3569}{0.00} = \frac{(5/2^-)}{(7/2^+)}$ $\frac{0.00165.21}{0.0077} = \frac{513.479}{55.82377} = \frac{(5/2^+,7/2,9/2^+)}{(5/2^+,7/2,9/2^+)} = \frac{71.3595}{71.3595} = \frac{9}{9/2^+}$ $\frac{0.00070.23}{0.0007} = \frac{63.689}{55.2377} = \frac{(5/2^+,7/2,9/2^+)}{(5/2^+,7/2,9/2^+)} = \frac{97.13595}{71.3595} = \frac{9}{9/2^+}$ $\frac{0.00047.23}{0.00077} = \frac{63.7.384}{0.00077} = \frac{(5/2^+,7/2,9/2^+)}{(5/2^+,7/2,9/2^+)} = \frac{97.13595}{9.13595} = \frac{9}{9/2^+}$ $\frac{0.0007}{0.00077} = \frac{65.689}{0.00073} = \frac{(5/2^+,7/2,9/2^+)}{(5/2^+,7/2,9/2^+)} = \frac{97.13595}{9.13595} = \frac{9}{9/2^+}$ $\frac{0.00164.23}{0.00077} = \frac{63.689}{(5/2^+,7/2,9/2^+)} = \frac{97.13595}{9.2^+} = \frac{9}{2.4349} = \frac{9}{7/2^+}$ $\frac{0.0007}{0.00077} = \frac{65.689}{0.00077} = \frac{(5/2^+,7/2,9/2^+)}{2.4349} = \frac{9}{7/2^+}$ $\frac{0.0014.7}{0.0014.7} = \frac{65.165}{0.5/2,7/2)^+} = \frac{97.13595}{9.2^+} = \frac{9}{2.4349} = \frac{9}{7/2^+}$	$\frac{y(^{229}\text{Th}) \text{ (continued)}}{y(^{229}\text{Th}) \text{ (continued)}}}$ $\frac{I_y^{eft}}{0.006} = \frac{E_i(\text{level})}{0.00073\ 22} = \frac{J_1^{\pi}}{513.479} = \frac{J_1^{\pi}}{(7/2^+,9/2^+)} = \frac{I_1^{\pi}}{29.1927} = \frac{J_1^{\pi}}{(5/2^+)} = \frac{Mult.^{\ddagger}}{29.1927}$ $\frac{0.00117\ 21}{(5/2^+)} = \frac{526.516}{65.165} = \frac{(5/2,7/2)}{(7/2^+,9/2^+)} = \frac{71.8260}{29.1927} = \frac{(7/2^+)}{(5/2^+)} = \frac{100004}{29.100044\ 21} = \frac{605.165}{65.165} = \frac{(5/2,7/2)}{(5/2^+,7/2,9/2^+)} = \frac{71.8260}{12.5.4385} = \frac{(7/2^+)}{(9/2^+)} = \frac{1000047\ 23}{665.426} = \frac{(5/2^+,7/2,9/2^+)}{(7/2^+,9/2^+)} = \frac{125.4385}{0.00077\ 11} = \frac{620.837}{620.837} = \frac{(5/2^+,7/2)}{(7/2^+,9/2^+)} = \frac{146.3569}{0.00\ 5/2^+} = \frac{(M1)}{10} = \frac{0.0023\ 10}{526.516} = \frac{(5/2,7/2)}{(7/2^+,9/2^+)} = \frac{146.3569}{0.00\ 5/2^+} = \frac{(M1)}{10} = \frac{0.00165\ 21}{513.479} = \frac{(5/2^+,7/2,9/2^+)}{(7/2^+,9/2^+)} = \frac{225.1266}{0.52^-,7/2^-)} = \frac{(M1)}{0.00070\ 23} = \frac{664.98?}{66.89} = \frac{(5/2^+,7/2,9/2^+)}{(5/2^+,7/2,9/2^+)} = \frac{22.4349}{71.8260} = \frac{7/2^+}{(7/2^+)} = \frac{100070\ 23}{0.00070\ 23} = \frac{656.89}{65.89} = \frac{(5/2^+,7/2,9/2^+)}{(5/2^+,7/2,9/2^+)} = \frac{22.5.4385}{71.8260} = \frac{(9/2^+)}{(7/2^+)} = \frac{100070\ 23}{0.00070\ 23} = \frac{656.89}{65.89} = \frac{(5/2^+,7/2,9/2^+)}{(5/2^+,7/2,9/2^+)} = \frac{97.13595}{71.8260} = \frac{9/2^+}{7/2^+} = \frac{0.00047\ 23}{0.00077\ 23}\ 585.2377\ (5/2^+,7/2,9/2^+)} = \frac{97.13595}{71.8260}\ (7/2^+) = \frac{11}{11} = \frac{0.00164\ 2.3}{0.00077\ 23}\ 585.2377\ (5/2^+,7/2,9/2^+)} = \frac{97.13595\ 9/2^+}{71.8260}\ (7/2^+) = \frac{11}{11} = \frac{0.00164\ 2.3\ 637.384}{0.00077\ 23}\ 585.2377\ (5/2^+,7/2,9/2^+)} = \frac{97.13595\ 9/2^+}{72.42.4349\ 7/2^+} = \frac{11}{0.0014\ 7}\ 605.165\ (5/2,7/2)^+ = \frac{97.13595\ 9/2^+}{42.4349\ 7/2^+} = \frac{11}{11} = \frac{11}{11}$	$\frac{y(^{229}\text{Th}) (\text{continued})}{y(^{229}\text{Th}) (\text{continued})}$ $\frac{1}{19} \frac{e_{I}}{0.006} = \frac{1}{100073} \frac{1}{22} \frac{1}{513.479} = \frac{1}{5/2^{+}.7/2.9/2^{+})} \frac{1}{71.8260} = \frac{1}{7/2^{+}} \frac{1}{1000073} \frac{1}{22} \frac{1}{2000073} \frac{1}{2000077} \frac{1}{21} \frac{1}{2000077} \frac{1}{2000077} \frac{1}{23} \frac{1}{465.426} \frac{5/2.7}{7/2.9/2^{+}} \frac{1}{25.4385} \frac{1}{9/2^{+}} \frac{1}{2000077} \frac{1}{2000077} \frac{1}{23} \frac{1}{465.426} \frac{1}{5/2^{-}.7/2.9/2^{+}} \frac{1}{2000077} \frac{1}{2000077} \frac{1}{2000077} \frac{1}{2000077} \frac{1}{2000077} \frac{1}{200077} \frac{1}{2000777} \frac{1}{2000777} \frac{1}{2000777} \frac$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 $^{229}_{90}$ Th $_{139}$ -21

			2	33 U α deca	y 200	3Ba78,200	7 <mark>Be16</mark> (con	tinued)				
					γ(²²⁹ Τ	Th) (continu	ied)					
E_{γ}^{\dagger}	I_{γ}^{eh}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	α^{j}	Comments			
569.19 ^d 2	0.0039 15	569.2721	(3/2,5/2+)	0.0	5/2+	M1+E2	1.66 12	0.063 4	$\alpha(K)=0.047 \ 3; \ \alpha(L)=0.0116 \ 5; \ \alpha(M)=0.00289 \ 11; \\ \alpha(N+)=0.00099 \ 4 \\ \alpha(N)=0.00077 \ 3; \ \alpha(O)=0.000180 \ 7; \\ \alpha(P)=3.37\times10^{-5} \ 14; \ \alpha(Q)=2.48\times10^{-6} \ 16 \\ \alpha(Q)=0.000180 \ 7; \\ \alpha(Q$			
576.00 7	0.0009 4	605.165	(5/2,7/2)+	29.1927	(5/2+)	M1+E2	1.55 22	0.064 8	$\alpha(\mathbf{K})=0.049\ 7;\ \alpha(\mathbf{L})=0.0116\ 10;\ \alpha(\mathbf{M})=0.00288\ 22;\\\alpha(\mathbf{N}+)=0.00098\ 8\\\alpha(\mathbf{N})=0.00077\ 6;\ \alpha(\mathbf{O})=0.000179\ 14;\\\alpha(\mathbf{P})=3.4\times10^{-5}\ 3;\ \alpha(\mathbf{Q})=2.5\times10^{-6}\ 4$			
578.42 2	0.0034 11	620.837	$(5/2^+, 7/2)$	42.4349	7/2+							
584.94 ^{kd} 16	≈0.00023	585.237?	$(5/2^+, 7/2, 9/2^+)$	0.0	5/2+							
584.94 ^k 16		656.89	$(5/2^+, 7/2, 9/2^+)$	71.8260	$(7/2^+)$							
591.64 7	0.00070 23	620.837	$(5/2^+, 7/2)$	29.1927	$(5/2^+)$							
605.16 ^{<i>a</i>} 1	0.0048 9	605.165	(5/2,7/2)+	0.0	5/2+	M1+E2	1.10 13	0.072 7	$\alpha(K)=0.056 \ 6; \ \alpha(L)=0.0121 \ 8; \ \alpha(M)=0.00295 \ 19; \\ \alpha(N+)=0.00101 \ 7 \\ \alpha(N)=0.00079 \ 5; \ \alpha(O)=0.000185 \ 12; \\ \alpha(P)=3.51\times10^{-5} \ 24; \ \alpha(Q)=2.9\times10^{-6} \ 3 $			
608.15 <i>5</i> 614.45 <i>7</i>	0.00047 23	637.384 656.89	$(5/2^+, 7/2, 9/2^+)$ $(5/2^+, 7/2, 9/2^+)$	29.1927 42.4349	$(5/2^+)$ $7/2^+$							
620.81^{d} 3	0.0015 6	620.837	$(5/2^+, 7/2)$	0.0	$5/2^+$							
627.70 8 x633.51 <i>12</i>	0.00047 <i>23</i> 0.00069 <i>23</i>	656.89	(5/2+,7/2,9/2+)	29.1927	$(5/2^+)$							
637.25 ^d 10	≈0.00023	637.384	$(5/2^+, 7/2, 9/2^+)$	0.0	5/2+							
652.79 19	≈0.00023	749.849	$(5/2^+, 7/2, 9/2^+)$	97.13595	9/2+							
656.89 ^{<i>a</i>} 5	0.0040 10	656.89	$(5/2^+, 7/2, 9/2^+)$	0.0	5/2+							
665.03° 10	≈ 0.00023	664.98?	(1/2,3/2,5/2)	0.0	5/2+							
707.41 2	0.0020 9	749.849	$(5/2^+, 7/2, 9/2^+)$	42.4349	$7/2^{+}$							
x714.28 6	0.00047 23											
x720.62 11	0.0040 11	740.040	(5/0+ 7/0 0/0+)	20 1027	(5/0+)							
720.62 11	0.00047 23	749.849	$(5/2^+, 1/2, 9/2^+)$	29.1927	$(5/2^{+})$							
749.8° 9 *765.82.20	0.00047 23	/49.849	$(5/2^{+}, 1/2, 9/2^{+})$	0.0	5/2							
x843.35 10	0.00016 5											
^x 927.1 <i>3</i>	0.0014 7											
^x 932.6 <i>3</i>	0.0014 7											

From ENSDF

 $^{229}_{90}$ Th $_{139}$ -22

²³³U α decay **2003Ba78,2007Be16** (continued)

γ ⁽²²⁹Th) (continued)</sup>

- [†] Weighted average of values given in 2003Ba78 and 1992El01, unless otherwise specified.
- [‡] From ²²⁹Ac β^- decay, unless otherwise specified.
- [#] Weighted average of values given in 2003Ba78 and 1994He08.
- [@] Reported only in 1992El01 and 1996Ko29.
- & From 2007Be16. Very precise measurement. Energy resolution FWHM=25 eV. Detector: micro calorimeter.
- ^{*a*} From conversion electron data in 1959Tr31.
- ^b From rotational model (2003Ba78).
- c γ ray energy does not fit well the decay scheme suggesting a possible systematic error. The evaluators did not used this transition for the levels least-squares fit.
- d The final level of the transition was assumed to be the ground state.
- ^e From 2003Ba78 normalized to 2.29 3 per 100000 α-particles, as measured for the 208-keV γ ray in 1984Re05, unless otherwise specified.
- ^f Calculated by 2003Ba78 from strong coupling rotational model.
- ^g Deduced by 2003Ba78 from intensity balance.
- ^h For absolute intensity per 100 decays, multiply by 0.001.
- ^{*i*} Absolute intensity per 100 decays.
- ^j Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^{*k*} Multiply placed.

- ¹ Multiply placed with intensity suitably divided.
- ^{*m*} Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

 $^{229}_{90}{\rm Th}_{139}$

 $^{229}_{90}{\rm Th}_{139}$

 $^{229}_{90}{\rm Th}_{139}$

2003Ba78,2007Be16

 233 U α decay

Decay Scheme (continued) Legend Intensities: $I_{(\gamma+ce)}$ per 100 parent decays @ Multiply placed: intensity suitably divided $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\nu}^{'max}$ $\dot{\gamma}$ Decay (Uncertain) $5/2^{+}$ 0.0 159.2×10³ y 2 Coincidence Q_α=4908.5 12 %α=100 ²³³₉₂U₁₄₁ <u>Εα</u> <u>Iα</u> <u>HF</u> $\frac{(7/2^+)}{(7/2^+)}$ 365.8136 4465 0.003 84 359.6044 SV & $(5/2^+)$ 347.800 4483 0.0014 246 1945 1345 8621 L \$ 8, $(15/2^+)$ 327.8 4503 0.001 488 $(5/2^+)$ 320.5483 4507 0.012 46 ÷. 1 1 1 1 1 $(7/2^+)$ 302.989 $(7/2^{-})$ 287.895 4538 0.004 242 I. (3/2+,5/2+,7/2+) 255.95 4572 T T T T İİ $\frac{13/2^+}{(5/2^-,7/2^-)}$ 241.546 4582 235.1266 4589 T T I I 1 (5/2-) 217.1597 4611 0.006 532 $(5/2^+)$ Ï _____ 212.382 _|__|-4615 0.004 864 T T 1 1 $(11/2^+)$ 195.7194 4634 0.01 456 -,---,-| | 1 $\frac{(9/2^-)}{(3/2^-)}$ 173.4837 4656 ≈ 0.005 \approx 1315 ÷ 164.5317 4659 $\frac{11/2^+}{(7/2^-)}$ 163.2542 4664 0.042 185 1 I 148.1730 ۲ 4676 $(5/2^{-})$ 146.3569 4681 0.01 1024 $(9/2^+)$ 125.4385 4701 0.06 240 9/2+ 97.13595 0.147 ns 12 4729 1.61 14 (9/2-) Ĺ_ <u>75.1</u> 4751 0.01 3225 (7/27 71.8260 4754 0.163 210 $7/2^{+}$ 42.4349 0.172 ns 6 4783.5 13.2 4.2 $(5/2^+)$ 29.1927 4796 0.28 240 7340 y *160* $5/2^+$ 0.0 4824.2 84.3 1.24

 $^{229}_{90}\text{Th}_{139}$

gend	Decay Scheme (continued)		
$I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$ Coincidence	Intensities: $I_{(\gamma+ce)}$ per 100 parent decays @ Multiply placed: intensity suitably divided	5/2+	<u>0.0</u> 159.2×10 ³ y 2
Coincidence	@. \$2.	Q _α =4908.5 12	%α=100
		²³³ ₉₂ U ₁₄₁ <u>Εα</u>	ΰ <u>Ια ΗF</u>
(5/2+)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4513	0.018 33
(7/2 ⁺)			
$\frac{(3/2^+)}{(7/2^-)}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4538	0.004 242
$\frac{(13/2^+)}{(3/2^+, 5/2^+, 7/2^+)}$		4565 4572	0.0023 654
(7/2 ⁻)	237.366	4590	0.007 325
$\frac{(5/2^{-})}{(5/2^{+})}$	217.1597	4611	0.006 532
(11/2 ⁺)	195.7194	4613	0.01 456
(9/2-)	173.4837	4656	≈0.005 ≈1315
$(5/2^{-})$ $(5/2^{-})$	164.5317 B 148.1730 146.3569	4659 4676	0.01 1024
(9/2+)		4081	0.06 240
9/2+	97.13595	.147 ns 12 4729	1.61 14
(7/2+)	71.8260	4754	0.163 210
7/2+	42.4349	.172 ns 6 4783.5	13.2 4.2
(5/2+)	29.1927	4796	0.28 240
$\frac{(3/2^+)}{5/2^+}$		240 x 160 4024 2	

 $^{229}_{90}{\rm Th}_{139}$

Decay Scheme (continued)

 $^{229}_{90}{\rm Th}_{139}$

²³³U α decay 2003Ba78,2007Be16 (continued)

(5/2,7/2)+ 605.165

(3/2,5/2⁺) 569.2721

Band(G): 1/2[501]

(1/2⁻) 536.08

Band(E): 5/2[622]

(9/2⁺) 425.877

