229 Fr β^- decay 1999Fr33

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	E. Browne, J. K. Tuli	NDS 109, 2657 (2008)	1-Jun-2008						

Parent: ²²⁹Fr: E=0.0; $J^{\pi}=(1/2^+)$; $T_{1/2}=50.2$ s 4; $Q(\beta^-)=3250$ 40; $\%\beta^-$ decay=100.0 ²²⁹Fr-T_{1/2}: From 1992Bo05.

Other: 1992Bo05. ²²⁹Fr activity produced by spallation of 1-GeV protons on an uranium target. Source was produced and mass separated at the ISOLDE-psb mass separator and deposited on to a moving tape. Measured β^- , γ -ray singles and $\beta\gamma$ coin, $\beta\gamma\gamma$ coin, and $\beta\gamma\gamma\gamma$ coin. Detectors: plastic scintillator for β^- particles; high-purity germanium for γ rays. Measured conversion electrons in singles and γ -electron coincidence experiments. Detectors: a magnetic spectrometer coupled to a Si(Li) cooled detector for conversion electrons; high-purity germanium for γ rays. Measured conversion coefficients, deduced γ -ray multipolarities. Measured $\beta\gamma\gamma(t)$ triple coincidences, determined levels half-life.

229Ra Levels

E(level) [†]	J#‡	T _{1/2}	Comments
0.0^{b} 41.25^{b} 9	$5/2^+$ (7/2) ⁺		
107.04 6 137.45 ^c 6	(5/2) ⁺ 5/2 ⁻	0.66 ns 4	$I\beta^-$ ≤8.9% (1999Fr33), not confirmed by evaluators. $I\beta^-$ =0.8 2 % (1999Fr33), not confirmed by evaluators.
142.67 [@] 6	1/2+	17.23 ns 12	$I\beta^{-}$ ≤6.7 %, combined limit for 143- and 169-keV levels (1999Fr33), not confirmed by evaluators.
168.74 [@] 6	3/2+	106 ps 18	$I\beta^{-}$ ≤6.7 %, combined limit for 143- and 169-keV levels (1999Fr33), not confirmed by evaluators.
212.91 <mark>&</mark> 6	3/2+	18 ps 14	$I\beta^{-}=6.5 \ 23 \ \% \ (1999Fr33)$, not confirmed by evaluators.
478.86 [#] 7	1/2-	≤30 ps	
501.37 7	$(5/2^+)$		
518.18 [#] 9	$(3/2)^{-}$		
541.46 [#] 8	5/2-		
550.85 9	3/2-,5/2-,7/2-		
563.079	3/2-		
598 26 10	5/2		
665.07 11			
752.91 9	$(1/2,3/2)^{-}$		
773.2 <i>3</i>			
813.88 14			
835.90 19			
8/0.88 11			
954.02 10			
1322.64.22			
1340.01 14			
1376.12 20			
1410.09 11			
1424.87 7			
1437.02 14			
1401.30 11			
1696 84 18			
1720.54 19			

[†] Deduced by evaluators from least-squares fit to γ -ray energies.

²²⁹ Fr β^- decay **1999 Fr33** (continued)

²²⁹Ra Levels (continued)

[‡] Spin and parity assignments are based on γ -ray multipolarities and on rotational structure. Because of the high octupole components in the wave functions of low-energy states, rotational levels are seen with partners of the same K angular momentum projection and opposite parities ("parity doublets.") This interpretation has been confirmed by the enhanced E1 γ -ray transition probabilities between parity pair states.

- [#] Band(A): $K^{\pi} = 1/2^{-}$ parity doublet band. 1/2[501].
- [@] Band(a): $K^{\pi} = 1/2^+$ parity doublet band. 1/2[631].
- & Band(B): $K^{\pi}=3/2^{+}$ parity doublet band. 3/2[631].
- ^{*a*} Band(b): $K^{\pi} = 3/2^{-}$ parity doublet band. 3/2[761].
- ^b Band(C): $K^{\pi}=5/2^+$ parity doublet band. 5/2[633].

^c Band(c): $K^{\pi} = 5/2^{-}$ parity doublet band. 5/2[752].

 β^- radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft		Comments
$(1.53 \times 10^3 4)$	1720.54	2.0 7	6.30 16	av Eβ=529 16	
$(1.55 \times 10^3 4)$	1696.84	0.62 6	6.84 6	av E β =539 16	
$(1.64 \times 10^3 4)$	1608.76	1.08 9	6.68 6	av Eβ=574 17	
$(1.79 \times 10^3 4)$	1461.30	3.62 24	6.30 5	av E β =634 17	
$(1.81 \times 10^3 4)$	1437.02	1.8 <i>3</i>	6.62 8	av Eβ=644 17	
$(1.83 \times 10^3 4)$	1424.87	7.2 5	6.03 5	av Eβ=649 17	
$(1.84 \times 10^3 4)$	1410.09	≤1.2	≥6.8	av Eβ=655 17	
$(1.87 \times 10^3 4)$	1376.12	0.33 4	7.41 7	av Eβ=668 17	
$(1.91 \times 10^3 4)$	1340.01	0.49 6	7.27 7	av Eβ=683 17	
$(1.93 \times 10^3 4)$	1322.64	0.42 5	7.35 7	av Eβ=690 17	
$(2.21 \times 10^3 4)$	1042.0	0.84 11	7.28 7	av Eβ=806 17	
$(2.32 \times 10^3 4)$	934.62	0.73 15	7.42 10	av Eβ=850 17	
$(2.38 \times 10^3 4)$	870.88	0.36 10	7.77 13	av Eβ=877 17	
$(2.41 \times 10^3 4)$	835.90	0.78 16	7.46 10	av Eβ=892 17	
$(2.44 \times 10^3 4)$	813.88	0.28 13	7.92 21	av Eβ=901 17	
$(2.48 \times 10^3 4)$	773.2	0.21 5	8.07 11	av Eβ=918 17	
$(2.50 \times 10^3 4)$	752.91	0.52 9	7.69 8	av Eβ=926 17	
$(2.58 \times 10^3 4)$	665.07	0.90 8	7.51 5	av Eβ=963 17	
$(2.65 \times 10^3 4)$	598.26	0.83 6	7.59 4	av Eβ=991 17	
$(2.68 \times 10^3 4)$	565.64	0.35 11	7.98 14	av Eβ=1005 17	
$(2.69 \times 10^3 4)$	563.07	0.90 12	7.57 7	av Eβ=1006 17	
$(2.70 \times 10^3 4)$	550.85	0.51 6	7.83 6	av Eβ=1011 17	
$(2.71 \times 10^3 4)$	541.46	0.51 10	7.83 9	av Eβ=1015 17	
$(2.73 \times 10^3 4)$	518.18	9.3 4	6.59 4	av Eβ=1025 17	
$(2.75 \times 10^3 4)$	501.37	≤0.4	≥8.0	av Eβ=1032 17	
$(2.77 \times 10^3 4)$	478.86	57 2	5.82 <i>3</i>	av Eβ=1041 17	

[†] Deduced by evaluators from γ -ray transition intensity balance to levels in ²²⁹Ra. Total β^- feeding to levels above 213 keV is 92% 3. The remaining 8% 2 feeds mostly the 142.7–(1/2⁺), 168.8–(3/2⁺), and 213.0-keV(3/2⁺) levels. Evaluators have considered very imprecise and inconsistent with γ -ray data the individual values deduced for the β^- feeding to each of these levels.

[‡] Absolute intensity per 100 decays.

From ENSDF

 $\gamma(^{229}\text{Ra})$

E_{γ}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	$\alpha^{\#}$	$I_{(\gamma+ce)}$	Comments
26.1		168.74	3/2+	142.67 1/	/2+				≤1.6	
35.6		142.67	$1/2^{+}$	107.04 (5	5/2)+	(E2)			≤1.8	Mult.: From $\alpha(\exp) \ge 516$, deduced from decay scheme transition intensity balance
41.3		41.25	$(7/2)^+$	0.0 5/	/2+	M1(+E2)			≤2.2	Mult.: From $\alpha(\exp) \ge 390$, deduced from decay scheme transition intensity balance.
44.3 2	4.1 5	212.91	3/2+	168.74 3/	/2+	M1+E2	0.95 <i>33</i>	2.4×10 ² 9		$\begin{array}{l} \alpha(\text{L}) = 1.8 \times 10^2 \ 7; \ \alpha(\text{M}) = 48 \ 18; \ \alpha(\text{N}+) = 16 \ 6 \\ \alpha(\text{N}) = 13 \ 5; \ \alpha(\text{O}) = 2.7 \ 10; \ \alpha(\text{P}) = 0.39 \ 14; \ \alpha(\text{Q}) = 0.0034 \\ 7 \end{array}$
										Mult.: From α (L1)exp+ α (L2)exp=100 30. δ deduced by evaluators.
61.8 <i>I</i>	20.5 15	168.74	3/2+	107.04 (5	5/2)+	M1		12.62		α (L)=9.57 <i>15</i> ; α (M)=2.29 <i>4</i> ; α (N+)=0.768 <i>12</i> α (N)=0.604 <i>9</i> ; α (O)=0.1378 <i>21</i> ; α (P)=0.0240 <i>4</i> ; α (Q)=0.00189 <i>3</i>
										Mult.: From α (L1)exp + α (L2)exp= 5.2 8, α (M)exp=3.2 5.
65.8 <i>1</i>	81 6	107.04	(5/2)+	41.25 (7	7/2)+	M1		10.51		$\begin{array}{l} \alpha(\text{L}) = 7.96 \ 12; \ \alpha(\text{M}) = 1.91 \ 3; \ \alpha(\text{N}+) = 0.639 \ 10 \\ \alpha(\text{N}) = 0.503 \ 8; \ \alpha(\text{O}) = 0.1147 \ 17; \ \alpha(\text{P}) = 0.0200 \ 3; \\ \alpha(\text{Q}) = 0.001572 \ 23 \end{array}$
										Mult.: From α (L1)exp + α (L2)exp=6.6 9, α (L3)exp \leq 0.26, α (M)exp=2.05 14.
70.3 2	2.6 4	212.91	$3/2^{+}$	142.67 1/	/2+					
75.1 [@] 1	3.1 12	212.91	3/2+	137.45 5/	/2-					
96.2 1	15.4 11	137.45	5/2-	41.25 (7	7/2)+	E1		0.1223		$\begin{aligned} &\alpha(L)=0.0927 \ 14; \ \alpha(M)=0.0224 \ 4; \ \alpha(N+)=0.00728 \ 11 \\ &\alpha(N)=0.00581 \ 9; \ \alpha(O)=0.001264 \ 18; \ \alpha(P)=0.000197 \\ &\beta: \ \alpha(Q)=9.69\times10^{-6} \ 14 \end{aligned}$
										Mult.: From $\alpha(L1)\exp + \alpha(L2)\exp \le 0.31$.
105.9 1	8.2 7 46 3	212.91	$3/2^+$ (5/2)+	107.04 (5	5/2) ⁺ /2 ⁺	M1		12 77		$\alpha(\mathbf{K}) = 10.22$ 15: $\alpha(\mathbf{L}) = 1.93$ 3: $\alpha(\mathbf{M}) = 0.462$ 7:
107.1 1	40 5	107.04	(3/2)	0.0 5/	12	IVII		12.77		$\alpha(N)=10.22$ 15, $\alpha(L)=1.95$ 5, $\alpha(M)=0.402$ 7, $\alpha(N+)=0.1550$ 23
										α (N)=0.1219 <i>18</i> ; α (O)=0.0278 <i>4</i> ; α (P)=0.00485 <i>7</i> ; α (Q)=0.000381 <i>6</i>
										Mult.: From α (L1)exp + α (L2)exp=1.53 22, α (L3)exp<0.25, α (M)exp=0.77 11, α (N)exp=0.28 9.
137.5 <i>1</i>	149 7	137.45	5/2-	0.0 5/	/2+	E1		0.222		$\alpha(K)=0.1746\ 25;\ \alpha(L)=0.0363\ 6;\ \alpha(M)=0.00871\ 13;\ \alpha(N+)=0.00285\ 4$
										$\alpha(N)=0.00227 \ 4; \ \alpha(O)=0.000499 \ 7; \ \alpha(P)=7.99\times10^{-5}$
										Mult.: From $\alpha(K) \exp \le 0.94$, $\alpha(L1) \exp + \alpha(L2) \exp = 0.017$ 7, $\alpha(L3) \exp \le 0.041$.

I γ normalization: Deduced by evaluators assuming $\Sigma I(\gamma+ce)$ (γ rays to g.s. and 41-keV levels, excepting the 41.3-keV γ ray)= 100%. This value is in fair agreement with I γ normalization=0.02087, reported in 1999Fr33.

ω

 $^{229}_{88}$ Ra₁₄₁-3

				229	9 Fr β^{-} decay	1999	Fr33 (cont	inued)
					γ ⁽²²⁹	Ra) (con	tinued)	
Eγ	I_{γ}^{\ddagger}	E _i (level)	J_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α #	Comments
142.7 <i>1</i>	739 25	142.67	1/2+	0.0 5/2+	E2		2.14	$\alpha(K)=0.279 \ 4; \ \alpha(L)=1.369 \ 20; \ \alpha(M)=0.372 \ 6; \ \alpha(N+)=0.1223 \ 18 \\ \alpha(N)=0.0982 \ 14; \ \alpha(O)=0.0209 \ 3; \ \alpha(P)=0.00306 \ 5; \\ \alpha(Q)=1.83\times10^{-5} \ 3 \\ \text{Mult.: From } \alpha(K)\exp{\leq}0.48, \ \alpha(L1) + \ \alpha(L2) = 0.72 \ 9, \\ \alpha(L3) = 0.35 \ 4, \ \alpha(M) = 0.26 \ 3, \ \alpha(N) = 0.080 \ 10. \end{cases}$
149.4 [@] 2 168.8 <i>1</i>	9.2 6 70 <i>3</i>	813.88 168.74	3/2+	665.07 0.0 5/2 ⁺	M1		3.53	$\alpha(K)=2.83 \ 4; \ \alpha(L)=0.525 \ 8; \ \alpha(M)=0.1255 \ 18; \ \alpha(N+)=0.0421 \ 6$ $\alpha(N)=0.0331 \ 5; \ \alpha(O)=0.00755 \ 11; \ \alpha(P)=0.001317 \ 19; \ \alpha(Q)=0.0001032 \ 15$ Mult.: From $\alpha(K)\exp=3.1 \ 4, \ \alpha(L1)\exp + \alpha(L2)\exp= 0.32 \ 5, \ \alpha(L3)\exp=0.015 \ 8, \ \alpha(M)\exp= 0.07 \ 4.$
211.5 <i>I</i> 212.9 <i>I</i>	5.9 <i>9</i> 59 <i>4</i>	752.91 212.91	(1/2,3/2) ⁻ 3/2 ⁺	541.46 5/2 ⁻ 0.0 5/2 ⁺	M1(+E2)		1.2 7	$\alpha(K)=0.8 \ 7; \ \alpha(L)=0.256 \ 18; \ \alpha(M)=0.0648 \ 10; \ \alpha(N+)=0.0215 \ 5 \\ \alpha(N)=0.0171 \ 3; \ \alpha(O)=0.00378 \ 15; \ \alpha(P)=0.00061 \ 7; \\ \alpha(Q)=3.0\times10^{-5} \ 24 \\ \text{Mult: From } \alpha(K)\exp=1.05 \ 14, \ \alpha(L1)\exp + \alpha(L2)\exp=0.27 \ 4, \\ \end{array}$
^x 217.6 <i>1</i>	9.8 10				M1+E2	1.0 5		α (M)exp=0.10 3. Mult.: From α (K)exp=0.75 25, α (M)exp≤0.38. δ deduced by
266.0 <i>I</i>	185 6	478.86	1/2-	212.91 3/2+	E1		0.0462	evaluators. $\alpha(K)=0.0372 \ 6; \ \alpha(L)=0.00690 \ 10; \ \alpha(M)=0.001645 \ 23; \ \alpha(N+)=0.000543 \ 8 \ \alpha(N)=0.000430 \ 6; \ \alpha(O)=9.60\times10^{-5} \ 14; \ \alpha(P)=1.593\times10^{-5} \ 23; \ \alpha(Q)=1.008\times10^{-6} \ 15 \ Mult: From \ \alpha(K) args=0.046 \ 10 \ Mult: From \ \alpha(K) args=0.046 \ 10 \ Mult: Mult: Rest \ \alpha(P)=0.046 \ 10 \ Mult: Rest \ \alpha(P)=0.046 \ 10 \ Mult: Rest \ \alpha(P)=0.046 \ 10 \ Mult: Rest \ \alpha(P)=0.046 \ Mult: Rest $
274.1 <i>I</i>	9.3 6	752.91	(1/2,3/2)-	478.86 1/2-	M1(+E2)	0.3 5	0.85 22	
305.3 <i>3</i> 310.1 <i>1</i>	13.9 <i>12</i> 1394 <i>56</i>	518.18 478.86	(3/2) ⁻ 1/2 ⁻	212.91 3/2 ⁺ 168.74 3/2 ⁺	E1		0.0327	$\alpha(K)=0.0263 \ 4; \ \alpha(L)=0.00479 \ 7; \ \alpha(M)=0.001141 \ 16; \ \alpha(N+)=0.000377 \ 6 \ \alpha(N)=0.000299 \ 5; \ \alpha(O)=6.68\times10^{-5} \ 10; \ \alpha(P)=1.116\times10^{-5} \ 16; \ \alpha(Q)=7.27\times10^{-7} \ 11 \ Mult: From \ \alpha(K)exp=0.020 \ 3; \ \alpha(L1)exp \ + \ \alpha(L2)exp=0.0058 \ 13;$
310.3 <i>4</i> 332.5 <i>1</i> 334.3 <i>5</i> 336.2 <i>1</i>	75 29 8.1 <i>11</i> 18 6 1000	1720.54 501.37 835.90 478.86	(5/2 ⁺) 1/2 ⁻	1410.09 168.74 3/2 ⁺ 501.37 (5/2 ⁺) 142.67 1/2 ⁺	E1		0.0273	$\alpha(K)=0.0221 \ 3; \ \alpha(L)=0.00397 \ 6; \ \alpha(M)=0.000945 \ 14; \alpha(N+)=0.000313 \ 5 \alpha(N)=0.000247 \ 4; \ \alpha(O)=5.54\times10^{-5} \ 8; \ \alpha(P)=9.29\times10^{-6} \ 13; \alpha(Q)=6.14\times10^{-7} \ 9 Mult.: From \ \alpha(K)exp=0.0172 \ 22, \ \alpha(L1)exp + \ \alpha(L2)exp = 0.0039 \ 16.$

4

From ENSDF

L

229 Fr β^{-} decay 1999Fr33 (999Fr33 (co	ontinued)				
						γ ⁽²²⁹ Ra) (continued)		
E_{γ}	I_{γ}^{\ddagger}	E _i (level)	J_i^π	E_{f}	J_f^{π}	Mult. [†]	δ^{\dagger}	α [#]	Comments
341.4 1	19.6 9	478.86	1/2-	137.45	5/2-	(E2)		0.1041	$\alpha(K)=0.0542\ 8;\ \alpha(L)=0.0369\ 6;\ \alpha(M)=0.00973\ 14;$ $\alpha(N+)=0.00322\ 5$ $\alpha(N)=0.00257\ 4;\ \alpha(O)=0.000558\ 8;\ \alpha(P)=8.58\times10^{-5}\ 12;$ $\alpha(Q)=2.10\times10^{-6}\ 3$ Mult: From $\alpha(K)$ exp= 0.10 7.
349.5 <i>1</i> 352.7 <i>1</i>	308 <i>12</i> 8.7 <i>5</i>	518.18 565.64	$(3/2)^{-}$ $3/2^{-}$	168.74 212.91	$3/2^+$ $3/2^+$	E1			From $\alpha(K)$ exp=0.024 4.
358.7 <i>I</i> 363.9 <i>I</i>	53 <i>4</i> 4.8 8	501.37 501.37	$(5/2^+)$ $(5/2^+)$	142.67 137.45	$1/2^+$ $5/2^-$	(E2)			From $\alpha(K) \exp = 0.051 \ 23$.
372.8 2 375.5 2 380.6 4 394.8 2 398.7 1	6.8 8 153 5 5.7 15 25 4 30.2 23	541.46 518.18 518.18 563.07 541.46	$(3/2^{-})$ $5/2^{-}$ $(3/2)^{-}$ $(3/2)^{-}$ $5/2^{-}$	168.74 142.67 137.45 168.74 142.67	$3/2^+$ $1/2^+$ $5/2^-$ $3/2^+$ $1/2^+$				<i>α</i> (K)exp≤0.52.
404.1 1	14.9 16	541.46	5/2-	137.45	5/2-	(M1)		0.315	α (K)=0.254 4; α (L)=0.0462 7; α (M)=0.01103 16; α (N+)=0.00369 6 α (N)=0.00291 4; α (O)=0.000663 10; α (P)=0.0001157 17; α (Q)=9.07×10 ⁻⁶ 13 Mult: From α (K)exp=0.29 15
413.6 2	8.4 15	550.85	3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻	137.45	5/2-	M1(+E2)	0.2 9	0.29 12	$\alpha(\mathbf{K})=0.23 \ 11; \ \alpha(\mathbf{L})=0.042 \ 13; \ \alpha(\mathbf{M})=0.010 \ 3; \\ \alpha(\mathbf{N}+)=0.0034 \ 10 \\ \alpha(\mathbf{N})=0.0027 \ 8; \ \alpha(\mathbf{O})=0.00061 \ 18; \ \alpha(\mathbf{P})=0.00011 \ 4; \\ \alpha(\mathbf{Q})=8.\mathbf{E}-6 \ 4 \\ \mathbf{Mut}: \ \text{From } \alpha(\mathbf{K}) \approx \mathbf{p} = 0.23 \ 7 \ \delta \ \text{deduced by evaluators} $
428.1 <i>1</i>	40.1 23	565.64	3/2-	137.45	5/2-	M1(+E2)	0.41 35	0.24 5	
441.5 <i>1</i> 455.6 <i>1</i>	15.4 <i>14</i> 17.7 <i>13</i>	1376.12 598.26		934.62 142.67	1/2+				$\alpha(K) \exp = 0.05 \ 3.$
x484.0 1 522 4 1	12.3 25	665.07		142 67	1/2+				
525.6 <i>[I</i> 550.8 <i>I</i> 560.3 <i>3</i> 562.9 <i>I</i> *574.1 <i>2</i> 587.1 <i>I</i> 590.0 <i>2</i> 598.2 <i>2</i> 601.0 <i>2</i>	26.0 <i>I7</i> 12.9 <i>I3</i> 9.9 2 <i>I</i> 35.7 24 9.1 <i>I9</i> 22.9 23 31 3 20.7 2 <i>I</i> 5.1 <i>I</i> 2	1461.30 550.85 773.2 563.07 1340.01 1461.30 598.26 813.88	3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻	934.62 0.0 212.91 0.0 752.91 870.88 0.0 212.91	$5/2^{+}$ $3/2^{+}$ $5/2^{+}$ $(1/2,3/2)^{-}$ $5/2^{+}$ $3/2^{+}$				α(K)exp≤0.18.

S

From ENSDF

L

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Eγ	I_{γ}	E _i (level)	E_f	\mathbf{J}_f^{π}
611.1 4	22.5	1424.87		813.88		^x 928.5 2	14.6 15			
615.1 2	24.0 24	752.91	$(1/2.3/2)^{-}$	137.45	$5/2^{-}$	x935.7 2	21.8 25			
x623.7 3	15 3		(-/-/-/-/		-/-	x938.7 4	17 4			
625.6 3	16.8 19	1461.30		835.90		943.1 2	15.6 16	1461.30	518.18	$(3/2)^{-}$
x627.2 3	12.2 16					^x 959.0 3	20 3			
^x 633.1 2	11.3 10					^x 965.5 2	21.4 21			
^x 641.8 3	9 <i>3</i>					^x 983.6 1	36 4			
$645.4^{\textcircled{0}}2$	22.6 19	752.91	$(1/2,3/2)^{-}$	107.04	$(5/2)^+$	1041.7 6	63	1042.0	0.0	$5/2^{+}$
^x 661.0 2	18.9 19				(-1)	^x 1080.7 2	19.1 19			- 1
665.1 <i>3</i>	23 3	665.07		0.0	$5/2^{+}$	1178.6 2	17.9 18	1696.84	518.18	$(3/2)^{-}$
667.7 4	17 <i>3</i>	835.90		168.74	$3/2^{+}$	1197.3 2	21.3 21	1410.09	212.91	$3/2^{+}$
671.2 2	30 <i>3</i>	813.88		142.67	$1/2^{+}$	x1212.3 2	10.1 10			
693.2 <i>3</i>	18.3 24	835.90		142.67	$1/2^{+}$	1248.4 2	8.9 10	1461.30	212.91	$3/2^{+}$
^x 699.2 3	16 <i>3</i>					1256.2 <i>1</i>	172 17	1424.87	168.74	$3/2^{+}$
727.9 2	14.2 14	870.88		142.67	$1/2^{+}$	1267.5 4	28 9	1410.09	142.67	$1/2^{+}$
^x 734.9 2	16.0 17					1267.9 2	60 12	1437.02	168.74	$3/2^{+}$
757.0 2	19.6 20	1322.64		565.64	$3/2^{-}$	1282.3 <i>I</i>	61 <i>6</i>	1424.87	142.67	$1/2^{+}$
763.6 2	9.8 14	870.88		107.04	$(5/2)^+$	1288.0 <i>3</i>	6.5 10	1424.87	137.45	5/2-
x790.6 3	12 3					1292.8 2	90 9	1461.30	168.74	3/2+
792.1 <i>3</i>	24 6	934.62		142.67	$1/2^{+}$	1300.1 4	4.7 10	1437.02	137.45	5/2-
827.5 2	25.4 25	934.62		107.04	$(5/2)^+$	^x 1318.6 3	11.2 11			
844.3 2	8.4 10	1410.09		565.64	3/2-	1324.0 <i>3</i>	6.1 15	1461.30	137.45	5/2-
858.9 2	14.2 23	1424.87		565.64	3/2-	^x 1373.5 3	6.0 11			
861.6 2	18.8 22	1424.87		563.07		1395.7 <i>3</i>	5.3 10	1437.02	41.25	$(7/2)^+$
871.0 2	23.8 22	870.88		0.0	5/2+	1410.3 3	2.5 5	1410.09	0.0	5/2+
883.3 2	27 3	1424.87		541.46	5/2-	1440.0 2	29 3	1608.76	168.74	3/2+
899.4 <i>3</i>	33 4	1042.0		142.67	1/2+	1466.1 2	21.3 21	1608.76	142.67	1/2+
908.6 2	28 3	1410.09		501.37	$(5/2^+)$	1554.3 3	10.9 14	1696.84	142.67	1/2+
919.1 2	14 3	1437.02		518.18	$(3/2)^{-}$	1577.9 2	15.9 16	1720.54	142.67	1/2+
923.1 2	13.9 <i>17</i>	1424.87		501.37	$(5/2^{+})$					

[†] From measured conversion coefficients.
[‡] For absolute intensity per 100 decays, multiply by 0.0215 6.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

229 Fr β^- decay 1999Fr33

²²⁹₈₈Ra₁₄₁

229 Fr β^- decay 1999Fr33

229 Fr β^- decay 1999Fr33

Decay Scheme (continued)

²²⁹₈₈Ra₁₄₁