232 Pu α decay

Type Author Citation Literature Cutoff Date
Full Evaluation Khalifeh Abusaleem NDS 116, 163 (2014) 31-Dec-2012

Parent: 232 Pu: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=33.1$ min 8; $Q(\alpha)=6716$ 10; $\%\alpha$ decay=23 6

 $T_{1/2}$ measured in 2000La25 using α - α coincidence data. The source was produced in the reaction ²³³U(³He,4n)²³²Pu Others: $T_{1/2}(^{232}\text{Pu})=34.1 \text{ min } 7 \text{ (1973Ja06)}$, 36 min 2 (1952Or03).

From x-ray and α counts, the ε/α branching ratio was deduced by 1952Or03 as <60 (this ratio yields $\%\alpha>1.6$) and an approximate upper limit of 20% was estimated by 1973Ja06. The α branching of 20% was adopted by 1991Sc08. This branch, together with $I\alpha(6600\alpha)=62$ per 100 α decays, gives $r_0=1.508$.

The r_0 systematics suggests $r_0(^{228}\text{U})=1.518$ 10 for the nuclear radius parameter from which the α branch of ^{232}Pu is calculated as 23% 6 by requiring HF(6600 α)=1.0, if I α (6600 α)=67% 5 of α decays. By considering the consistencies between the experimental observations and the α systematics, $\%\alpha$ =23 6 is recommended here.

The gross- β calculations by 1973Ta30 predict $T_{1/2}(\varepsilon)$ =5000 s which yields $\%\varepsilon$ =40.9.

The partial half-life of 232 Pu β^+ decay has been calculated by 1997 Mo25 as >100 s.

²²⁸U Levels

E(level)
$$J^{\pi}$$

 0.0^{\dagger} 0^{+}
 59^{\dagger} 14 2^{+}

 α radiations

$$E\alpha^{\dagger}$$
 E(level) $I\alpha^{\ddagger @}$ HF[#]
6542 10 59 33 5 1.1 4
6600 10 0.0 67 5 1.000

[†] Band(A): K=0 g.s. band.

[†] Measured by 1973Ja06.

 $^{^{\}ddagger}$ α intensity per 100 α decays. The intensities given here are calculated by requiring that HF(6542 α)=1.1 4, obtained from local systematics of hindrance factors of α 's to the first 2⁺ states. The authors of 1973Ja06 estimated I α (6600 α to g.s.) \approx 62 from extrapolation of g.s. α intensities from other Pu isotopes; this intensity gives HF(2⁺ state) \approx 0.9, in agreement with the value obtained from HF systematics.

[#] $r_0(^{228}\text{U})=1.518\ 10$ for $\%\alpha=23\ 6$ and $I\alpha(6600\alpha)=67\ 5\%$.

[@] For absolute intensity per 100 decays, multiply by 0.23 6.

 $^{228}_{\ 92}U_{136}$

 232 Pu α decay

Band(A): K=0 g.s. band

0.0

 $^{228}_{\ 92}U_{136}$