		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Khalifeh Abusaleem	NDS 116, 163 (2014)	31-Dec-2012

Parent: ²²⁸Pa: E=0.0; $J^{\pi}=3^+$; $T_{1/2}=22$ h *1*; $Q(\varepsilon)=2152$ 4; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=98.15 *17*

²²⁸Pa-Q(*ε*): From 2012Wa38.

²²⁸Pa-J^{π}: From quadrupole-octopole model: 1988Sh01.

²²⁸Pa-T_{1/2}: From 1951Me10.

²²⁸Pa-% ε +% β ⁺ decay: % α =1.85 17.

1998We13 and 1995Ba42 works are from the same group.

1998We13: Mass-separated ²²⁸Pa sources. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, ce- γ coin using five Compton-suppressed Ge detectors. The detectors were arranged on the faces of a cube. Two pairs make 180° to each other and 8 pairs make 90° with each other. This arrangement enables to extract information on $\gamma\gamma$ coincidences in addition to angular correlations between the coincidences. The level structure was compared with quasiparticle-phonon model. Assumed E1, M1, E2 or M1+E2 polarity. W(θ)-ratios were used to extract mixing ratios for the strong γ -rays.

1997We05: Describes the same experimental details of 1998We13. The latter work includes the results described in the former.

1995Ba42: measured γ , ce, $\gamma\gamma$, $\gamma(\theta,H,T)$.

1993Ac02: measured γ , ce.

1973Ku09: measured γ , ce, $\gamma\gamma$, γ (ce).

1971Am05, 1970SpZW, 1960Ar06: measured ce.

²²⁸Th Levels

The decay scheme from ²²⁸Pa and the band assignments in ²²⁸Th are those proposed by 1995Ba42 and 1998We13. For a discussion of the structure of the bands, and of the band parameters, see 1995Ba42 and 1998We13.

E(level)	$J^{\pi \dagger}$	Comments
0.0 [‡]	0+	
57.775 [‡] 14	2+	
186.849 [‡] <i>16</i>	4+	
328.034 [#] 17	1-	
378.214 [‡] 22	6+	
396.108 [#] 17	3-	
519.212 [#] 20	5-	
695.4 3	7-	Possibly fed by multiply placed 601.7 γ from the 1297.4 (5) ⁻ level.
831.72 4	0^{+}	
874.508 ^{⁽⁰⁾} 22	2+	
938.63 ^{<i>u</i>} 14	0^{+}	
944.24 ⁰ 4	1-	
968.38 ⁰ 4	2-	J^{π} : γ to 1 ⁻ and 3 ⁻ levels in K ^{π} =0 ⁻ band, member of a rotational band.
968.45 ^{⁽⁰⁾ 3}	4+	J^{π} : γ to 3 ⁻ and 5 ⁻ levels in K ^{π} =0 ⁻ band; member of K ^{π} =0 ⁺ band.
968.986 [°] 14	2+	
979.460 ^{&} 24	2^{+}	
1016.388 ^b 24	3-	J^{π} : γ s to 1 ⁻ , 2 ⁻ , 3 ⁻ , and 5 ⁻ levels, member of a rotational band. E(level): energy sequence suggests that levels at 944.2, 968.4, 1016.4, 1060, 1143 keV are the 1 ⁻ , 2 ⁻ , 3 ⁻ , 4 ⁻ , and 5 ⁻ members of the K ^{\pi} =1 ⁻ band.
1022.555 ^c 16	$(3)^{+}$	
1059.93 ^b 3	4-	J^{π} : γ to 3 ⁻ , and 4 ⁻ levels, member of a rotational band (1998We13). 3 ⁻ ,4 ⁺ ,5 ⁻ ruled out by $\gamma(\theta,H,T)$ (1995Ba42).
1074.74 ^{&} 9	4+	

²²⁸Pa ε decay **1998We13,1995Ba42** (continued)

²²⁸Th Levels (continued)

E(level)	$\mathrm{J}^{\pi^{\dagger}}$	Comments
1091.067 ^c 19	4+	
1119.9 ^a 3	0^{+}	
1122 968 ^d 18	2-	
1122.900 10	5-	We use 47 27 64 and 44 levels member of a stational hand
1145.15° 8	5 2+	J^* : γ to 4, 5, 6° and 4° levels, member of a rotational band.
1153.431° 21	2.	
1168.395 ^{<i>a</i>} 16	3-	
1174.547 23	(5 ⁺)	
1175.244 7	2+	J^{n} : γ s to 0 ⁺ , 2 ⁺ , and 4 ⁺ in g.s. and to 1 ⁻ and 3 ⁻ in $K^{n}=1^{-}$ band; member of a rotational band.
1200.60° 3	3(+)	
1226.596 ^{<i>d</i>} 17	4-	
1261.59 ^e 8	4+	
1270.10 [°] 18	6+	
1290.08 ^{<i>a</i>} 8	4+	
1297.387 ^d 24	(5 ⁻)	
1344.09 12	3-	
1393.46 8	$1^+, 2, 3^-$	J^{π} : γ 's to 1 ⁻ , 2 ⁺ , and 3 ⁻ levels.
1416.09 11	(3 ⁻)	J^{π} : γ s to 1 ⁻ and 4 ⁺ levels.
1432.036 16	4+	J^{π} : γ s to 2 ⁺ and 6 ⁺ levels.
1448.87 9	3,4-	
1450.408 17	4-	J^{*} : γs to 2^{-} and 5^{-} levels; $\gamma(\theta, H, I)$ excludes $J=3$.
1497.698	(5)	
1551.51 5	3 2-	$\Gamma(1, m)$. This level are according $\frac{1}{228}$ As down and according for the 1029 (
1559.0? 10	2	E(level): This level was proposed in ²² Ac decay and possibly led by the 389.307 from the 1928.6 level. However, the γ 's shown as deexciting this level in ²²⁸ Ac decay have either not been reported (416.30 γ) or placed elsewhere in level scheme (1142.85 γ). 1995Ba42 suggests that the existence of this level is doubtful.
1580.94 7	(2^{-})	
1588.369 20	(4-)	J^{π} : γ s to 2 ⁻ ,4 ⁻ and ; $\gamma(\theta,H,T)$ excludes 3 ⁻ (1995Ba42).
1618.04? 7	4+	E(level): Observed in 1995Ba42 only.
		J^{π} : γ s to 2 ⁺ and 4 ⁺ levels.
1638.300 25	2+	
1643.15 4	(3 ⁻)	J^{A} : γ s to 4^{+} , 1^{-} , and 4^{-} levels.
1643.82 7	4+	J^{*} ; γ s to 2 ⁺ , 3, and 4 ⁺ ; (log <i>ft</i> =8.31.5.1998We13).
1645.933 25	3'	J^* : multiple γ s to 2', 3', and 4' levels; (log $ft=1.34$ 5 1998we13).
1679 42 7	2+ 2+	
10/8.45 /	$(2^+ 3^+ 4^+)$	
1683 77 1	(2, 3, 4)	
1688 42 5	2+3+	I^{π} : $I^{\pi}=3^{-}4^{+}$ excluded by $\gamma(\theta \parallel T)$ (1995Ba42)
1707 30 16	$(2, 3^{-})$	5.5 -5, (excluded by ((,,,,)) (1)), (1)), (1)), (1))
1724.301 19	2^+	J^{π} : log ft=7.31 4 (1998We13).
1735.64 9	4+	
1743.90 4	4+	
1758.06 20	2+	
1760.32 5	$2^{(+)}, 3^{(+)}$	J^{π} : $\gamma(\theta, H, T)$ excludes $J^{\pi} = 4^+$ (1995Ba42); (log <i>ft</i> =8.9 4 1998We13).
1796.45 8	4+	
1802.90 18	2+	
1804.690 24	4+	
1811.58 <i>15</i>	(1 ⁻ ,2,3 ⁻)	
1817.442 25	4-	J ^{<i>n</i>} : multiple γ 's to 4 ⁻ , 2 ⁻ , and 5; $\gamma(\theta, H, T)$ excludes $J^{\pi}=3^{-}, 5^{-}$.
1823.49 16	(4^{+})	
1842.23 11	(2,3)	
1804.95 0	(2.)	

228 Pa ε decay 1998We13,1995Ba42 (continued)

²²⁸Th Levels (continued)

E(level)	$J^{\pi \dagger}$	Comments
1876.46 22	$(3^{-},4,5^{-})$	
1879.06 22	(3 ⁻)	
1893.017 21	3+	J^{π} : log <i>ft</i> =6.56 4 (1998We13).
1899.93 <i>3</i>	(2^{+})	J^{π} : γ s to 0 ⁺ and 4 ⁺ .
1901.94 7	4+	J^{π} : γ 's to 2 ⁺ and 6 ⁺ .
1908.47 8	(3 ⁻)	
1924.17 6	$(2^{-},3,4)$	
1924.66 9	$4^+, 5^-$	
1925.22 4	3+,4+	J^{π} : γ s to 2+and 6 ⁺ .
1928.37 7	3+	J^{π} : $\gamma(\theta, H, T)$ excludes $J^{\pi} = 2^+, 3^-, 4^+$.
1939.10 10	(4^{+})	
1944.916 <i>18</i>	3+	
1945.74 9	$4^+, 5^-$	
1949.74 10	2+	
1958.19 <i>14</i>	(2^{+})	
1965.05 8	(2^{+})	
1974.20 11	$(2^+, 3^-)$	
1981.90 5	(3 ⁻)	
2010.10 7	(2^{+})	
2016.76 9	$(4^+, 5^-)$	
2022.88 9	$(2)^{+}$	
[†] From Adc	pted Levels.	
[‡] Band(A):	g.s. Rotation	al band
# Band(B)	$K^{\pi} = 0^{-}$ hand	
[@] Band(C):	first $K^{\pi} = 0^{+} h$	band

- [&] Band(D): second $K^{\pi}=0^+$ band.
- ^{*a*} Band(E): third $K^{\pi}=0^+$ band.
- ^b Band(F): $K^{\pi}=1^{-}$ octupole-vibrational band. ^c Band(G): first $K^{\pi}=2^{+}$ band.
- ^d Band(H): $K^{\pi}=2^{-}$ band.
- ^{*e*} Band(I): second $K=2^+$ band.

$\underline{\varepsilon, \beta^+}$ radiations

 $J^{\pi}(^{228}\text{Pa})=3^+.$

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(129 4)	2022.88	0.056 24	7.47 20	0.056 24	εK=0.13 4; εL=0.606 21; εM+=0.266 12
(135 4)	2016.76	0.08 1	7.38 8	0.08 1	εK=0.18 4; εL=0.575 21; εM+=0.249 11
(142 4)	2010.10	0.23 2	7.00 7	0.23 2	εK=0.23 3; εL=0.542 20; εM+=0.232 10
(170 4)	1981.90	0.27 2	7.20 6	0.27 2	εK=0.389 19; εL=0.433 13; εM+=0.178 6
(178 4)	1974.20	0.281 21	7.25 5	0.281 21	εK=0.421 17; εL=0.411 11; εM+=0.167 6
(187 4)	1965.05	0.139 17	7.63 7	0.139 17	εK=0.454 14; εL=0.389 10; εM+=0.157 5
(194 4)	1958.19	0.062 7	8.03 6	0.062 7	εK=0.476 13; εL=0.374 9; εM+=0.150 4
(202 4)	1949.74	0.09 1	7.93 6	0.09 1	εK=0.499 11; εL=0.358 8; εM+=0.143 4
(206 4)	1945.74	0.18 3	7.65 8	0.18 3	εK=0.509 10; εL=0.351 7; εM+=0.139 4
(207 4)	1944.916	7.8 5	6.02 5	7.8 5	εK=0.511 10; εL=0.350 7; εM+=0.139 4
(213 4)	1939.10	0.135 16	7.82 6	0.135 16	εK=0.525 9; εL=0.341 7; εM+=0.135 3

²²⁸Pa ε decay **1998We13,1995Ba42** (continued)

ϵ, β^+ radiations (continued)

$ \begin{array}{c} (227 \ 4) & 1925.22 & 1.52 \ 1I & 6.86 \ 5 & 1.52 \ 1I & \varepsilon K=0.552 \ 8; \ eL=0.322 \ 5; \ \varepsilon M=-0.1258 \ 24 \\ (227 \ 4) & 1924.66 & 0.120 \ 16 & 7.96 \ 7 & 0.120 \ 16 & \varepsilon K=0.553 \ 8; \ eL=0.317 \ 5; \ \varepsilon M+=0.1252 \ 23 \\ (224 \ 4) & 1908.47 & 0.14 \ 2 & 7.98 \ 7 & 0.14 \ 2 & \varepsilon K=0.554 \ 8; \ eL=0.317 \ 5; \ \varepsilon M+=0.1171 \ 19 \\ (250 \ 4) & 1901.94 & 0.256 \ 22 & 7.76 \ 5 & 0.226 \ 22 & \varepsilon K=0.588 \ 6; \ eL=0.297 \ 4; \ \varepsilon M+=0.1171 \ 17 \\ (252 \ 4) & 1899.93 & 0.57 \ 3 & 7.42 \ 4 & 0.573 \ 3 & \varepsilon K=0.591 \ 6; \ eL=0.297 \ 4; \ \varepsilon M+=0.1137 \ 17 \\ (252 \ 4) & 1899.93 & 0.57 \ 3 & 7.42 \ 4 & 0.573 \ 4 & \varepsilon K=0.591 \ 6; \ eL=0.297 \ 4; \ \varepsilon M+=0.1137 \ 17 \\ (252 \ 4) & 1879.06 & 0.031 \ 8 & 8.78 \ 12 & 0.031 \ 8 & \varepsilon K=0.615 \ 5; \ eL=0.279 \ 3; \ \varepsilon M+=0.1063 \ 13 \\ (276 \ 4) & 1876.46 & 0.027 \ 8 & 8.85 \ 14 \ 0.027 \ 8 & \varepsilon K=0.618 \ 4; \ eL=0.277 \ 3; \ \varepsilon M+=0.1055 \ 13 \\ (287 \ 4) & 1842.23 & 0.11 \ 1 & 8.38 \ 5 & 0.11 \ 1 & \varepsilon K=0.6618 \ 4; \ eL=0.277 \ 3; \ \varepsilon M+=0.0095 \ 13 \\ (287 \ 4) & 1842.23 & 0.11 \ 1 & 8.38 \ 5 & 0.52 \ 4 & \varepsilon K=0.628 \ 4; \ eL=0.246 \ 17; \ \varepsilon M+=0.00918 \ 7 \\ (340 \ 4) & 1811.58 & 0.090 \ 14 & 8.58 \ 8 \ 0.090 \ 14 & \varepsilon K=0.6653 \ 22; \ eL=0.2480 \ 17; \ \varepsilon M+=0.00918 \ 7 \\ (340 \ 4) & 1811.58 & 0.090 \ 14 & 8.58 \ 8 \ 0.090 \ 14 & \varepsilon K=0.6653 \ 22; \ eL=0.2491 \ 17; \ \varepsilon M+=0.0918 \ 7 \\ (347 \ 4) & 1804.690 & 1.44 \ 18 \ 7.40 \ 6 \ 1.44 \ 18 \ \varepsilon K=0.6690 \ 21; \ eL=0.2491 \ 17; \ \varepsilon M+=0.0987 \ 7 \\ (347 \ 4) & 1804.690 \ 0.144 \ 18 \ 7.40 \ 6 \ 1.44 \ 18 \ \varepsilon K=0.6653 \ 22; \ eL=0.2491 \ 17; \ \varepsilon M+=0.0987 \ 7 \\ (347 \ 4) \ 1804.690 \ 0.44 \ 188 \ 7.40 \ 6 \ 1.44 \ 18 \ \varepsilon K=0.6690 \ 21; \ eL=0.2470 \ 17; \ \varepsilon M+=0.0987 \ 7 \\ (347 \ 4) \ 1804.590 \ 0.44 \ 18 \ 7.40 \ 6 \ 1.44 \ 18 \ \varepsilon K=0.6690 \ 21; \ eL=0.2491 \ 17; \ \varepsilon M+=0.0884 \ 7 \\ (356 \ 4) \ 1776.64 \ 0.099 \ 2 \ 8.8 \ 0.090 \ 14 \ \varepsilon K=0.6692 \ 21; \ eL=0.2491 \ 17; \ \varepsilon M+=0.0883 \ 5 \\ (408 \ 4) \ 1773.90 \ 0.88 \ 6 \ 7.79 \ 4 \ 0.88 \ 6 \ \varepsilon K=0.6731 \ 20; \ eL=0.2238 \ 17; \ \varepsilon M+=0.0838 \ 5 \\ (408 \ 4) \ 1773.90 \ 0.88 \ 6 \ 7.79 \ 4 $	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
(534 4) 1618.04? 0.13 3 8.91 11 0.13 3 $\varepsilon K = 0.7239$ 7; $\varepsilon L = 0.2031$ 5; $\varepsilon M + = 0.07308$ 21 (564 4) 1588.369 5.8 5 7.31 5 5.8 5 $\varepsilon K = 0.7285$ 6; $\varepsilon L = 0.1998$ 5; $\varepsilon M + = 0.07169$ 18 (571 4) 1580.94 0.166 21 8.87 6 0.166 21 $\varepsilon K = 0.7296$ 6; $\varepsilon L = 0.1991$ 4; $\varepsilon M + = 0.07137$ 18	
(564 4) 1588.369 5.8 5 7.31 5 5.8 5 $\varepsilon K = 0.7285$ 6; $\varepsilon L = 0.1998$ 5; $\varepsilon M + = 0.07169$ 78 (571 4) 1580.94 0.166 21 8.87 6 0.166 21 $\varepsilon K = 0.7296$ 6; $\varepsilon L = 0.1991$ 4; $\varepsilon M + = 0.07137$ 78	
(5114) 1580.94 0.166 21 8.87 6 0.166 21 $\varepsilon K = 0.7296$ 6; $\varepsilon L = 0.19914$; $\varepsilon M = 0.0713718$	
(0204) 1551.51 0.89 10 8.25 8 0.89 10 $EK=0.7559$ 5; $EL=0.19464$; $EM=0.0944/14$	
(054.4) 1497.09 $0.12.2$ 9.158 $0.12.2$ $\epsilon K=0.7390.5$; $\epsilon L=0.1920.5$; $\epsilon M+=0.00830.13$	
(102.4) 1450.408 8.78 7.50 5 8.78 $EK=0.7441.4$; $EL=0.18890.22$; $EM=0.06700.11$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(0004) 1344.09 0.042 9.6522 0.042 \mathbf{ER} -0.73193, \mathbf{EL} -0.16342, \mathbf{ENH} -0.00471 0	
$(55) 4) 129/.38/ \leq 0.10 \qquad \leq 9.0^{-1} \leq 0.10 \qquad \leq R = 0.7019 0; \ \epsilon L = 0.2181 4; \ \epsilon M_1 = 0.0000473 $	
(002.4) 1220.06 0.12.4 9.42.15 0.12.4 $ER=0.7550.5$, $EL=0.1612.2$, $ENI+=0.00576.7$	
(802.4) 12/0.10 ≤ 0.001 ≥ 11.5 ≤ 0.001 $ER = 0.7501.2$; $EL = 0.1803.2$; $EM = -0.003477$	
(350.4) 1201.39 0.214 9.219 0.214 $\epsilon_{\rm R} = 0.7303.2$; $\epsilon_{\rm E} = 0.1802.2$; $\epsilon_{\rm R} = 0.00534.6$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
(977 4) 1174 547 0.053 0.93 0.053 $cK = 0.7004 2.5 cK = 0.1774 2.5004 = 0.00219 5$	
(984.4) 1168 395 0.07 3 978 19 0.07 3 eK-0.7004 2, eL-0.1774 2, eW+-0.00210 5	
(999 4) 1153 431 0 51 25 8 93 22 0 51 25 $cK=0.7612 2 cI=0.1772 2, cM=-0.60210 5$	
(1009 4) 1143.15 $0.0026 13$ 11.23 22 $0.0026 13$ $cK=0.7012 2, cL=0.1766 1; cM+=0.06181 5$	
$(1029 4)$ 1122.968 0.06 4 9.9.3 0.06 4 $\epsilon K = 0.7624 2$; $\epsilon L = 0.1760 1$; $\epsilon M + = 0.06159 5$	
(1032 4) 1119.9 ≤ 0.05 ≥ 10.0 ≤ 0.05 $\epsilon K=0.7625$ 2; $\epsilon L=0.1760$ 1; $\epsilon M+=0.06156$ 5	

Continued on next page (footnotes at end of table)

	²²⁸ Pa ε decay 1998We13,1995Ba42 (continued)												
	$\epsilon \beta^+$ radiations (continued)												
E(decay)	E(level)	Ιβ ⁺ ‡	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments							
(1061 4)	1091.067		0.013 19	10.6 7	0.013 19	εK=0.7635 2; εL=0.1753 1; εM+=0.06126 4							
$(1077 \ 4)$	1074.74		0.011 1	10.67 5	0.011 1	εK=0.7640 2; εL=0.1749 1; εM+=0.06110 4							
(1092 4)	1059.93		0.004 4	11.1 5	0.004 4	εK=0.7645 2; εL=0.17454 9; εM+=0.06096 4							
(1129 4)	1022.555		0.1 3	9.8 <i>13</i>	0.1 3	εK=0.7656 2; εL=0.17374 9; εM+=0.06063 4							
(1136 4)	1016.388		0.003 10	11.3 15	0.003 10	εK=0.7658 2; εL=0.17361 9; εM+=0.06057 4							
(1173 4)	979.460		0.37 5	9.22 7	0.37 5	εK=0.7668 1; εL=0.17289 8; εM+=0.06027 4							
(1183 4)	968.986		1.02 19	8.79 9	1.02 19	εK=0.7671 1; εL=0.17269 8; εM+=0.06019 4							
(1184 4)	968.45		0.029 10	10.34 16	0.029 10	εK=0.7671 1; εL=0.17268 8; εM+=0.06018 4							
(1184 4)	968.38		0.026 6	10.38 11	0.026 6	εK=0.7671 1; εL=0.17268 8; εM+=0.06018 4							
(1208 4)	944.24		≤0.05	≥10.1	≤0.05	εK=0.7678 1; εL=0.17224 8; εM+=0.06000 3							
(1213 4)	938.63		0.025 13	10.43 23	0.025 13	εK=0.7679 1; εL=0.17214 7; εM+=0.05996 3							
(1277 4)	874.508		0.027 9	10.44 15	0.027 9	εK=0.76941 9; εL=0.17107 7; εM+=0.05951 3							
(1320 4)	831.72		0.0019 10	11.62 23	0.0019 10	εK=0.77031 9; εL=0.17042 6; εM+=0.05923 3							
(1633 4)	519.212		0.53 13	9.373 ¹ <i>u</i> 20	0.53 13	εK=0.7749; εL=0.16665 4; εM+=0.05767 2							
						$\log ft$, $I\varepsilon$: Allowed spectrum assumed for calcuations by LOGFT.							
(1756 4)	396.108	0.00133 3	0.800 5	9.262 20	0.801 5	av E β =357.3 $l\dot{8}$; ε K=0.7757; ε L=0.16546 4; ε M+=0.05718 2							
$(1824 \ 4)$	328.034		0.04 4	$11.7^{1u} 5$	0.04 4	εK=0.75733 9; εL=0.17923 7; εM+=0.06303 3							
(1965 4)	186.849	0.001 1	0.3 3	9.8 5	0.3 3	av Eβ=449.7 18; εK=0.7758; εL=0.16357 4; εM+=0.05642 2							
(2094 4)	57.775	0.001 3	0.2 5	10.0 11	0.2 5	av E β =505.8 20; ε K=0.7750; ε L=0.16242 4; ε M+=0.05597 2							

[†] Deduced from intensity balance in level scheme.
 [‡] Absolute intensity per 100 decays.

I γ normalization: From 1998We13. Uncertainty is assigned based on in-out intensity balance, which is consistent with $\Sigma I(\gamma+ce)(g.s.)=88$ 12, $\Sigma I(\varepsilon+\beta^+)(g.s.)=12$ 12.

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger} &	$I_{(\gamma+ce)}^{d}$	Comments
18.41 ^b	4.5 7	1450.408	4-	1432.036 4+	[E1]		6.46	28 3	ce(L)/(γ +ce)=0.513 7; ce(M)/(γ +ce)=0.268 5; ce(N+)/(γ +ce)=0.0851 15 ce(N)/(γ +ce)=0.0690 13; ce(O)/(γ +ce)=0.0141 3; ce(P)/(γ +ce)=0.00195 4; ce(Q)/(γ +ce)=5.60×10 ⁻⁵ 11 I(γ +ce)=45 7 (1998We13) E _{γ} : deduced from E(level). I($_{(\gamma+ce)}$: deduced from coin experiment which gives branching=18% 2 for decay from 1450 level to 1432 level (1995Ba42). I _{γ} : from I(γ +ce) and α .
42.47 ^b	≤0.1	1688.42	2+,3+	1645.933 3+	[M1]		46.3		$\alpha(L)=35.05; \alpha(M)=8.4212; \alpha(N+)=2.894$ $\alpha(N)=2.254; \alpha(O)=0.5328; \alpha(P)=0.103315; \alpha(Q)=0.0098614$ L: Both 1998We13 and 1995Ba42 give this upper limit.
56.86 <i>3</i>	1.06 5	1588.369	(4-)	1531.51 3+	E1 ^C		0.524		$\alpha(L)=0.395\ 6;\ \alpha(M)=0.0970\ 14;\ \alpha(N+)=0.0320\ 5$ $\alpha(N)=0.0254\ 4;\ \alpha(O)=0.00565\ 8;\ \alpha(P)=0.000946\ 14;$ $\alpha(O)=4\ 46\times10^{-5}\ 7$
57.76 2	5.5 3	57.775	2+	0.0 0+	E2		153.1		$\alpha(L)=112.1$ <i>I</i> 6; $\alpha(M)=30.7$ <i>5</i> ; $\alpha(N+)=10.35$ <i>I</i> 5 $\alpha(N)=8.22$ <i>I</i> 2; $\alpha(O)=1.83$ <i>3</i> ; $\alpha(P)=0.302$ <i>5</i> ; $\alpha(Q)=0.000869$ <i>I</i> 3 Mult.: L1/L3=0.036 <i>I</i> 1, L2/L3=1.187 5, M1/M2=0.0328 <i>2</i> 7, M2/M3=1.137 <i>I</i> 9 (1970SpZW); theory: L1/L3=0.0390, L2/L3=1.19, M1/M2=0.0382, M2/M3=1.14.
68.08 ^b	≤0.04	396.108	3-	328.034 1-	[E2]		69.5		α (L)=50.8 8; α (M)=13.95 20; α (N+)=4.70 7 α (N)=3.74 6; α (O)=0.831 12; α (P)=0.1374 20; α (Q)=0.000435 6 I _Y : limit of I _Y deduced from the limit of Ice(L2) (1993Ac02).
77.36 ^b	0.44 9	1168.395	3-	1091.067 4+	[E1]		0.231		α(L)=0.1746 25; α(M)=0.0426 6; α(N+)=0.01415 20 α(N)=0.01117 16; α(O)=0.00252 4; α(P)=0.000435 6; α(Q)=2.30×10-5 4 Iγ: deduced from branching ratio in adopted γ's. Iγ≤0.6 (1995Ba42).
99.47 6	1.8 3	1531.51	3+	1432.036 4+	M1		3.85		α(L)=2.91 5; α(M)=0.700 10; α(N+)=0.240 4 α(N)=0.187 3; α(O)=0.0442 7; α(P)=0.00858 13; α(Q)=0.000816 12 Mult.: $α(L12)exp=2.0$, no ce(L3), L/M=2.0, L/N=6 (1960Ar06); theory: $α(L12)=3.06$, $α(L3)=0.0165$. δ: ≤0.4 from ce data (data not given) (1995Ba42).

 $^{228}_{90}{
m Th}_{138}$ -6

					228 Pa ε	decay 19	98We13,	1995Ba42	(continued	<u>)</u>
						γ ⁽²²⁸	Th) (con	tinued)		
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult. [#]	$\delta^{@}$	α^{\dagger} &	$I_{(\gamma+ce)}^{d}$	Comments
100.42 ^b	<0.5	1122.968	2-	1022.555	(3)+	(E1+M2)	≈0.23	≈3.10		$ \begin{array}{l} \alpha(L) \approx 2.27; \ \alpha(M) \approx 0.614; \ \alpha(N+) \approx 0.215 \\ \alpha(N) \approx 0.1675; \ \alpha(O) \approx 0.0393; \ \alpha(P) \approx 0.00737; \\ \alpha(Q) \approx 0.000589 \end{array} $
114.49 <i>10</i>	0.10 2	1645.933	3+	1531.51	3+	[M1,E2]		94		I_{γ} : deduced from I(ce(L1)). $\alpha(K)=55; \alpha(L)=3.2 \ 13; \alpha(M)=0.8 \ 4; \alpha(N+)=0.28 \ 13$ $\alpha(N)=0.22 \ 10; \alpha(O)=0.051 \ 22; \alpha(P)=0.009 \ 4;$ $\alpha(O)=0.00030 \ 24$
116.26 5	0.16 2	1804.690	4+	1688.42	2+,3+	[M1,E2]		94		$\alpha(K)=55; \alpha(L)=3.012; \alpha(M)=0.84; \alpha(N+)=0.2712$ $\alpha(N)=0.2110; \alpha(O)=0.04820; \alpha(P)=0.0083;$ $\alpha(O)=0.0002923$
121.18 7	0.19 <i>3</i>	1804.690	4+	1683.77	(4 ⁻)	[E1]		0.311		$\alpha(Q)=0.0002925$ $\alpha(K)=0.2404; \alpha(L)=0.05368; \alpha(M)=0.0129919;$ $\alpha(N+)=0.004357$ $\alpha(N)=0.003425; \alpha(O)=0.00078111; \alpha(P)=0.0001395$ $20; \alpha(Q)=8.54\times10^{-6}12$ $E_{\gamma}: Poor fit in level scheme. Energy level difference = 120.0$
121.87 <i>3</i>	0.33 3	1804.690	4+	1682.85	(2+,3+,4+)	[M1,E2]		8 <i>3</i>		$\alpha(K)=4$ 4; $\alpha(L)=2.5$ 9; $\alpha(M)=0.6$ 3; $\alpha(N+)=0.22$ 9 $\alpha(N)=0.17$ 7; $\alpha(O)=0.039$ 15; $\alpha(P)=0.0069$ 22; $\alpha(O)=0.00025$ 21
129.06 2	45.7 23	186.849	4+	57.775	2+	E2		3.74		$\alpha(Q) = 0.00025 21$ $\alpha(K) = 0.264 4; \alpha(L) = 2.54 4; \alpha(M) = 0.697 10;$ $\alpha(N+) = 0.236 4$ $\alpha(N) = 0.187 3; \alpha(O) = 0.0417 6; \alpha(P) = 0.00696 10;$ $\alpha(Q) = 4.23 \times 10^{-5} 6$ Mult : $L12(I_3 = 1.62 I2) (1960 \text{ arG6}); \text{ theory: } L12(I_3 = 1.70)$
134.9 2	0.20 8	1432.036	4+	1297.387	(5 ⁻)					(12/13-1.02) = 1.02 = 1.02 = 1.00 = 100
135.51 2	1.04 6	1226.596	4-	1091.067	4+	E1 ^C		0.238		$\alpha(K)=0.185 \ 3; \ \alpha(L)=0.0401 \ 6; \ \alpha(M)=0.00971 \ 14; \ \alpha(N+)=0.00326 \ 5 \ \alpha(N)=0.00256 \ 4; \ \alpha(O)=0.000586 \ 9; \ \alpha(P)=0.0001053 \ 15; \ \alpha(O)=6.67 \times 10^{-6} \ 10$
137.95 2	6.6 3	1588.369	(4 ⁻)	1450.408	4-	M1+(E2)		7.44		$\alpha(K) = 5.94 \ 9; \ \alpha(L) = 1.134 \ 16; \ \alpha(M) = 0.273 \ 4; \ \alpha(N+) = 0.0937 \ 14 \ \alpha(N) = 0.0728 \ 11; \ \alpha(O) = 0.01723 \ 25; \ \alpha(P) = 0.00334 \ 5; \ \alpha(Q) = 0.000318 \ 5 \ Mult.: \ \alpha(L12) exp = 1.23, \ ce(L3) \ not \ seen \ (1960 Ar06); \ theory: \ M1: \ \alpha(L12) = 1.20, \ \alpha(L3) = 0.00622; \ E2: \ \alpha(L12) = 1.22, \ \alpha(L3) = 0.690. \ \delta; \ -0.25 \ \delta \le 1.4 \ (\alpha(H \ T)) \ \le 0.3 \ (\alpha) \ (1995 Ba42)$
141.00 <i>2</i>	2.08 10	519.212	5-	378.214	6+	E1 ^c		0.217		o: $-0.2 \le 0 \le 1.4$ ($\gamma(\theta, H, 1)$), ≤ 0.3 (α) (1995Ba42). $\alpha(K)=0.1690\ 24$; $\alpha(L)=0.0362\ 5$; $\alpha(M)=0.00876\ 13$; $\alpha(N+)=0.00294\ 5$ $\alpha(N)=0.00231\ 4$; $\alpha(O)=0.000529\ 8$; $\alpha(P)=9.53\times10^{-5}\ 14$; $\alpha(Q)=6.10\times10^{-6}\ 9$
145.82 2	0.21 <i>3</i> 2.57 <i>13</i>	1168.395	3-	1022.555	(3)+	E1 ^{<i>c</i>}		0.200		$\alpha(K)=0.1562\ 22;\ \alpha(L)=0.0332\ 5;\ \alpha(M)=0.00803\ 12;\ \alpha(N+)=0.00269\ 4$

 $^{228}_{90}\mathrm{Th}_{138}$ -7

					²²⁸ Pa	ε decay	1998We13,199	5Ba42 (cor	ntinued)	
γ ⁽²²⁸ Th) (continued)										
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult. [#]	$\delta^{@}$	a^{\dagger} &	$I_{(\gamma+ce)}^{d}$	Comments
		1044.016		1706.45						α (N)=0.00212 3; α (O)=0.000485 7; α (P)=8.77×10 ⁻⁵ 13; α (Q)=5.66×10 ⁻⁶ 8 Mult.: ce not seen (1960Ar06).
148.4 2 153.02 2	0.3 <i>1</i> 1.11 6	1944.916 1450.408	3+ 4-	1796.45 1297.387	4 ⁺ (5 ⁻)	M1+E2 ^C	0.60 8	4.56 21		$\alpha(K)=3.32\ 23;\ \alpha(L)=0.932\ 22;\ \alpha(M)=0.235\ 7;\ \alpha(N+)=0.0801\ 24$ $\alpha(N)=0.0627\ 19;\ \alpha(O)=0.0145\ 4;\ \alpha(P)=0.00269$ 6; $\alpha(O)=0.000180\ 12$
153.95 2	5.5 3	1122.968	2-	968.986	2+	E1 ^C		0.1758		$\alpha(K) = 0.1376 \ 20; \ \alpha(L) = 0.0289 \ 4; \ \alpha(M) = 0.00698$ $10; \ \alpha(N+) = 0.00234 \ 4$ $\alpha(N) = 0.00184 \ 3; \ \alpha(O) = 0.000423 \ 6;$ $\alpha(P) = 7.66 \times 10^{-5} \ 11; \ \alpha(Q) = 5.02 \times 10^{-6} \ 7$ Mult: no. $\alpha(K)$ absorved (1060 x 206)
156.34 2	1.36 7	1588.369	(4 ⁻)	1432.036	4+	E1 ^c		0.1694		$\alpha(K)=0.1327 \ 19; \ \alpha(L)=0.0278 \ 4; \ \alpha(M)=0.00671 \ 10; \ \alpha(N+)=0.00225 \ 4 \ \alpha(N)=0.001769 \ 25; \ \alpha(O)=0.000406 \ 6; \ \alpha(P)=7.37\times10^{-5} \ 11; \ \alpha(Q)=4.85\times10^{-6} \ 7$
157.5 2 158.74 <i>3</i>	0.18 5 1.25 7	1893.017 1804.690	3+ 4+	1735.64 1645.933	4+ 3+	M1+E2 ^c	0.55 15	4.2 4		α (K)=3.1 4; α (L)=0.82 3; α (M)=0.204 10; α (N+)=0.070 3 α (N)=0.054 3; α (O)=0.0127 5; α (P)=0.00236 6; α (O)=0.000168 19
161.6 <i>4</i> 168.05 168.4 <i>3</i>	0.08 <i>3</i> 0.1 0.06 <i>3</i>	1432.036 1928.37 1344.09	4 ⁺ 3 ⁺ 3 ⁻	1270.10 1760.32 1175.24	6 ⁺ 2 ⁽⁺⁾ ,3 ⁽⁺⁾ 2 ⁺	[M1,E2]		2.8 15		$\alpha(K)=1.8 \ 16; \ \alpha(L)=0.71 \ 7; \ \alpha(M)=0.18 \ 3; \\ \alpha(N+)=0.063 \ 10 \\ \alpha(N)=0.049 \ 8; \ \alpha(O)=0.0113 \ 15; \ \alpha(P)=0.00202 \\ 13; \ \alpha(Q)=0.00010 \ 8 \\ E_{\gamma}: From level-energy difference (1998We13).$
170.6 2 174.02 <i>4</i>	0.10 2 0.30 <i>3</i>	1261.59 1153.431	4+ 2+	1091.067 979.460	4 ⁺ 2 ⁺	M1+E2	1.2 +11-6	2.2 9		α (K)=1.4 <i>10</i> ; α (L)=0.63 <i>3</i> ; α (M)=0.166 <i>14</i> ; α (N+)=0.056 <i>5</i> α (N)=0.044 <i>4</i> ; α (O)=0.0101 <i>7</i> ; α (P)=0.00179 <i>5</i> ; α (O)=8.E-5 <i>5</i>
178.14 7	≤0.2	1200.60	3(+)	1022.555	(3)+	E0			1.2	E _γ : from ce(L1) (1995Ba42). Mult.: no γ seen. No ce(L3) seen, α (L12)exp>6 (1960Ar06). I(γ+ce): I(ce(L12)) (1960Ar06). ce(K)=68.49, ce(L1)=157.67, ce(L2)=158.45
178.7 2 184.61 ^{fa} 5	0.07 <i>3</i> 0.17 ^{<i>f</i>} 2	1122.968 1153.431	2- 2+	944.24 968.986	1 ⁻ 2 ⁺	E0+M1		3.26 5		E _{γ} : Poor fit in level scheme. 184.325 keV from level difference. Mult.: α (L12)exp=15 (1960Ar06); α (L12)=10.2

 ∞

					²²⁸ Pa <i>e</i>	decay	1998We13,	1995Ba42	(continued)	
γ ⁽²²⁸ Th) (continued)										
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{@}$	$\alpha^{\dagger} \&$	Comments	
									for 5.4% M1 (10.5 for 1.4%E2) transition deduced from ²²⁸ Ac β^- decay. α : from ²²⁸ Ac β^- decay.	
184.61 ^{<i>fa</i>} 5	0.3^{f} 1	1944.916	3+	1760.32	2 ⁽⁺⁾ ,3 ⁽⁺⁾	(M1) ^C		3.26	α (K)=2.61 4; α (L)=0.495 7; α (M)=0.1189 17; α (N+)=0.0408 6 α (N)=0.0317 5; α (O)=0.00751 11; α (P)=0.001457 21; α (O)=0.0001383 20	
191.35 2	4.60 23	378.214	6+	186.849	4+	E2		0.776	$\alpha(K)=0.1710\ 24;\ \alpha(L)=0.443\ 7;\ \alpha(M)=0.1209\ 17;\ \alpha(N+)=0.0409$	
									α (N)=0.0324 5; α (O)=0.00726 11; α (P)=0.001224 18; α (Q)=1.375×10 ⁻⁵ 20	
199.40 ^{<i>a</i>} 2	4.5 3	1168.395	3-	968.986	2+	E1 ^C		0.0950	Mult.: $\alpha(L3)\exp=0.16$ (1960Ar06); theory: $\alpha(L3)=0.141$. $\alpha(K)=0.0752$ 11; $\alpha(L)=0.01502$ 21; $\alpha(M)=0.00362$ 5; $\alpha(N+)=0.001220$ 17	
									α (N)=0.000956 <i>14</i> ; α (O)=0.000221 <i>3</i> ; α (P)=4.05×10 ⁻⁵ <i>6</i> ; α (Q)=2.84×10 ⁻⁶ <i>4</i> With a compt accor (1060,4-06)	
100.8^{a} 2	0.18.5	1168 305	2-	068 45	<u>4</u> +				Mult.: ce not seen (1960Ar06).	
204 05 2	6.0.3	1226 596	3 4-	1022 555	$(3)^+$	E1 ^C		0.0900	$\alpha(K) = 0.0713 \ 10^{\circ} \ \alpha(L) = 0.01418 \ 20^{\circ} \ \alpha(M) = 0.00341 \ 5^{\circ}$	
201100 2	010 0	12201070		1022.000	(0)	21		0.0700	$\alpha(N+)=0.001152 \ 17$	
									α (N)=0.000902 <i>13</i> ; α (O)=0.000208 <i>3</i> ; α (P)=3.83×10 ⁻⁵ <i>6</i> ;	
									$\alpha(Q)=2.70\times10^{-6} 4$	
X206 20 5	0.50.7								Mult.: ce not seen (1960Ar06).	
206.3 1	0.50 7	1297.387	(5^{-})	1091.067	4+					
209.26 2	26.3 13	396.108	3-	186.849	4+	E1		0.0848	α (K)=0.0672 <i>10</i> ; α (L)=0.01332 <i>19</i> ; α (M)=0.00321 <i>5</i> ; α (N+)=0.001082 <i>16</i>	
									$\alpha(N)=0.000847 \ 12; \ \alpha(O)=0.000196 \ 3; \ \alpha(P)=3.60\times10^{-5} \ 5; \ \alpha(O)=2.55\times10^{-6} \ 4$	
									Mult.: $K/L12=4.4$ (1960Ar06); theory: $K/L12(E1)=5.9$, $K/L12(E2)=0.69$, $K/L12(M1)=5.3$. $\alpha(K)exp=0.075$ (1960Ar06);	
									theory: $\alpha(K)(E1)=0.0678$, $\alpha(K)(M1)=1.94$.	
209.28 ^g	.0.1	1153.431	$2^+_{2^+}$	944.24	1-					
214.6^{a} I	≤ 0.1	1893.017	3+ 2+	16/8.43	2+ 0+				$I = From 228 \land a \theta^{-}$ decay	
x214.9 2	113	1155.451	2	936.03	0				r_{γ} . From $r_{AC} \rho$ decay.	
210.17	1.1 5								Mult.: possibly E1, no ce seen (1960Ar06).	
216.3 1	1.1 3	1804.690	4+	1588.369	(4 ⁻)					
220.61 2	1.24 6	1944.916	3+	1724.301	2+	(M1) ^C		1.98	α (K)=1.581 23; α (L)=0.299 5; α (M)=0.0719 10; α (N+)=0.0247 4 α (N)=0.0192 3; α (O)=0.00454 7; α (P)=0.000881 13; α (O)=8.36×10 ⁻⁵ 12	
223.80 ^{<i>a</i>} 2	13.1 7	1450.408	4-	1226.596	4-	M1+E2	-0.18 5	1.85 4	$\alpha(K)=1.48$ 4; $\alpha(L)=0.286$ 5; $\alpha(M)=0.0688$ 10; $\alpha(N+)=0.0236$ 4 $\alpha(N)=0.0184$ 3; $\alpha(O)=0.00434$ 7; $\alpha(P)=0.000840$ 13;	

					228	⁸ Pa ε decay	1998We	e13,1995Ba42 (continued)
							$\gamma(^{228}\text{Th})$ (continued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	α^{\dagger} &	Comments
								$\alpha(Q) = 7.81 \times 10^{-5} 18$
								α : -0.41 from α (K)exp (evaluator). Mult : α (K)exp=1.32 K/L1=5.1.6 ce(L3) not seen (1960Ar06)
224.0 ^a 2	0.17 6	1168.395	3-	944.24	1-			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
229.3 ^a 2	0.29 17	1817.442	4-	1588.369	(4^{-})			
229.9 ^{ag} 4	0.16 6	1645.933	3+	1416.09	(3-)			
231.05	≤0.02	1175.24	2^{+}	944.24	1-			E_{γ} : From level-energy difference (1998We13).
231.4 ^a 1	0.83 5	1432.036	4+	1200.60	3(+)			,
231.50 ^a 5	0.10 2	1200.60	3(+)	968.986	2+	[M1,E2]	1.1 7	α (K)=0.8 7; α (L)=0.23 4; α (M)=0.058 5; α (N+)=0.0199 17 α (N)=0.0156 12; α (O)=0.0036 4; α (P)=0.00066 11; α (Q)=4.E-5 4
237.7 <i>3</i>	0.18 8	1944.916	3+	1707.30	$(2,3^{-})$			
239.1 3	0.15 4	1261.59	4+	1022.555	$(3)^{+}$			
253.9 5	0.05 2	1899.93	(2^{+})	1645.933	3+			
255.2 ^a 3	0.06 2	1893.017	3+	1638.300	2+			
255.9 ^{<i>a</i>} 2	0.14 6	1901.94	4+	1645.933	3+			
257.49 2	1.40 7	1432.036	4+	1174.547	(5 ⁺)	(M1) ^C	1.285	$\alpha(K)=1.028 \ 15; \ \alpha(L)=0.194 \ 3; \ \alpha(M)=0.0466 \ 7; \ \alpha(N+)=0.01601 \ 23$ $\alpha(N)=0.01244 \ 18; \ \alpha(O)=0.00294 \ 5; \ \alpha(P)=0.000571 \ 8; \ \alpha(Q)=5.42\times10^{-5} \ 8$
258.1 ^{<i>f</i>} 2	0.12 ^f 6	1226.596	4-	968.45	4+			
258.1^{f} 2	0.12^{f} 6	1226.596	4-	968.38	2-			
261.6 2	0.11 4	1899.93	(2^+)	1638.300	$\frac{1}{2^{+}}$			
263.62 2	2.17 11	1432.036	4+	1168.395	3-	E1 ^C	0.0497	$\alpha(K)=0.0397$ 6; $\alpha(L)=0.00759$ 11; $\alpha(M)=0.00182$ 3; $\alpha(N+)=0.000616$ 9
								α (N)=0.000482 7; α (O)=0.0001119 <i>16</i> ; α (P)=2.08×10 ⁻⁵ 3; α (Q)=1.553×10 ⁻⁶ 22
270.25 2	33.9 17	328.034	1-	57.775	2+	E1	0.0470	$\alpha(K)=0.0376\ 6;\ \alpha(L)=0.00716\ 10;\ \alpha(M)=0.001717\ 24;\ \alpha(N+)=0.000581\ 9$
								α (N)=0.000454 7; α (O)=0.0001054 15; α (P)=1.96×10 ⁻⁵ 3; α (Q)=1.473×10 ⁻⁶ 21
								Mult.: $\alpha(K) \exp[=0.032 \ (1960 \text{ Ar06})]$; theory: $\alpha(K) = 0.0379$.
275.85 4	0.82 7	1450.408	4-	1174.547	(5 ⁺)	[E1]	0.0449	$\alpha(K)=0.0359$ 5; $\alpha(L)=0.00682$ 10; $\alpha(M)=0.001635$ 23; $\alpha(N+)=0.000553$ 8
								α (N)=0.000433 6; α (O)=0.0001004 14; α (P)=1.87×10 ⁻⁵ 3; α (Q)=1.410×10 ⁻⁶ 20
278.66 ^a 2	1.61 21	1432.036	4+	1153.431	2+	[E2]	0.212	$\alpha(K)=0.0844$ 12; $\alpha(L)=0.0939$ 14; $\alpha(M)=0.0253$ 4; $\alpha(N+)=0.00857$ 12
								α (N)=0.00677 <i>10</i> ; α (O)=0.001528 <i>22</i> ; α (P)=0.000262 <i>4</i> ; α (Q)=5.40×10 ⁻⁶ 8 Mult.: for the doublet: α (K)exp=0.26 (1960Ar06); theory: α (K)(M1)=0.872,
278 00 2	0.41.4	1152 421	2+	074 500	2+		064	$\alpha(\mathbf{K})(\mathbf{E}2)=0.0854.$
278.9" 2	0.41 4	1155.431	21	8/4.508	2'	(M1+E2)	0.6 4	$\alpha(\mathbf{K})=0.54; \ \alpha(\mathbf{L})=0.123; \ \alpha(\mathbf{M})=0.0316; \ \alpha(\mathbf{N}+)=0.010722$
								$\alpha(N)=0.0084 \ 16; \ \alpha(O)=0.0019 \ 5; \ \alpha(P)=0.00036 \ 10; \ \alpha(Q)=2.4\times10^{-5} \ 19$
								E_{γ} : Adopted based on value deduced from gtol computer code available at
								DIUUKIIAVUI IAU S WUUSIIU. Mult : $1005B_{2}/2$ gives M-(E2) data not given For the doublet: $\alpha(K)$ and 0.26
								(1960Ar06): theory: $\alpha(K)(M1)=0.872, \alpha(K)(E2)=0.0854.$

From ENSDF

10

 $^{228}_{90}\mathrm{Th}_{138}$ -10

					228	³ Pa ε deca	y 1998 W	e13,1995B	a42 (continued)
							$\gamma(^{228}\text{Th})$	(continued	<u>)</u>
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger} &	Comments
282.01 2	18.6 9	1450.408	4-	1168.395	3-	M1+E2	-0.51 12	0.83 7	α (K)=0.65 6; α (L)=0.138 6; α (M)=0.0337 11; α (N+)=0.0115 4 α (N)=0.0090 3; α (O)=0.00211 7; α (P)=0.000403 16; α (Q)=3.4×10 ⁻⁵ 3 Mult.: α (K)exp=0.62, K/L12=4.1 5, K/L3=58 6 (1960Ar06); theory: α (K)=0.69 6, K/L12=4.9 6, K/L3=133 43.
282.37 ⁸ 288.9 <i>I</i> 292.5 293.1 <i>2</i> 299.0 ⁴⁸ 2	≤ 0.2 ≤ 0.1 0.13 3 0.13 6	1226.596 1432.036 1261.59 1261.59 1643.15	4^{-} 4^{+} 4^{+} 4^{+} (3^{-})	944.24 1143.15 968.986 968.45 1344.09	1 ⁻ 5 ⁻ 2 ⁺ 4 ⁺ 3 ⁻				
299.10 ^{<i>a</i>} 10	0.43 5	1944.916	(3 ⁺) 3 ⁺	1645.933	3 ⁺	M1 ^C		0.849	$\alpha(K)=0.680 \ 10; \ \alpha(L)=0.1280 \ 18; \ \alpha(M)=0.0307 \ 5; \ \alpha(N+)=0.01055 \ 15 \ \alpha(N)=0.00819 \ 12; \ \alpha(O)=0.00194 \ 3; \ \alpha(P)=0.000377 \ 6; \ \alpha(Q)=3.57\times10^{-5} \ 5 \ Multiple form \ c_{0} \ data \ (data \ pot \ given) \ (1005Re42)$
306.61 2	2.0 1	1944.916	3+	1638.300	2+	M1		0.793	$\alpha(K)=0.635 \; 9; \; \alpha(L)=0.1195 \; 17; \; \alpha(M)=0.0287 \; 4; \; \alpha(N+)=0.00985 \; 14 \\ \alpha(N)=0.00765 \; 11; \; \alpha(O)=0.00181 \; 3; \; \alpha(P)=0.000351 \; 5; \\ \alpha(Q)=3.33\times10^{-5} \; 5 \\ Mult \; \delta; \; from \; ce \; data \; \delta < 0.3 \; (data \; not \; given) \; (1995Ba42)$
308.2 ⁸ 2 317.2 3 321.71 3	0.45 <i>15</i> 0.12 <i>6</i> 0.67 <i>4</i>	1724.301 695.4 1153.431	2+ 7- 2+	1416.09 378.214 831.72	(3^{-}) 6^{+} 0^{+}	[E2]		0.1368	$\alpha(K)=0.0635 \ 9; \ \alpha(L)=0.0540 \ 8; \ \alpha(M)=0.01443 \ 21; \ \alpha(N+)=0.00489 \ 7 \ \alpha(N)=0.00386 \ 6; \ \alpha(O)=0.000874 \ 13; \ \alpha(P)=0.0001513 \ 22; \ \alpha(Q)=3.87 \times 10^{-6} \ 6$
321.75 ^g 326.1 ^a 3 327.45 ^a 4	0.25 6 31 <i>3</i>	1965.05 1200.60 1450.408	(2 ⁺) 3 ⁽⁺⁾ 4 ⁻	1643.15 874.508 1122.968	(3 ⁻) 2 ⁺ 2 ⁻	[E2]		0.1299	$\alpha(K)=0.0613 \ 9; \ \alpha(L)=0.0505 \ 7; \ \alpha(M)=0.01349 \ 19; \ \alpha(N+)=0.00458 \ 7 \ \alpha(N)=0.00361 \ 5; \ \alpha(O)=0.000818 \ 12; \ \alpha(P)=0.0001416 \ 20; \ \alpha(Q)=3.72\times10^{-6} \ 6 \ Mult: \ \alpha(K)=0.055 \ (1960Ar06) \ based on the division of I\gamma and E1$
328.03 ^{<i>a</i>} 4	30 <i>3</i>	328.034	1-	0.0	0+	E1		0.0305	mult. in alternate placement. Theory: $\alpha(K)(E2)=0.0619$, $\alpha(K)(M1)=0.559$. $\alpha(K)=0.0245$ 4; $\alpha(L)=0.00455$ 7; $\alpha(M)=0.001089$ 16; $\alpha(N+)=0.000369$ 6 $\alpha(N)=0.000288$ 4; $\alpha(O)=6.71\times10^{-5}$ 10; $\alpha(P)=1.256\times10^{-5}$ 18; $\alpha(O)=0.0028140^{-7}$ 14
332.37 2	21.0 11	519.212	5-	186.849	4+	E1 ^{<i>c</i>}		0.0297	Mult.: $\alpha(K) = 9.02 \times 10^{-5} 14^{-5}$ Mult.: $\alpha(K) = 0.019 2$ (1960Ar06); theory: $\alpha(K)(E1) = 0.0245$. $\alpha(K) = 0.0238 4$; $\alpha(L) = 0.00441 7$; $\alpha(M) = 0.001056 15$; $\alpha(N+) = 0.000358 5$ $\alpha(N) = 0.000358 5$
338.32 2	82 4	396.108	3-	57.775	2+	E1		0.0285	$\alpha(N) = 0.0002a0 4; \ \alpha(O) = 0.31 \times 10^{-7} 10; \ \alpha(P) = 1.219 \times 10^{-7} 17; \alpha(Q) = 9.56 \times 10^{-7} 14 Mult.: ce(K) not seen (1960Ar06). \alpha(K) = 0.0229 4; \ \alpha(L) = 0.00424 6; \ \alpha(M) = 0.001014 15;$

From ENSDF

 $^{228}_{90}\mathrm{Th}_{138}$ -11

				2	28 Pa ε decay	1998W	e13,1995Ba4	2 (continued)
						γ ⁽²²⁸ Th)	(continued)	
E_{γ} ‡	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger} &	Comments
340.98 2	20.5 10	1432.036	4+	1091.067 4+	E2+M1	-5.2 18	0.133 21	$\alpha(N+)=0.000344 5$ $\alpha(N)=0.000269 4; \alpha(O)=6.25\times10^{-5} 9; \alpha(P)=1.172\times10^{-5} 17;$ $\alpha(Q)=9.22\times10^{-7} 13$ Mult.: $\alpha(K)\exp=0.019$ (1960Ar06); theory: $\alpha(K)(E1)=0.0231.$ $\alpha(K)=0.071 19; \alpha(L)=0.0451 21; \alpha(M)=0.0119 5; \alpha(N+)=0.00405$ 16 $\alpha(N)=0.00210 12; \alpha(Q)=0.00072 3; \alpha(Q)=0.000127 7;$
354.21	≤0.16	1804.690	4+	1450.408 4-	[E1]		0.0258	$\alpha(N)=0.00319\ 13;\ \alpha(O)=0.00073\ 3;\ \alpha(P)=0.000127\ 7;\alpha(Q)=4.2\times10^{-6}\ 10$ Mult.: from K:L12:L3=140:90:30, $\alpha(K)$ exp=0.061 (1960Ar06); theory: K:L12:L3=140:74:18, $\alpha(K)=0.071\ 19.$ $\alpha(K)=0.0208\ 3;\ \alpha(L)=0.00382\ 6;\ \alpha(M)=0.000913\ 13;$ $\alpha(N+)=0.000310\ 5$ $\alpha(N)=0.000242\ 4;\ \alpha(O)=5.64\times10^{-5}\ 8;\ \alpha(P)=1.057\times10^{-5}\ 15;$
354.43	≤0.08	1580.94	(2-)	1226.596 4-	[E2]		0.1036	$\alpha(Q) = 8.39 \times 10^{-7} \ 12$ $\alpha(K) = 0.0524 \ 8; \ \alpha(L) = 0.0377 \ 6; \ \alpha(M) = 0.01002 \ 14;$ $\alpha(N+) = 0.00340 \ 5$ $\alpha(N) = 0.00268 \ 4; \ \alpha(O) = 0.000609 \ 9; \ \alpha(P) = 0.0001060 \ 15;$ $\alpha(Q) = 3.11 \times 10^{-6} \ 5$
354.5 2	≈0.1	1497.69	(5 ⁻)	1143.15 5-				$u(\mathbf{Q})$ -5.11/10 5
356.95 ^b	≤0.04	1531.51	3+	1174.547 (5 ⁺)	[E2]		0.1015	$\alpha(K)=0.0517 \ 8; \ \alpha(L)=0.0367 \ 6; \ \alpha(M)=0.00976 \ 14; \ \alpha(N+)=0.00331 \ 5 \ \alpha(N)=0.00261 \ 4; \ \alpha(O)=0.000593 \ 9; \ \alpha(P)=0.0001033 \ 15; \ \alpha(Q)=3.07\times10^{-6} \ 5 \ L_{\odot} \ 0.024 \ 5 \ from \ branching \ ratio \ (1995Ba42)$
357.1 ^{<i>ag</i>} 2	0.37 <i>4</i> 0.37 <i>4</i>	1432.036	4+	1074.74 4+				
359.36 3	1.30 7	1450.408	4-	1091.067 4+	[E1]		0.0250	$\alpha(K)=0.0202 \ 3; \ \alpha(L)=0.00370 \ 6; \ \alpha(M)=0.000884 \ 13; \ \alpha(N+)=0.000300 \ 5$
367.04 2	2.45 12	1817.442	4-	1450.408 4-	M1+(E2)		0.484	$\begin{aligned} \alpha(N) &= 0.000234 \ 4; \ \alpha(O) &= 5.46 \times 10^{-7} \ 3; \ \alpha(P) &= 1.024 \times 10^{-7} \ 12 \\ \alpha(K) &= 0.388 \ 6; \ \alpha(L) &= 0.0728 \ 11; \ \alpha(M) &= 0.01747 \ 25; \\ \alpha(N+) &= 0.00599 \ 9 \\ \alpha(N) &= 0.00466 \ 7; \ \alpha(O) &= 0.001103 \ 16; \ \alpha(P) &= 0.000214 \ 3; \\ \alpha(Q) &= 2.03 \times 10^{-5} \ 3 \\ Mult. \delta: \ -0.2 &\leq \delta \leq 1.4 \ (\gamma(\theta, H, T)), \ \leq 0.3 \ (\alpha) \ (1995Ba42). \end{aligned}$
371.88 372.2 ^{<i>a</i>} 2 372.60 ^{<i>a</i>} 3	≤0.02 0.09 <i>3</i> 1.57 8	2010.10 1432.036 1804.690	(2 ⁺) 4 ⁺ 4 ⁺	1638.300 2 ⁺ 1059.93 4 ⁻ 1432.036 4 ⁺	[M1,E2]		0.28 19	$\alpha(K)=0.21 \ 17; \ \alpha(L)=0.051 \ 20; \ \alpha(M)=0.013 \ 5; \ \alpha(N+)=0.0043 \ 15$
377.99 ^b	0.036 7	1531.51	3+	1153.431 2+	[M1,E2]		0.27 18	$\alpha(N)=0.0034 \ 12; \ \alpha(O)=0.0008 \ 3; \ \alpha(P)=0.00015 \ 6; \ \alpha(Q)=1.1\times10^{-5} \ 9$ $\alpha(K)=0.20 \ 16; \ \alpha(L)=0.049 \ 19; \ \alpha(M)=0.012 \ 5; \ \alpha(N+)=0.0041 \ 15$ $\alpha(N)=0.0032 \ 11; \ \alpha(O)=0.0007 \ 3; \ \alpha(P)=0.00014 \ 6; \ \alpha(Q)=1.1\times10^{-5} \ 8$
384.44	≤0.1	2022.88	$(2)^{+}$	1638.300 2+				I _{γ} : from branching ratio in adopted γ 's; I $\gamma \le 0.2$ (1995Ba42),

 $^{228}_{90}$ Th $_{138}$ -12

					²²⁸ Pa &	e decay	1998We13	,1995Ba42	(continued)
						<u>γ(</u>	²²⁸ Th) (coi	ntinued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger} &	Comments
387.0 <i>3</i>	0.09 3	1261.59	4+	874.508	2+				
389.1 ^{<i>a</i>} 2	≤0.4	1448.87	3,4-	1059.93	4-				
389.36 ⁰ 8	0.31 5	1928.37	3+	1539.0?	2-				E_{γ} : Not reported in 1998We13. I _{γ} : from branching ratio in adopted γ 's; I $\gamma \le 0.4$ (1995Ba42). Possibility feeds the 1539.2 level; see comment with that level.
390.45 ^{<i>a</i>} 5	1.11 6	1450.408	4-	1059.93	4-	[M1,E2]		0.24 17	α (K)=0.19 <i>15</i> ; α (L)=0.044 <i>18</i> ; α (M)=0.011 <i>4</i> ; α (N+)=0.0037 <i>14</i> α (N)=0.0029 <i>11</i> ; α (O)=0.0007 <i>3</i> ; α (P)=0.00013 <i>6</i> ; α (O)=1.0×10 ⁻⁵ <i>8</i>
399.8 2	0.35 4	1416.09	(3 ⁻)	1016.388	3-				
399.94 ⁸ 7	0.35 4	1743.90	4+	1344.09	3-	[E1]		0.0199	α (K)=0.01610 23; α (L)=0.00291 4; α (M)=0.000695 10; α (N+)=0.000236 4
									$\alpha(N)=0.000184 \ 3; \ \alpha(O)=4.30\times10^{-3} \ 6; \ \alpha(P)=8.10\times10^{-6} \ 12; \ \alpha(Q)=6.57\times10^{-7} \ 10$
									E_{γ} : observed only in 1995Ba42. Possibly feeds the 1344.08 level: see comment with that level.
409.45 2	100 5	1432.036	4+	1022.555	(3)+	E2+M1	-5.4 8	0.080 4	$\alpha(K)=0.048 \ 3; \ \alpha(L)=0.0236 \ 5; \ \alpha(M)=0.00618 \ 12; \ \alpha(N+)=0.00210 \ 5$
									α (N)=0.00165 4; α (O)=0.000378 8; α (P)=6.69×10 ⁻⁵ 15; α (Q)=2.69×10 ⁻⁶ 16
	0.40.5	1 122 02 (. +	1016 200	2-				Mult.: α (K)exp=0.049, K:L12:L3=54 3:21 1:4.6 3 (1960Ar06); theory: α (K)(M1+E2)=0.048 4, K:L12:L3=54:22:4.3.
415.6^{a} I	0.48 5	1432.036	4^{+} 2(+) 2(+)	1016.388	3-	[E1]		0.0184	$\alpha(K) = 0.01483.21; \alpha(I) = 0.00267.4; \alpha(M) = 0.000637.0;$
410.158	0.49 J	1700.52	2. ,5. ,	1344.09	5	[E1]		0.0164	$\alpha(N)=0.01465\ 21,\ \alpha(L)=0.00207\ 4,\ \alpha(M)=0.000057\ 9,\ \alpha(N+)=0.000216\ 3$
									α (N)=0.0001688 24; α (O)=3.94×10 ⁻⁵ 6; α (P)=7.43×10 ⁻⁶ 11; α (Q)=6.08×10 ⁻⁷ 9
									Possibly feeds the 1344.08 level; see comment with that level.
416.5 <i>4 1</i> 419.3 <i>2</i>	0.27 5 0.28 5	1643.15 1645.933	(3^{-}) 3 ⁺	1226.596 1226.596	4- 4-	[E1]		0.0181	$\alpha(K)=0.01461\ 21;\ \alpha(L)=0.00263\ 4;\ \alpha(M)=0.000627\ 9;$ $\alpha(N+)=0.000213\ 3$
									$\alpha(N)=0.0001660\ 24;\ \alpha(O)=3.88\times10^{-5}\ 6;\ \alpha(P)=7.32\times10^{-6}\ 11;\ \alpha(O)=5.99\times10^{-7}\ 9$
420.03 8	0.68 5	1588.369	(4-)	1168.395	3-	[M1,E2]		0.20 14	$\alpha(K)=0.15\ 12;\ \alpha(L)=0.036\ 15;\ \alpha(M)=0.009\ 4;\ \alpha(N+)=0.0030\ 12$ $\alpha(N)=0.0023\ 9;\ \alpha(O)=0.00055\ 22;\ \alpha(P)=0.00010\ 5;\ \alpha(Q)=8.E-6\ 6$
425.0 2 ^x 425.4 1	0.16 <i>3</i> 0.41 <i>5</i>	1393.46	1+,2,3-	968.45	4+				
427.90 3	1.24 8	1450.408	4-	1022.555	(3)+	[E1]		0.01733	α (K)=0.01401 20; α (L)=0.00251 4; α (M)=0.000599 9; α (N+)=0.000203 3
									$\alpha(N)=0.0001588\ 23;\ \alpha(O)=3.71\times10^{-5}\ 6;\ \alpha(P)=7.00\times10^{-6}\ 10;\ \alpha(Q)=5.75\times10^{-7}\ 8$
432.5 ^{<i>a</i>} 3 434.01 3	≤ 0.3	1448.87 1450 408	$3,4^{-}$	1016.388	3- 3-	[D F2]		0 18 73	
151.01 5	1.75 10	1120.400		1010.000	5	[22,222]		0.10 15	

From ENSDF

 $^{228}_{90}\mathrm{Th}_{138}$ -13

L

					²²⁸ Pa	ε decay	1998We13,	1995Ba42 (continued)
						<u> γ(</u>	²²⁸ Th) (con	tinued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger} &	Comments
440.4 2	0.15 7	1531.51	3+	1091.067	4+	M1	0.295	α (K)=0.237 4; α (L)=0.0442 7; α (M)=0.01061 15; α (N+)=0.00364 6 α (N)=0.00283 4; α (O)=0.000670 10; α (P)=0.0001300 19; α (Q)=1.234×10 ⁻⁵ 18
442.9 ^{<i>a</i>} 3 ^x 443.8 1	0.10 <i>5</i> 0.62 <i>7</i>	1643.82	4+	1200.60	3(+)			
444.0 ^{<i>a</i>} 2	0.5 1	1893.017	3+	1448.87	3,4-			
444.9 ^a 3	0.10 5	1645.933	3+	1200.60	$3^{(+)}$			
447.6 2	0.13 5	1416.09	(3^{-})	968.45	4+			
449.2 ^a 1	0.25 9	1393.46	1+.2.3-	944.24	1-			
449.23 ^{<i>a</i>} 3	2.25 25	968.45	4+	519.212	5-			
452.52 6	1.02 8	1432.036	4+	979.460	2+	[E2]	0.0544	$\alpha(K)=0.03265; \alpha(L)=0.0161223; \alpha(M)=0.004226; \alpha(N+)=0.00143320$ $\alpha(N)=0.001128 I_{6}; \alpha(O)=0.0002574; \alpha(P)=4.56\times10^{-5}7; \alpha(O)=1.83\times10^{-6}3$
457.38 6	0.30 3	1683.77	(4 ⁻)	1226.596	4-	[M1,E2]	0.16 11	$\alpha(K)=0.12 \ 10; \ \alpha(L)=0.028 \ 13; \ \alpha(M)=0.007 \ 3; \ \alpha(N+)=0.0023 \ 10 \ \alpha(N)=0.0018 \ 8; \ \alpha(O)=0.00043 \ 18; \ \alpha(P)=8.E-5 \ 4; \ \alpha(Q)=6.E-6 \ 5 \ E_{\rm ev}: \ {\rm level-energy} \ {\rm difference}=457 \ 17 \ {\rm Poor} \ {\rm fit} \ {\rm in} \ {\rm level} \ {\rm scheme}$
463.02 ^{<i>a</i>} 2	222 11	1432.036	4+	968.986	2+	E2	0.0514	$\alpha(K)=0.0312 5; \alpha(L)=0.01495 21; \alpha(M)=0.00390 6; \alpha(N+)=0.001326 19$ $\alpha(N)=0.001044 15; \alpha(O)=0.000238 4; \alpha(P)=4.23\times10^{-5} 6; \alpha(Q)=1.744\times10^{-6}$
								Mult.: α (K)exp=0.044 5 (19/3Ku09), α (K)exp=0.035, K/L12=2.64 21, K/L3=11.6 8 (1960Ar06); theory: α (K)=0.0316, K/L12=2.44, K/L3=13.7; K/L3(M1)=1220.
463.3 ^{<i>a</i>} 1	1.6 4	1432.036	4+	968.45	4+			
465.4 ^a 1	1.2 2	1588.369	(4 ⁻)	1122.968	2^{-}			
469.9 ^{<i>a</i>} 5	0.14 8	1638.300	2+	1168.395	3-	[E1]	0.01430	α (K)=0.01159 <i>17</i> ; α (L)=0.00206 <i>3</i> ; α (M)=0.000490 <i>7</i> ; α (N+)=0.0001663 24
								α (N)=0.0001297 <i>19</i> ; α (O)=3.04×10 ⁻⁵ <i>5</i> ; α (P)=5.75×10 ⁻⁶ <i>9</i> ; α (Q)=4.79×10 ⁻⁷ <i>7</i>
470.6 ^{<i>ag</i>} 2 ^{<i>x</i>} 471.7 2	0.12 <i>5</i> 0.37 <i>9</i>	1645.933	3+	1175.24	2+			
471.8 2	0.39 9	1416.09	(3-)	944.24	1-			
474.7 3	0.7 2	1643.15	(3 ⁻)	1168.395	3-	[M1,E2]	0.14 10	α (K)=0.11 9; α (L)=0.025 12; α (M)=0.006 3; α (N+)=0.0021 9 α (N)=0.0016 7; α (O)=0.00038 17; α (P)=7.E-5 4; α (Q)=6.E-6 5
476.7 ^a 2	0.10 5	1925.22	3+,4+	1448.87	3,4-			
477.1 ^{ag} 3	0.30 5	1893.017	3+	1416.09	(3 ⁻)			
477.5 ^a 1	0.34 5	1645.933	3+	1168.395	3-			
478.45 4	3.17 17	874.508	2+	396.108	3-	E1 ^{<i>c</i>}	0.01379	α (K)=0.01118 <i>16</i> ; α (L)=0.00198 <i>3</i> ; α (M)=0.000471 <i>7</i> ; α (N+)=0.0001601 23
								α (N)=0.0001248 <i>18</i> ; α (O)=2.92×10 ⁻⁵ <i>4</i> ; α (P)=5.53×10 ⁻⁶ <i>8</i> ; α (Q)=4.63×10 ⁻⁷ <i>7</i>
480.6 ^{<i>a</i>} 2	≤0.3	1448.87	3,4-	968.45	4^{+}			
481.4 ^{<i>a</i>} 2	0.33 9	1497.69	(5 ⁻)	1016.388	3-			

L

²²⁸Pa ε decay **1998We13,1995Ba42** (continued)

$\gamma(^{228}\text{Th})$ (continued)

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$\alpha^{\dagger \&}$	Comments
482.03 ^{<i>a</i>} 5	1.51 13	1450.408	4-	968.38	2-	[E2]		0.0466 7	α (K)=0.11 8; α (L)=0.024 11; α (M)=0.0059 25; α (N+)=0.0020 9 α (N)=0.0016 7; α (O)=0.00037 16; α (P)=7.E-5 4; α (O)=6.E-6 4
490.4 2 ^x 490.7 ^a 1	0.82 <i>4</i> 0.82 <i>4</i>	1643.82	4+	1153.431	2+				
492.22 10	0.28 3	1645.933	3+	1153.431	2+	[M1,E2]		0.13 9	α (K)=0.10 8; α (L)=0.022 11; α (M)=0.0055 24; α (N+)=0.0019 8 α (N)=0.0015 7; α (O)=0.00035 15; α (P)=7.E-5 3; α (Q)=5.E-6 4
497.0 2	0.18 4	1016.388	3-	519.212	5-				
497.72 ^b	≤0.04	1724.301	2+	1226.596	4-	[M2]		0.581	α (K)=0.437 7; α (L)=0.1073 15; α (M)=0.0268 4; α (N+)=0.00926 13
									α (N)=0.00721 <i>10</i> ; α (O)=0.001703 <i>24</i> ; α (P)=0.000327 <i>5</i> ; α (Q)=2.94×10 ⁻⁵ <i>5</i>
503.0 ^{ag} 2	0.06 2	1678.43	2^{+}	1175.24	2^{+}				
503.7 ^{<i>a</i>} 2	0.74 9	831.72	0^+	328.034	1-	(E1)		0.01244	α (K)=0.01009 <i>15</i> ; α (L)=0.001776 <i>25</i> ; α (M)=0.000423 <i>6</i> ; α (N+)=0.0001436 <i>21</i>
									α (N)=0.0001120 <i>16</i> ; α (O)=2.62×10 ⁻⁵ <i>4</i> ; α (P)=4.97×10 ⁻⁶ 7; α (Q)=4.20×10 ⁻⁷ <i>6</i>
506.5 2	≤0.2	1899.93	(2^{+})	1393.46	1+,2,3-				
509.13 8	0.7 1	1531.51	3+	1022.555	(3)+	E2(+M1)	>1.1	0.08 4	$\alpha(K)=0.06\ 3;\ \alpha(L)=0.015\ 5;\ \alpha(M)=0.0038\ 10;\ \alpha(N+)=0.0013\ 4$ $\alpha(N)=0.0010\ 3;\ \alpha(O)=0.00024\ 7;\ \alpha(P)=4.4\times10^{-5}\ 13;$ $\alpha(O)=3.0\times10^{-6}\ 16$
512.79 ^a 11	1.33 <i>13</i>	1944.916	3+	1432.036	4+	[M1,E2]		0.12 8	$\alpha(K)=0.09\ 7;\ \alpha(L)=0.020\ 10;\ \alpha(M)=0.0049\ 22;\ \alpha(N+)=0.0017\ 8$ $\alpha(N)=0.0013\ 6;\ \alpha(O)=0.00031\ 14;\ \alpha(P)=6.E-5\ 3;\ \alpha(O)=5.E-6\ 4$
515.1 ^a 1	0.36 6	1683.77	(4 ⁻)	1168.395	3-				
515.20 ^a 11	0.21 10	1638.300	2+	1122.968	2-	[E1]		0.01189	α (K)=0.00966 <i>14</i> ; α (L)=0.001694 <i>24</i> ; α (M)=0.000403 <i>6</i> ; α (N+)=0.0001370 <i>20</i>
									α (N)=0.0001068 <i>15</i> ; α (O)=2.50×10 ⁻⁵ <i>4</i> ; α (P)=4.75×10 ⁻⁶ <i>7</i> ; α (Q)=4.02×10 ⁻⁷ <i>6</i>
520.17 8	0.92 10	1643.15	(3 ⁻)	1122.968	2-	(M1)		0.189	I _y : Does not agree with 0.17 2 in ²²⁸ Ac decay. $\alpha(K)=0.1515\ 22;\ \alpha(L)=0.0282\ 4;\ \alpha(M)=0.00675\ 10;$ $\alpha(N+)=0.00232\ 4$
									$\alpha(N)=0.00180 \ 3; \ \alpha(O)=0.000426 \ 6; \ \alpha(P)=8.27\times10^{-5} \ 12; \ \alpha(O)=7.86\times10^{-6} \ 11$
523.16 ^a 11	1.1 2	1645.933	3+	1122.968	2^{-}	[E1]		0.01153	$\alpha(Q) = 7.50 \times 10^{-11}$ $\alpha(K) = 0.00937 \ 14; \ \alpha(L) = 0.001641 \ 23; \ \alpha(M) = 0.000390 \ 6; \ \alpha(N+) = 0.0001327 \ 19$
									α (N)=0.0001035 <i>15</i> ; α (O)=2.42×10 ⁻⁵ <i>4</i> ; α (P)=4.60×10 ⁻⁶ <i>7</i> ; α (Q)=3.90×10 ⁻⁷ <i>6</i>
523.5 ^a 1	0.5 1	1724.301	2^{+}	1200.60	3 ⁽⁺⁾				
528.5 ^a 2	0.09 2	1588.369	(4 ⁻)	1059.93	4-				
529.0 ^a 3	0.05 2	1497.69	(5 ⁻)	968.986	2+				
540.66 5	0.89 6	1059.93	4-	519.212	5-	[M1,E2]		0.10 7	α (K)=0.08 6; α (L)=0.017 9; α (M)=0.0042 19; α (N+)=0.0014 7 α (N)=0.0011 5; α (O)=0.00026 12; α (P)=5.0×10 ⁻⁵ 25; α (Q)=4.E-6 β

15

From ENSDF

 $^{228}_{90}\mathrm{Th}_{138}$ -15

L

				:	228 Pa ε de	cay 1998	3We13,19	95Ba42 (contir	nued)
						γ ⁽²²⁸ T	h) (contin	ued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	J_i^π	E_{f}	J_f^π	Mult. [#]	$\delta^{@}$	α^{\dagger} &	Comments
546.45 2	2.80 14	874.508	2+	328.034	1-	[E1]		0.01058	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00861 \ 12; \ \alpha(\mathrm{L}) = 0.001500 \ 21; \ \alpha(\mathrm{M}) = 0.000357 \ 5; \\ &\alpha(\mathrm{N}+) = 0.0001212 \ 17 \\ &\alpha(\mathrm{N}) = 9.45 \times 10^{-5} \ 14; \ \alpha(\mathrm{O}) = 2.22 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 4.21 \times 10^{-6} \\ &6; \ \alpha(\mathrm{Q}) = 3.60 \times 10^{-7} \ 5 \end{aligned}$
547.8 2 548.74 ⁸ 11	0.16 <i>4</i> 0.41 <i>5</i>	944.24 1724.301	1 ⁻ 2 ⁺	396.108 1175.24	3 ⁻ 2 ⁺	[M1,E2]		0.10 7	α (K)=0.08 6; α (L)=0.017 8; α (M)=0.0040 18; α (N+)=0.0014 7 α (N)=0.0011 5; α (O)=0.00025 12; α (P)=4.8×10 ⁻⁵ 24; α (Q)=4.E-6 3
548.9 <i>11</i> 551.3 <i>2</i>	≤ 0.08 ≤ 0.2	1965.05 1944.916	(2^+) 3^+ 4^+	1416.09 1393.46	(3^{-}) 1 ⁺ ,2,3 ⁻				
554.8 ^{<i>a</i>} 3	0.18 4 0.40 4	1645.933	4 3 ⁺	1091.067	4 4 ⁺	[M1,E2]		0.10 7	α (K)=0.07 6; α (L)=0.016 8; α (M)=0.0039 18; α (N+)=0.0013 6 α (N)=0.0010 5; α (O)=0.00025 12; α (P)=4.7×10 ⁻⁵ 23; α (O)=4.E-6 3
555.5 1 ^x 555.7 1	0.57 <i>6</i> 1.5 <i>2</i>	1074.74	4+	519.212	5-				
557.4 1	0.55 6	1432.036	4+	874.508	2+				
562.50 4	1.40 8	1531.51	3+	968.986	2+	E2+M1	+1.6 6	0.07 3	$\alpha(K)=0.050\ 23;\ \alpha(L)=0.012\ 4;\ \alpha(M)=0.0030\ 8;$ $\alpha(N+)=0.0010\ 3$ $\alpha(N)=0.00081\ 20;\ \alpha(O)=0.00019\ 5;\ \alpha(P)=3.5\times10^{-5}\ 10;$ $\alpha(O)=2.6\times10^{-6}\ 12$
570.88 4	2.8 3	1724.301	2+	1153.431	2+	(M1)		0.1472	$\alpha(K) = 0.1182 \ 17; \ \alpha(L) = 0.0219 \ 3; \ \alpha(M) = 0.00525 \ 8; \\ \alpha(N+) = 0.00180 \ 3 \\ \alpha(N) = 0.001401 \ 20; \ \alpha(O) = 0.000332 \ 5; \ \alpha(P) = 6.44 \times 10^{-5} \ 9; \\ \alpha(Q) = 6.12 \times 10^{-6} \ 9$
571.1 ^{ag} 1	0.57 25	1645.933	3+	1074.74	4+				
571.8 ^a 2	0.06 3	1091.067	4+	519.212	5-				
572.3 ^{<i>a</i>} 1	2.24 24	968.38	2-	396.108	3-				
572.3 ^{<i>a</i>} 1	3.9 4	968.45	4+	396.108	3-				
583.2^{a} 2	0.12 3	1643.15	(3^{-})	1059.93	4-	1211		0.00020.12	
583.4 ^a 1	1.8 2	979.460	2+	396.108	3-	[E1]		0.00932 13	$\begin{array}{l} \alpha = 0.00932 \ 13; \ \alpha(\text{K}) = 0.00759 \ 11; \ \alpha(\text{L}) = 0.001313 \ 19; \\ \alpha(\text{M}) = 0.000312 \ 5; \ \alpha(\text{N}+) = 0.0001061 \\ \alpha(\text{N}) = 8.27 \times 10^{-5} \ 12; \ \alpha(\text{O}) = 1.94 \times 10^{-5} \ 3; \ \alpha(\text{P}) = 3.69 \times 10^{-6} \\ 6; \ \alpha(\text{Q}) = 3.18 \times 10^{-7} \ 5 \end{array}$
584.4 ^{<i>a</i>} 3	≤0.03	1928.37	3+	1344.09	3-	[E1]		0.00929 13	$\begin{aligned} &\alpha = 0.00929 \ 13; \ \alpha(\text{K}) = 0.00756 \ 11; \ \alpha(\text{L}) = 0.001308 \ 19; \\ &\alpha(\text{M}) = 0.000311 \ 5; \ \alpha(\text{N}+) = 0.0001057 \\ &\alpha(\text{N}) = 8.24 \times 10^{-5} \ 12; \ \alpha(\text{O}) = 1.93 \times 10^{-5} \ 3; \ \alpha(\text{P}) = 3.68 \times 10^{-6} \\ &6; \ \alpha(\text{Q}) = 3.17 \times 10^{-7} \ 5 \\ &\gamma \ \text{feeds the } 1344 \ \text{level.} \end{aligned}$
584.75 ^b	≤0.04	1760.32	$2^{(+)}, 3^{(+)}$	1175.24	2+	[M1,E2]		0.08 6	$\alpha(K)=0.07$ 5; $\alpha(L)=0.014$ 7; $\alpha(M)=0.0034$ 16;

 $^{228}_{90}$ Th $_{138}$ -16

L

From ENSDF

²²⁸₉₀Th₁₃₈-16

					²²⁸ Pa	ε decay	1998We	e13,1995Ba42	(continued)
							$\gamma(^{228}\text{Th})$ (continued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π} N	/ult. [#]	$\delta^{@}$	α^{\dagger} &	Comments
									$\begin{aligned} &\alpha(N+)=0.0012 \ 6\\ &\alpha(N)=0.0009 \ 4; \ \alpha(O)=0.00021 \ 10; \ \alpha(P)=4.0\times10^{-5} \ 20; \\ &\alpha(Q)=3.4\times10^{-6} \ 24 \\ &\text{Possibly feeds the 1175.4 level.} \end{aligned}$
586.2 2 590.1 <i>3</i>	0.12 <i>3</i> 0.06 <i>2</i>	1645.933 968.45	3+ 4+	1059.93 4 378.214 6	5+ 5				
590.40 ^b	<0.1	1743.90	4+	1153.431	2+ [E2]]		0.0292	$\alpha(K)=0.0197 \ 3; \ \alpha(L)=0.00703 \ 10; \ \alpha(M)=0.00180 \ 3; \ \alpha(N+)=0.000613 \ 9$
									α (N)=0.000481 7; α (O)=0.0001107 16; α (P)=2.00×10 ⁻⁵ 3; α (Q)=1.056×10 ⁻⁶ 15 Mult.: α (K)exp=0.088 17 (1973Ku09); theory: (U)(Z2) = 0.0200 (U)(211) = 0.115
590.7 1	0.33 7	1817.442	4-	1226.596 4	t_				$\alpha(\mathbf{K})(\mathbf{E}2)=0.0200, \ \alpha(\mathbf{K})(\mathbf{M}1)=0.115.$
596.8 2	0.15 4	1823.49	(4^+)	1226.596 4	↓-)+ ГЕ1 ⁻	1		0 00070 12	$\alpha = 0.00978$ 12; $\alpha(K) = 0.00716$ 10; $\alpha(L) = 0.001224$ 19;
001.48	<0.04	1360.74	(2)	979.400 2]		0.00878 15	$\alpha(M) = 0.000293 5; \alpha(N+) = 9.97 \times 10^{-5} 14$ $\alpha(N) = 7.77 \times 10^{-5} 11; \alpha(O) = 1.82 \times 10^{-5} 3; \alpha(P) = 3.47 \times 10^{-6} 5;$ $\alpha(O) = 3.01 \times 10^{-7} 5$
602.0 ^g	≤0.2	1297.387	(5 ⁻)	695.4	7- [E2]]		0.0280	$\alpha(\mathbf{X}) = 0.015 (10^{-5} \text{ s})^{-1} (\mathbf{X}) = 0.00664 \ 10; \ \alpha(\mathbf{M}) = 0.001699 \ 24; \ \alpha(\mathbf{N}+) = 0.000578 \ 8 \ \alpha(\mathbf{N}) = 0.000578 \ 8 \ \alpha(\mathbf{N}) = 0.000578 \ 8 \ \alpha(\mathbf{N}) = 0.0001045 \ 15; \ \alpha(\mathbf{P}) = 1.89 \times 10^{-5} \ 3;$
610.7.2	0.24.7	029 63	0+	228 024	_				$\begin{aligned} \alpha(Q) = 1.016 \times 10^{-6} \ 15 \\ \text{Feeds the 695.6 level; see comment with that level.} \\ \text{Mult.: } \alpha(K) \exp \ge 0.24 \ 5 \ (1973 \text{Ku09}); \text{ theory: } \alpha(K)(E1) = 0.00716, \\ \alpha(K)(E2) = 0.0192, \ \alpha(K)(M1) = 0.108. \end{aligned}$
616.15 5	1.07 8	938.03 944.24	1^{-}	328.034	(M1	+E2)	+1.5 5	0.055 18	α (K)=0.042 <i>15</i> ; α (L)=0.0098 <i>23</i> ; α (M)=0.0024 <i>6</i> ; α (N+)=0.00083 <i>18</i>
									α (N)=0.00064 <i>14</i> ; α (O)=0.00015 <i>4</i> ; α (P)=2.8×10 ⁻⁵ 7; α (Q)=2.2×10 ⁻⁶ 8
620.27 5	1.41 10	1016.388	3-	396.108	3- [E0,	,M1,E2]			Mult.: $\alpha(K)\exp=0.16 \ 3 \ (1973Ku09)$; theory: $\alpha(K)(E1)=0.00677$, $\alpha(K)(E2)=0.0183, \ \alpha(K)(M1)=0.100$.
621.4^{a} <i>I</i>	0.92 <i>10</i> 1 0 2	1643.82	4+	1022.555 (3)+				
621.0° 3 621.9 ^{<i>a</i>} 2	0.16 5	1796.45	4+	1174.547 (5+)				
623.7 ^{<i>a</i>} 2	0.13 4	1645.933	3+	1022.555 (3) ⁺ [M1	,E2]		0.07 5	$\alpha(K)=0.06\ 4;\ \alpha(L)=0.012\ 6;\ \alpha(M)=0.0028\ 13;\ \alpha(N+)=0.0010\ 5$ $\alpha(N)=0.0008\ 4;\ \alpha(O)=0.00018\ 9;\ \alpha(P)=3.4\times10^{-5}\ 17;$ $\alpha(O)=2.9\times10^{-6}\ 20$
623.7 ^{<i>a</i>} 2	0.14 3	1683.77	(4-)	1059.93	I− [M1	,E2]		0.07 5	$\alpha(\mathbf{K})=0.06 \ 4; \ \alpha(\mathbf{L})=0.012 \ 6; \ \alpha(\mathbf{M})=0.0028 \ 13; \ \alpha(\mathbf{N}+)=0.0010 \ 5$ $\alpha(\mathbf{N})=0.0008 \ 4; \ \alpha(\mathbf{O})=0.00018 \ 9; \ \alpha(\mathbf{P})=3.4\times10^{-5} \ 17;$ $\alpha(\mathbf{O})=2.0\times10^{-5} \ 20$
624.0 ^{<i>a</i>} 2	0.14 4	1143.15	5-	519.212	5-				$\alpha(Q)=2.9\times10^{\circ}~20^{\circ}$

				²²⁸ Pa ε c	lecay 199	8We13,19	995Ba42 (conti	inued)
					γ (²²⁸ T	Th) (conti	nued)	
E_{γ} ‡	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	$\alpha^{\dagger} \&$	Comments
$\begin{array}{c} 626.7^{a} \ 1 \\ 629.4 \ 2 \\ 640.3^{a} \ 2 \\ 640.33^{a} \ 5 \\ 642.7 \ 2 \end{array}$	0.49 9 0.37 6 0.12 5 1.4 2 0.28 8	1643.15 1645.933 1901.94 968.38 1817.442	$(3^{-}) 3^{+} 4^{+} 2^{-} 4^{-}$	$\begin{array}{c ccccc} 1016.388 & 3^{-} \\ 1016.388 & 3^{-} \\ 1261.59 & 4^{+} \\ 328.034 & 1^{-} \\ 1174.547 & (5^{+}) \end{array}$	[D,E2]	_	0.07 5	
649.0^{a} 1 649.12^{ea} 7 649.2^{a} 1	0.59 8 0.097 ^e 9	1817.442 1618.04?	4- 4+ 2-	$\begin{array}{c} 1171.3977 (3^{-})\\ 1168.395 3^{-}\\ 968.986 2^{+}\\ 510.212 5^{-}\end{array}$			0.0228	
649.3 ^a 1	0.51 6	1168.395	3	519.212 5	[E2]		0.0238	$\alpha(\mathbf{K})=0.01658\ 24;\ \alpha(\mathbf{L})=0.00535\ 8;\ \alpha(\mathbf{M})=0.001361\ 19;\alpha(\mathbf{N}+)=0.000464\ 7\alpha(\mathbf{N})=0.000364\ 5;\ \alpha(\mathbf{O})=8.39\times10^{-5}\ 12;\ \alpha(\mathbf{P})=1.530\times10^{-5}\ 22;\ \alpha(\mathbf{Q})=8.74\times10^{-7}\ 13$
651.40 ^a 5	0.159 <i>10</i>	979.460	2+	328.034 1-	[E1]		0.00754 11	$\alpha = 0.00754 \ 11; \ \alpha(K) = 0.00616 \ 9; \ \alpha(L) = 0.001053 \ 15; \alpha(M) = 0.000250 \ 4; \ \alpha(N+) = 8.50 \times 10^{-5} \ 12 \alpha(N) = 6.62 \times 10^{-5} \ 10; \ \alpha(O) = 1.556 \times 10^{-5} \ 22; \alpha(P) = 2 \ 97 \times 10^{-6} \ 5; \ \alpha(O) = 2 \ 60 \times 10^{-7} \ 4$
651.5 ^{<i>a</i>} 2	0.34 5	1804.690	4+	1153.431 2+	[E2]		0.0236	$\alpha(K) = 0.01647 \ 23; \ \alpha(L) = 0.00530 \ 8; \ \alpha(M) = 0.001347 \ 19; \alpha(N+) = 0.000459 \ 7 \alpha(N) = 0.000360 \ 5; \ \alpha(O) = 8.30 \times 10^{-5} \ 12; \ \alpha(P) = 1.514 \times 10^{-5} 22; \ \alpha(Q) = 8.68 \times 10^{-7} \ 13$
660.30 ^b	≤0.2	1682.85	(2 ⁺ ,3 ⁺ ,4 ⁺)	1022.555 (3) ⁺	[M1,E2]		0.06 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.05 \ 4; \ \alpha(\mathbf{L}) = 0.010 \ 5; \ \alpha(\mathbf{M}) = 0.0024 \ 12; \\ &\alpha(\mathbf{N}+) = 0.0008 \ 4 \\ &\alpha(\mathbf{N}) = 0.0006 \ 3; \ \alpha(\mathbf{O}) = 0.00015 \ 8; \ \alpha(\mathbf{P}) = 2.9 \times 10^{-5} \ 15; \\ &\alpha(\mathbf{Q}) = 2.5 \times 10^{-6} \ 17 \\ &\mathbf{I}_{\gamma}: \text{ from branching ratio in adopted } \gamma' \text{s; } \mathbf{I}_{\gamma} \leq 0.2 \\ &(1995Ba42). \end{aligned}$
663.5 ^{<i>a</i>} 2 663.92 ^{<i>a</i>} 8	0.28 <i>5</i> 1.2 <i>2</i>	1925.22 1059.93	3 ⁺ ,4 ⁺ 4 ⁻	1261.59 4 ⁺ 396.108 3 ⁻	(M1+E2)	≈0.77	0.06 4	α(K)=0.05 4; α(L)=0.010 5; α(M)=0.0024 12; α(N+)=0.0008 4 $α(N)=0.0006 3; α(O)=0.00015 8; α(P)=2.9×10^{-5} 15; α(Q)=2.5×10^{-6} 17 $ δ: calculated from experimental conversion coefficient (evaluator). Mult.: α(K)exp=0.10 3 (1973Ku09), 0.075 (1960Ar06);
666.47 ^{<i>a</i>} 4	0.68 8	1645.933	3+	979.460 2+	[M1,E2]		0.06 4	theory: $\alpha(K)(M1)=0.0842$, $\alpha(K)(E2)=0.0161$. $\alpha(K)=0.05$ 4; $\alpha(L)=0.010$ 5; $\alpha(M)=0.0024$ 11; $\alpha(N+)=0.0008$ 4 $\alpha(N)=0.0006$ 3; $\alpha(O)=0.00015$ 7; $\alpha(P)=2.8\times10^{-5}$ 15; $\alpha(Q)=2.4\times10^{-6}$ 16 Mult.: for the doublet (I γ =2.47 13): $\alpha(K)$ exp=0.053 16 (1973Ku09), 0.025 (1960Ar06); theory: $\alpha(K)(M1)=0.0831$, $\alpha(K)(E2)=0.0160$.

From ENSDF

²²⁸₉₀Th₁₃₈-18

L

 $^{228}_{90}{
m Th}_{138}$ -18

					²²⁸ Pa <i>ε</i>	decay 199	8We13,1995Ba	42 (continued)
						$\gamma(^{228})$	Γh) (continued)	
E_{γ}^{\ddagger}	I_{γ} ‡ d	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\alpha^{\dagger} \&$	Comments
666.47 ^{<i>a</i>} 4	1.83 9	1893.017	3+	1226.596	4 ⁻ []	E1]	0.00722 11	$\begin{aligned} &\alpha = 0.00722 \ 11; \ \alpha(\text{K}) = 0.00590 \ 9; \ \alpha(\text{L}) = 0.001007 \ 14; \\ &\alpha(\text{M}) = 0.000239 \ 4; \ \alpha(\text{N}+) = 8.13 \times 10^{-5} \ 12 \\ &\alpha(\text{N}) = 6.33 \times 10^{-5} \ 9; \ \alpha(\text{O}) = 1.487 \times 10^{-5} \ 21; \ \alpha(\text{P}) = 2.84 \times 10^{-6} \ 4; \\ &\alpha(\text{Q}) = 2.50 \times 10^{-7} \ 4 \\ &\text{Mult.: for the doublet (I}_{\gamma} = 2.47 \ 13): \ \alpha(\text{K}) \exp = 0.053 \ 16 \\ &(1973 \text{Ku}09), \ 0.025 \ (1960 \text{Ar}06); \ \text{theory: } \alpha(\text{K})(\text{E1}) = 0.00591, \\ &\alpha(\text{K})(\text{E2}) = 0.0160. \end{aligned}$
667.5 3	0.16 5	1683.77	(4^{-})	1016.388	3 ⁻			
608.92 671.94^{b}	0.22 /	1/60.32	2 ⁽¹⁾ ,3 ⁽¹⁾ 2 ⁺ 3 ⁺	1091.067 4	4 ' 3-			
674.6 ^{<i>a</i>} 3	≤0.1 ≤0.2	1817.442	2,3 4 ⁻	1143.15	5 5 ⁻			
674.7 ^{<i>a</i>} 2	0.21 7	1643.15	(3 ⁻)	968.45	4+			
674.7^{a} 1	2.5 3	1643.82	4+ 2+	968.986	2+ 2+		0.06.4	$\alpha(W) = 0.05$ 2; $\alpha(U) = 0.000$ 5; $\alpha(W) = 0.0022$ 11; $\alpha(W_{\pm}) = 0.0008$ 4
676.9" 2	0.80 13	1643.933	3	908.980 2	2.		0.06 4	$\alpha(K)=0.05 \ 5; \ \alpha(L)=0.009 \ 5; \ \alpha(M)=0.0025 \ 11; \ \alpha(N+)=0.0008 \ 4$ $\alpha(N)=0.0006 \ 3; \ \alpha(O)=0.00014 \ 7; \ \alpha(P)=2.7\times10^{-5} \ 14;$ $\alpha(Q)=2.3\times10^{-6} \ 16$ Mult.: $\alpha(K)\exp=0.17 \ 5 \ (1973Ku09), \ 0.10 \ (1960Ar06); \ theory: \alpha(K)(M1)=0.0936, \ \alpha(K)(E2)=0.0217, \ \alpha(K)(M1+E2)=0.06 \ for$ $\delta=1 \ probably \ a \ E0 \ component \ is involved$
677.8 2	0.11 4	1939.10	(4 ⁺)	1261.59	4+			0-1 probably a Eo component is involved.
678.6 2	0.51 6	1074.74	4 ⁺	396.108	3-			
683.4 <i>2</i> 683.97 <i>3</i>	0.10 4 <0.06	1944.916 1743.90	3+ 4+	1261.59 4	4' 4 ⁻ []	E11	0.00688 10	$\alpha = 0.00688$ 10; $\alpha(K) = 0.00562$ 8; $\alpha(L) = 0.000957$ 14;
]		α (M)=0.000227 4; α (N+)=7.72×10 ⁻⁵ 11
		1001.00		1005 005	(=-)			α (N)=6.02×10 ⁻⁵ 9; α (O)=1.413×10 ⁻⁵ 20; α (P)=2.70×10 ⁻⁶ 4; α (Q)=2.38×10 ⁻⁷ 4
684.6 <i>3</i> 687.8 ^{<i>a</i>} 2	0.14 6 0.48 <i>10</i>	1981.90 874.508	$(3) 2^+$	1297.387 (186.849 4	(5) 4 ⁺ []	E2]	0.0210	$\alpha(K)=0.01490\ 21;\ \alpha(L)=0.00455\ 7;\ \alpha(M)=0.001153\ 17;\ \alpha(N+)=0.000393\ 6$
								α (N)=0.000308 5; α (O)=7.12×10 ⁻⁵ 10; α (P)=1.303×10 ⁻⁵ 19; α (Q)=7.79×10 ⁻⁷ 11 E ₂ : Poor fit in level scheme.
688.14 ^a 8	0.83 11	1016.388	3-	328.034	1-			,
692.47 7	2.01 15	1893.017	3+	1200.60	3 ⁽⁺⁾ (1	M1+E2+E0)	0.05 4	$\alpha(K)=0.04 \ 3; \ \alpha(L)=0.009 \ 5; \ \alpha(M)=0.0021 \ 10; \ \alpha(N+)=0.0007 \ 4 \ \alpha(N)=0.0006 \ 3; \ \alpha(O)=0.00013 \ 7; \ \alpha(P)=2.6\times10^{-5} \ 13; \ \alpha(Q)=2.2\times10^{-6} \ 15 \ Mult.: \ \alpha(K)exp=0.17 \ 3 \ (1973Ku09), \ 0.13 \ (1960Ar06); \ theory: \ \alpha(K)(E2)=0.0148, \ \alpha(K)(M1)=0.0751. \ \alpha(K)exp \ may \ indicate \ E0 \ Dreserve}$
								α : from $\alpha(K)$ exp.
								······································

²²⁸₉₀Th₁₃₈-19

				22	⁸ Pa ε decay	1998We13,	1995Ba42 (continued)
						$\gamma(^{228}\text{Th})$ (con	tinued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α^{\dagger} &	Comments
694.8 ^{<i>a</i>} 2	0.26 5	1091.067	4+	396.108 3-	[E1]	0.00668 10	$\alpha = 0.00668 \ 10; \ \alpha(K) = 0.00546 \ 8; \ \alpha(L) = 0.000928 \ 13; \ \alpha(M) = 0.000220 \ 3; \\ \alpha(N+) = 7.49 \times 10^{-5} \ 11 \\ \alpha(N) = 5.83 \times 10^{-5} \ 9; \ \alpha(O) = 1.371 \times 10^{-5} \ 20; \ \alpha(P) = 2.62 \times 10^{-6} \ 4; \\ \alpha(Q) = 2.31 \times 10^{-7} \ 4$
696.5 ^a 2 697.1 ^a 4 697.6 ^a 1	0.24 <i>5</i> 0.09 <i>2</i> 0.48 <i>8</i>	1864.95 1074.74 1924.17	(2^+) 4^+ $(2^-,3,4)$	1168.395 3 ⁻ 378.214 6 ⁺ 1226.596 4 ⁻			
698.9 ^{<i>a</i>} 1 701.72 4	0.63 <i>9</i> 3.76 <i>21</i>	1643.15 1724.301	(3 ⁻) 2 ⁺	944.24 1 ⁻ 1022.555 (3) ⁺	[E2] (M1)	0.02 0.0850	I _γ : part of a multiplet, Iγ from ²²⁸ Ac β^- decay. α (K)=0.0684 <i>10</i> ; α (L)=0.01261 <i>18</i> ; α (M)=0.00302 <i>5</i> ; α (N+)=0.001036 <i>15</i> α (N)=0.000805 <i>12</i> ; α (O)=0.000191 <i>3</i> ; α (P)=3.70×10 ⁻⁵ <i>6</i> ; α (Q)=3.52×10 ⁻⁶ 5
							Mult.: α (K)exp=0.081 <i>14</i> (1973Ku09), 0.057 (1960Ar06); theory: α (K)=0.0726.
705.3 2 707.40 <i>3</i>	0.6 2 7.9 4	1796.45 1226.596	4+ 4 ⁻	$\begin{array}{rrrr} 1091.067 & 4^+ \\ 519.212 & 5^- \end{array}$	(E2)	0.0198	$\alpha(K)=0.01417\ 20;\ \alpha(L)=0.00423\ 6;\ \alpha(M)=0.001067\ 15;\ \alpha(N+)=0.000364$
							α(N)=0.000285 4; α(O)=6.59×10-5 10; α(P)=1.209×10-5 17; α(Q)=7.38×10-7 11 Mult.,δ: α(K)exp=0.020 6 (1973Ku09), thus δ≥2; theory: α(K)(E2)=0.0143, α(K)(M1)=0.0711.
713.1 ^a 3	0.48 11	1091.067	4+	378.214 6+	[E2]	0.0195	$ δ: -4.0 13 \text{ from } 1/δ = -0.25 \ 8 \ (1998 We13). $ $ α(K)=0.01397 \ 20; \ α(L)=0.00413 \ 6; \ α(M)=0.001044 \ 15; \ α(N+)=0.000356 $
713 6 ^a 2	0 10 5	1804 690	4+	1091.067 4+			
718.0 ^{<i>a</i>} 2	0.16 6	1893.017	3+	1175.24 2 ⁺			
718.31 ^{<i>a</i>} 2	6.2 3	1944.916	3+	1226.596 4-	(E1)	0.00628 9	$\alpha = 0.00628 \ 9; \ \alpha(K) = 0.00513 \ 8; \ \alpha(L) = 0.000870 \ 13; \ \alpha(M) = 0.000206 \ 3; \alpha(N+) = 7.02 \times 10^{-5} \ 10 \alpha(N) = 5.47 \times 10^{-5} \ 8; \ \alpha(O) = 1.285 \times 10^{-5} \ 18; \ \alpha(P) = 2.46 \times 10^{-6} \ 4; \alpha(Q) = 2.18 \times 10^{-7} \ 3 $
							Mult.: $\alpha(K)\exp=0.00/4$ 36 (19/3Ku09); theory: $\alpha(K)(E1)=0.00514$, $\alpha(K)(E2)=0.0140$.
723.6 1	0.6 1	1924.17	(2 ⁻ ,3,4)	1200.60 $3^{(+)}$			
724.42 11	0.76 9	1925.22	3+,4+	1200.60 $3^{(+)}$	[M1,E2]	0.05 3	$\alpha(K)=0.038\ 25;\ \alpha(L)=0.008\ 4;\ \alpha(M)=0.0019\ 9;\ \alpha(N+)=0.0006\ 3$
724.5 ^a 1	0.57 9	1893.017	3+	1168.395 3-	[E1]	0.00618 9	$a(1)=0.00050\ 24,\ a(0)=0.00012\ 0,\ a(P)=2.5\times10^{-1}\ 12,\ a(Q)=2.0\times10^{-1}\ 13$ $a=0.00618\ 9,\ a(K)=0.00505\ 7;\ a(L)=0.000856\ 12;\ a(M)=0.000203\ 3;$ $a(N+)=6.90\times10^{-5}\ 10$
							$\alpha(N)=5.38\times10^{-3} 8; \alpha(O)=1.264\times10^{-3} 18; \alpha(P)=2.42\times10^{-6} 4; \alpha(O)=2.15\times10^{-7} 3$
724.7 ^{ag} 3	0.10 5	1899.93	(2+)	1175.24 2+			

From ENSDF

				228 p	aε decay	1998We1	3,1995Ba42 (continued)
					<u> </u>	(²²⁸ Th) (co	ontinued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger} &	Comments
$726.3^{a} 2$ $726.90^{a} 10$	0.19 <i>6</i> 4.2 <i>6</i>	1817.442 1122.968	4 ⁻ 2 ⁻	1091.067 4 ⁺ 396.108 3 ⁻	(E2)		0.0187	$\alpha(K)=0.01349 \ 19; \ \alpha(L)=0.00393 \ 6; \ \alpha(M)=0.000990 \ 14; \ \alpha(N+)=0.000337 \ 5 \ \alpha(N)=0.000264 \ 4; \ \alpha(O)=6.12\times10^{-5} \ 9; \ \alpha(P)=1.125\times10^{-5} \ 16; \ \alpha(O)=6.99\times10^{-7} \ 10$
727.2 ^a 3	0.07 2	1743.90	4+	1016.388 3-				$u(Q) = 0.33 \times 10^{-10}$
732.9 4	0.07 3	1823.49	(4 ⁺)	1091.067 4+				
737.8 2	0.74 13	1760.32	$2^{(+)}, 3^{(+)}$	1022.555 (3)+	[M1,E2]		0.05 3	$\alpha(K)=0.037\ 24;\ \alpha(L)=0.007\ 4;\ \alpha(M)=0.0018\ 9;$ $\alpha(N+)=0.0006\ 3$ $\alpha(N)=0.00048\ 23;\ \alpha(O)=0.00011\ 6;\ \alpha(P)=2.2\times10^{-5}\ 11;$
								$\alpha(Q) = 1.9 \times 10^{-6} \ I2$
739.2 2	0.57 9	1893.017	3+	1153.431 2+	[M1,E2]		0.05 3	$\alpha(K)=0.036\ 24;\ \alpha(L)=0.007\ 4;\ \alpha(M)=0.0018\ 9;$
								$\alpha(N+)=0.0006\ 3$ $\alpha(N)=0.00048\ 23;\ \alpha(O)=0.00011\ 6;\ \alpha(P)=2.1\times10^{-5}\ 11;$ $\alpha(O)=1.9\times10^{-6}\ 12$
								Mult.: α (K)exp=0.18 5 (1973Ku09); theory: α (K)(M1)=0.0637
741.00.0	0.40.6	1064.05	(2+)	1100.000.0-				$\alpha(K)(E2)=0.013$, ce(K) may include the ce(K)(737.8 γ).
$741.8^{a} 2$	0.40 6	1864.95	(2^+) 2 ⁺	1122.968 2				
744.2.1	0.14 J 0.35 10	1944.916	2 3 ⁺	$1200.60 3^{(+)}$				
747.0 4	0.09 3	1143.15	5-	396.108 3-				
750.10 10	0.67 8	1924.66	4+,5-	$1174.547 (5^+)$				
751.1 2 755.32 ^{<i>a</i>} 2	0.18 7 19.2 <i>10</i>	1842.23 1724.301	(2,3) 2 ⁺	$\begin{array}{c} 1091.067 & 4^+ \\ 968.986 & 2^+ \end{array}$	M1		0.0700	α (K)=0.0563 8; α (L)=0.01036 15; α (M)=0.00248 4; α (N+)=0.000851 12
								α (N)=0.000661 <i>10</i> ; α (O)=0.0001566 <i>22</i> ; α (P)=3.04×10 ⁻⁵ <i>5</i> ;
								$\alpha(Q)=2.90\times10^{-6} 4$
								Mult.: $\alpha(K)\exp=0.063\ 6\ (1973Ku09),\ 0.057\ (1960Ar06);$
755.7 ^a 1	0.42 10	1924.17	(2 ⁻ ,3,4)	1168.395 3-				u(x)(y) u(x)(y) = 0.0077.
757.4 2	0.19 5	1817.442	4-	1059.93 4-				
764.0^{u} 3	0.18 10	1939.10	(4^+)	$1175.24 2^{+}$				
764.5 ^a 3	0.12.5 0.05.2	1/43.90	4 · 5-	979.460 2 378.214 6 ⁺				
769.6 ^{<i>ag</i>} 1	0.4 2	1944.916	3+	1175.24 2+				
770.2 ^{<i>a</i>} 2	2.28 15	1893.017	3+	1122.968 2-	[E1]		0.00552 8	α =0.00552 8; α (K)=0.00452 7; α (L)=0.000761 11; α (M)=0.000180 3; α (N+)=6.14×10 ⁻⁵ 9 α (N)=4.78×10 ⁻⁵ 7; α (O)=1.124×10 ⁻⁵ 16; α (P)=2.15×10 ⁻⁶ 3; α (O)=1.02×10 ⁻⁷ 3;
<u>לכד ודד b</u>	<01	1025 22	3+ 4+	1153 /21 2+				$\alpha(Q) = 1.93 \times 10^{-5}$
772.28 2	≥0.1 25.2 <i>13</i>	1923.22	3 ⁻ ,4 ⁻	396.108 3 ⁻	E2+M1	-3.7 2	0.021 3	$\alpha(K)=0.0154$ 22; $\alpha(L)=0.0039$ 4; $\alpha(M)=0.00096$ 9;

From ENSDF

					²²⁸ P	a ε decay	1998We13	,1995Ba42 (c	continued)
						γ	(²²⁸ Th) (cor	ntinued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger} &	Comments
									$\begin{array}{l} \alpha(\text{N}+)=0.00033 \ 3\\ \alpha(\text{N})=0.000256 \ 22; \ \alpha(\text{O})=6.0\times10^{-5} \ 6; \ \alpha(\text{P})=1.11\times10^{-5} \ 11; \\ \alpha(\text{Q})=7.9\times10^{-7} \ 12\\ \text{Mult.:} \ \alpha(\text{K})\text{exp}=0.0157 \ 22 \ (1973\text{Ku09}), \ 0.015 \ (1960\text{Ar06}); \\ \text{theory:} \ \alpha(\text{K})(\text{E2})=0.0122, \ \alpha(\text{K})(\text{M1})=0.0565. \ \delta=3.41 \ \text{from} \\ \alpha(\text{K})\text{exp}. \\ \delta: \ \text{from} \ 1/\delta=-0.27 \ 6 \ (1998\text{We13}). \ 1995\text{Ba42} \ \text{lists} \ -19\leq\delta\leq-3 \\ \end{array}$
774.06 ^b	≈0.26	831.72	0+	57.775	2+	[E2]		0.01649	from $\gamma(\theta, H, \Gamma)$. $\alpha(K)=0.01204 \ 17; \ \alpha(L)=0.00333 \ 5; \ \alpha(M)=0.000835 \ 12; \ \alpha(N+)=0.000285 \ 4 \ \alpha(N)=0.000223 \ 4; \ \alpha(O)=5.17\times10^{-5} \ 8; \ \alpha(P)=9.55\times10^{-6} \ 14; \ \alpha(O)=6.19\times10^{-7} \ 9$
774.86 ^b 776.52 <i>3</i>	≤0.1 7.9 <i>4</i>	1928.37 1944.916	3+ 3+	1153.431 1168.395	2+ 3-	[E1]		0.00544 8	$\alpha = 0.00544 \ 8; \ \alpha(K) = 0.00445 \ 7; \ \alpha(L) = 0.000750 \ 11; \\ \alpha(M) = 0.0001774 \ 25; \ \alpha(N+) = 6.04 \times 10^{-5} \ 9 \\ \alpha(N) = 4.70 \times 10^{-5} \ 7; \ \alpha(O) = 1.107 \times 10^{-5} \ 16; \ \alpha(P) = 2.12 \times 10^{-6} \ 3; \\ \alpha(Q) = 1.90 \times 10^{-7} \ 3 \\ Moles \ \alpha(K) = 0.000 \ 2 \ (1072K \times 00)) \ \text{theorem}$
778.1 ^{<i>a</i>} 2	2.7 3	1297.387	(5 ⁻)	519.212	5-	(E2+M1)	-3.0 18	0.021 15	Mult.: α (K)exp=0.009 5 (1975K109); theory: α (K)(E1)=0.00446, α (K)(E2)=0.0121. α (K)=0.016 13; α (L)=0.0039 20; α (M)=0.0010 5; α (N+)=0.00033 16 α (N)=0.00026 13; α (O)=6.E-5 3; α (P)=1.1×10 ⁻⁵ 6; α (Q)=8.E-7 7 β , from 1/8 = 0.23 20 (1009Wa12)
779.5 <i>6</i> 780.0 <i>3</i> 780.2 ^{<i>a</i>} <i>3</i>	0.06 <i>3</i> 0.19 <i>9</i> 0.10 <i>3</i>	1175.24 1899.93 1724.301	2 ⁺ (2 ⁺) 2 ⁺	396.108 1119.9 944.24	3^{-} 0^{+} 1^{-}				$0: \text{ from } 1/0 = -0.55 \ 20 \ (1998 \text{ we15}).$
781.8^{a} <i>I</i> 781.9 ^{<i>a</i>} <i>3</i>	0.68 9	1804.690 968.45	4^+ 4^+	1022.555	$(3)^+$ 4 ⁺				E_{γ} : Poor fit in level scheme.
782.08 ^{<i>a</i>} 3	3.5 3	968.986	2+	186.849	4+	[E2]		0.01615	$\alpha(K)=0.01182 \ 17; \ \alpha(L)=0.00324 \ 5; \ \alpha(M)=0.000813 \ 12; \ \alpha(N+)=0.000277 \ 4 \ \alpha(N)=0.000217 \ 3; \ \alpha(O)=5.03\times10^{-5} \ 7; \ \alpha(P)=9.30\times10^{-6} \ 13; \ \alpha(Q)=6.07\times10^{-7} \ 9 \ Mult.: \ \alpha(K)exp=0.029 \ (1960Ar06); \ theory: \ \alpha(K)(E2)=0.0119.$
785.7 <i>2</i> 791.43 ^{<i>a</i>} 9	0.20 <i>6</i> 0.23 <i>3</i>	1908.47 1760.32	(3^{-}) $2^{(+)},3^{(+)}$	1122.968 968.986	2^{-} 2 ⁺	[M1,E2]		0.039 23	α (K)=0.031 <i>19</i> ; α (L)=0.006 <i>3</i> ; α (M)=0.0015 <i>7</i> ; α (N+)=0.00051 <i>25</i> α (N)=0.00040 <i>19</i> ; α (O)=9.E-5 <i>5</i> ; α (P)=1.8×10 ⁻⁵ <i>9</i> ;
791.43 ^a 9	3.6 4	1944.916	3+	1153.431	2+	(M1)		0.0618	$ \begin{array}{l} \alpha(\mathrm{Q}) = 1.6 \times 10^{-6} \ 10 \\ \alpha(\mathrm{K}) = 0.0498 \ 7; \ \alpha(\mathrm{L}) = 0.00915 \ 13; \ \alpha(\mathrm{M}) = 0.00219 \ 3; \\ \alpha(\mathrm{N}+) = 0.000751 \ 11 \\ \alpha(\mathrm{N}) = 0.000584 \ 9; \ \alpha(\mathrm{O}) = 0.0001382 \ 20; \ \alpha(\mathrm{P}) = 2.68 \times 10^{-5} \ 4; \end{array} $

 $^{228}_{90}\mathrm{Th}_{138}$ -22

					2	²⁸ Pa ε decay	y 1998 W	e13,1995Ba4	2 (continu	ed)
							$\gamma(^{228}\text{Th})$	(continued)		
	${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	J_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger} &	$I_{(\gamma+ce)}^{d}$	Comments
	792.6 ^a 2	0.55 6	979.460	2+	186.849 4+	[E2]		0.01572		$\alpha(Q)=2.56\times10^{-6} 4$ Mult.: $\alpha(K)\exp(doublet)=0.054 11 (1973Ku09),$ $I\gamma(doublet)=3.8$; theory: $\alpha(K)(M1)=0.0530.$ $\alpha(K)=0.01154 17; \alpha(L)=0.00313 5; \alpha(M)=0.000784$ $11; \alpha(N+)=0.000267 4$ $\alpha(N)=0.000209 3; \alpha(O)=4.86\times10^{-5} 7;$
	794.97 2	34.4 17	1122.968	2-	328.034 1-	E2+M1	-4.4 10	0.0179 <i>14</i>		$\begin{array}{l} \alpha(P) = 8.98 \times 10^{-6} I_{3}; \ \alpha(Q) = 5.91 \times 10^{-7} 9 \\ I_{\gamma}: \ \text{deduced from branching in } ^{228} \text{Ac } \beta^{-} \ \text{decay.} \\ \alpha(K) = 0.0133 \ I_{2}; \ \alpha(L) = 0.00340 \ I_{9}; \ \alpha(M) = 0.00085 \ 5; \\ \alpha(N+) = 0.000228 \ I_{6} \\ \alpha(N) = 0.000226 \ I_{2}; \ \alpha(Q) = 5.3 \times 10^{-5} \ 3; \ \alpha(P) = 9.8 \times 10^{-6} \\ 6; \ \alpha(Q) = 6.8 \times 10^{-7} \ 6 \\ \text{Mult.: } \ \alpha(K) \text{exp} = 0.014 \ 3 \ (1973 \text{Ku09}), \ 0.014 \\ (1960 \text{Ar06}); \ \text{theory: } \ \alpha(K) (\text{E2}) = 0.0116, \end{array}$
	796.2 <i>1</i> 801.1 <i>1</i>	1.6 <i>3</i> 0.46 <i>5</i>	1174.547 1817.442	(5 ⁺) 4 ⁻	378.214 6 ⁺ 1016.388 3 ⁻					$\alpha(K)(M1)=0.0524. \ \delta=4 \ \text{from } \alpha(K)\text{exp.}$ E_{γ} : Seen in 1998We13 and 1973Ku09. Mult.: $\alpha(K)\text{exp}=0.14.4$ (1973Ku09); theory:
23	801.7 ^{<i>a</i>} 3 803.8 2 810.7 2	$0.11 \ 4$ $0.08 \ 4$ $0.12 \ 4$	1893.017 1678.43 1901.94	3 ⁺ 2 ⁺ 4 ⁺	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					$\alpha(K)(E2)=0.0141, \ \alpha(K)(M1)=0.0512.$
	813.93 ^b	< 0.05	1688.42	2+,3+	874.508 2+	[M1,E2]		0.036 2	2	$\begin{aligned} &\alpha(\text{K}) = 0.029 \ 18; \ \alpha(\text{L}) = 0.006 \ 3; \ \alpha(\text{M}) = 0.0014 \ 7; \\ &\alpha(\text{N}+) = 0.00047 \ 23 \\ &\alpha(\text{N}) = 0.00037 \ 18; \ \alpha(\text{O}) = 9.\text{E}-5 \ 5; \ \alpha(\text{P}) = 1.7 \times 10^{-5} \ 9; \\ &\alpha(\text{Q}) = 1.5 \times 10^{-6} \ 9 \end{aligned}$
	816.50 12	0.33 4	874.508	2+	57.775 2+	[M1,E2]		0.036 21		I _γ : from 1998We13; Iγ≤0.1 (1995Ba42). α (K)=0.028 <i>I</i> 8; α (L)=0.006 <i>3</i> ; α (M)=0.0014 <i>7</i> ; α (N+)=0.00047 <i>23</i> α (N)=0.00037 <i>I</i> 8; α (O)=9.E−5 <i>5</i> ; α (P)=1.7×10 ⁻⁵ <i>9</i> ; α (O)=1.5×10 ⁻⁶ 9
	817.4 <i>3</i> 819.9 <i>2</i> 825.1 <i>2</i> 826.6 ^{<i>ag</i>} <i>3</i> 827.1 ^{<i>a</i>} <i>3</i>	0.10 3 0.17 5 0.14 3 0.2 1 0.25 8	1908.47 1842.23 1344.09 1901.94 1949.74	(3^{-}) (2,3) 3^{-} 4^{+} 2^{+}	$\begin{array}{ccccccc} 1091.067 & 4^{+} \\ 1022.555 & (3)^{+} \\ 519.212 & 5^{-} \\ 1074.74 & 4^{+} \\ 1122.968 & 2^{-} \\ 106.012 & 1^{+} \end{array}$					$\alpha(\chi) = 1 \wedge 10$
	829.55 830.48 <i>3</i>	≤0.14 29.0 <i>15</i>	1016.388 1226.596	3- 4-	186.849 4 ⁺ 396.108 3 ⁻	E2(+M1)	-7.7 9	0.0150 3		$\begin{aligned} &\alpha(\text{K}) = 0.01117 \ 22; \ \alpha(\text{L}) = 0.00287 \ 5; \ \alpha(\text{M}) = 0.000715 \\ &I2 \ \alpha(\text{N}+) = 0.000244 \ 4 \\ &\alpha(\text{N}) = 0.000191 \ 3; \ \alpha(\text{O}) = 4.43 \times 10^{-5} \ 8; \\ &\alpha(\text{P}) = 8.24 \times 10^{-6} \ I4; \ \alpha(\text{Q}) = 5.69 \times 10^{-7} \ I2 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.0140 \ I8 \ (1973 \text{Ku09}); \ \text{theory:} \\ &\alpha(\text{K})(\text{E2}) = 0.0107, \ \alpha(\text{K})(\text{M1}) = 0.0468. \\ &\delta: \ -12 \ 5 \ \text{from} \ 1/\delta = -0.08 \ 3 \ (1998 \text{We13}). \end{aligned}$

From ENSDF

l

				2	228 Pa ε decay	1998We1	3,1995Ba42	(continued)
						γ ⁽²²⁸ Th) (c	ontinued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger} &	Comments
834.1 ^{<i>a</i>} 1	2.5 4	1925.22	3+,4+	1091.067 4+				
835.63 ^b 835.65 ^a 2	39.0 25	1804.690 1022.555	4 ⁺ (3) ⁺	968.986 2 ⁺ 186.849 4 ⁺	E2+(M1)	-72.4 18	0.034 <i>20</i>	$\begin{aligned} &\alpha(\mathrm{K}) = 0.027 \ 17; \ \alpha(\mathrm{L}) = 0.005 \ 3; \ \alpha(\mathrm{M}) = 0.0013 \ 6; \\ &\alpha(\mathrm{N}+) = 0.00044 \ 21 \\ &\alpha(\mathrm{N}) = 0.00034 \ 17; \ \alpha(\mathrm{O}) = 8.\mathrm{E} - 5 \ 4; \ \alpha(\mathrm{P}) = 1.6 \times 10^{-5} \ 8; \\ &\alpha(\mathrm{Q}) = 1.4 \times 10^{-6} \ 9 \\ &\mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.0119 \ 17 \ (1973\mathrm{Ku}09), \ 0.0105 \ 15 \ (1960\mathrm{Ar06}); \end{aligned}$
027.04.1	0.45.10	1000 27	2+	1001.067 4+				theory: $\alpha(K)=0.0106$. $\delta: \leq -9 \text{ from } \gamma(\theta,H,T) \text{ (1995Ba42).}$ $\delta: \text{ from } 1/\delta = -0.014 \text{ 25 (1998We13).}$
837.0° 1 840.36 4	0.45 <i>10</i> 15.9 <i>8</i>	1928.37 1168.395	3-	328.034 1 ⁻	E2		0.01400	α (K)=0.01039 <i>15</i> ; α (L)=0.00270 <i>4</i> ; α (M)=0.000673 <i>10</i> ; α (N+)=0.000230 <i>4</i> α (N)=0.000180 <i>3</i> ; α (O)=4.18×10 ⁻⁵ <i>6</i> ; α (P)=7.75×10 ⁻⁶ <i>11</i> ; α (Q)=5.29×10 ⁻⁷ <i>8</i> Mult.: α (K)exp=0.0092 <i>24</i> (1973Ku09), 0.0113 (1960Ar06); there we are α (N)=0.0105
847.1 <i>4</i> 847.8 <i>3</i> 848.6 <i>2</i> 849.5 ^{<i>a</i>} <i>2</i> 850.5 ^{<i>a</i>g} <i>2</i>	0.05 2 0.05 2 0.08 3 0.10 4 0.33 15	1175.24 1939.10 1908.47 1724.301 1925.22	2^+ (4 ⁺) (3 ⁻) 2^+ $3^+, 4^+$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				theory: $\alpha(\mathbf{K})=0.0105$.
853.97 8	0.82 7	1944.916	3+	1091.067 4*	[M1,E2]		0.032 19	$\alpha(K)=0.025 \ 76; \ \alpha(L)=0.0050 \ 25; \ \alpha(M)=0.0012 \ 6; \ \alpha(N+)=0.00042 \ 20 \ \alpha(N)=0.00032 \ 16; \ \alpha(O)=8.E-5 \ 4; \ \alpha(P)=1.5\times10^{-5} \ 8; \ \alpha(Q)=1.3\times10^{-6} \ 8 \ Mult.: \ \alpha(K)exp=0.055 \ 25 \ (1973Ku09,1960Ar06); \ theory: \ \alpha(K)(M1)=0.0436; \ \alpha(K)(E2)=0.010.$
862.8 <i>3</i> 865.2 <i>2</i> 870.45 <i>2</i>	0.11 <i>4</i> 0.06 <i>2</i> 15.9 <i>8</i>	1842.23 1925.22 1893.017	(2,3) $3^+,4^+$ 3^+	979.460 2 ⁺ 1059.93 4 ⁻ 1022.555 (3) ⁺	M1		0.0481	$\alpha(K)=0.0387~6; \ \alpha(L)=0.00710~10; \ \alpha(M)=0.001699~24;$
								α (N+)=0.000583 9 α (N)=0.000453 7; α (O)=0.0001073 15; α (P)=2.08×10 ⁻⁵ 3; α (Q)=1.99×10 ⁻⁶ 3 Mult.: α (K)exp=0.038 5 (1973Ku09), 0.046 (1960Ar06): theory: α (K)(M1)=0.0414
873.0 2	1.66 <i>17</i>	1059.93	4-	186.849 4+	[E1]		0.00440 7	$\begin{aligned} &\alpha(\mathbf{K})(\mathbf{M}1) = 0.0414, \\ &\delta: -0.1 \ l \ \text{from} \ \gamma(\theta, \mathbf{H}, \mathbf{T}) \ (1995\text{Ba42}), \\ &\alpha=0.00440 \ 7; \ \alpha(\mathbf{K}) = 0.00361 \ 5; \ \alpha(\mathbf{L}) = 0.000601 \ 9; \\ &\alpha(\mathbf{M}) = 0.0001422 \ 20; \ \alpha(\mathbf{N}+) = 4.84 \times 10^{-5} \ 7 \\ &\alpha(\mathbf{N}) = 3.77 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 8.88 \times 10^{-6} \ 13; \ \alpha(\mathbf{P}) = 1.705 \times 10^{-6} \ 24; \end{aligned}$
874.5 2	0.77 12	874.508	2+	0.0 0+	[E2]		0.01294	$\alpha(Q)=1.547\times10^{-7} 22$ $\alpha(K)=0.00968 \ 14; \ \alpha(L)=0.00245 \ 4; \ \alpha(M)=0.000608 \ 9;$

 $^{228}_{90}$ Th $_{138}$ -24

				228	Pa ε decay	1998V	Ve13,1995Ba42	2 (continued)
						$\gamma(^{228}\text{Th})$	(continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	J_i^{π}	$\underline{\mathbf{E}}_{f}$ $\underline{\mathbf{J}}_{f}^{\pi}$	Mult. [#]	$\delta^{\mathbf{@}}$	α^{\dagger} &	Comments
			24					$\begin{array}{l} \alpha(\mathrm{N}+)=0.000208 \ 3\\ \alpha(\mathrm{N})=0.0001623 \ 23; \ \alpha(\mathrm{O})=3.77\times10^{-5} \ 6; \ \alpha(\mathrm{P})=7.03\times10^{-6} \ 10; \\ \alpha(\mathrm{Q})=4.90\times10^{-7} \ 7 \end{array}$
876.7 ^{<i>a</i>} 2 877.35 ^{<i>a</i>} 7	0.21 8 0.80 <i>10</i>	1893.017 1899.93	3+ (2+)	$1016.388 \ 3^{-}$ $1022.555 \ (3)^{+}$	[M1,E2]		0.030 18	$\alpha(K)=0.024 \ 15; \ \alpha(L)=0.0047 \ 23; \ \alpha(M)=0.0011 \ 6; \ \alpha(N+)=0.00039 \ 19 \ \alpha(N)=0.00030 \ 15; \ \alpha(O)=7.E-5 \ 4; \ \alpha(P)=1.4\times10^{-5} \ 7; \ \alpha(O)=1.2\times10^{-6} \ 8$
879.1 3 880.8 ^b 883.4 3 883.53 ^a 3 885.7 2 886.44 ^b 887.2 ^a 2 887.9 ^a 3 890.6 3 891.8 ^a 2 891.9 ^a 2 895.9 1	$\begin{array}{c} 0.06 \ 2 \\ \leq 0.2 \\ 0.11 \ 3 \\ < 0.05 \\ 0.19 \ 4 \\ \leq 0.04 \\ 0.25 \ 8 \\ 0.15 \ 3 \\ 0.10 \ 3 \\ 0.20 \ 7 \\ 1 \ 41 \ 7 \end{array}$	1939.10 938.63 1261.59 1899.93 1908.47 944.24 2010.10 1074.74 1981.90 1270.10 1908.47 1864.95	$(4^{+}) \\ 0^{+} \\ 4^{+} \\ (2^{+}) \\ (3^{-}) \\ 1^{-} \\ (2^{+}) \\ 4^{+} \\ (3^{-}) \\ 6^{+} \\ (3^{-}) \\ (2^{+}) \\ \end{pmatrix}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				u(Q)=1.2×10 0
901.4 ^{<i>a</i>} 3	2.0 3	1297.387	(5 ⁻)	396.108 3 ⁻	[E2]		0.01220	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.00917 \ 13; \ \alpha(\mathbf{L}) = 0.00227 \ 4; \ \alpha(\mathbf{M}) = 0.000564 \ 8; \\ &\alpha(\mathbf{N}+) = 0.000192 \ 3 \\ &\alpha(\mathbf{N}) = 0.0001503 \ 21; \ \alpha(\mathbf{O}) = 3.50 \times 10^{-5} \ 5; \ \alpha(\mathbf{P}) = 6.53 \times 10^{-6} \ 10; \\ &\alpha(\mathbf{Q}) = 4.63 \times 10^{-7} \ 7 \end{aligned} $
902.1 <i>3</i> 904.19 <i>3</i>	0.5 <i>1</i> 26.5 <i>1</i> 3	1091.067	4 ,3 4 ⁺	186.849 4+	E2		0.01212	$\alpha(K)=0.00912 \ 13; \ \alpha(L)=0.00225 \ 4; \ \alpha(M)=0.000559 \ 8; \ \alpha(N+)=0.000191 \ 3 \ \alpha(N)=0.0001492 \ 21; \ \alpha(O)=3.47\times10^{-5} \ 5; \ \alpha(P)=6.48\times10^{-6} \ 9; \ \alpha(Q)=4.60\times10^{-7} \ 7 \ Mult.: \ \alpha(K)exp=0.012 \ 3 \ (1973Ku09), \ 0.0092 \ (1960Ar06) \ theory: \ \alpha(K)(E2)=0.00921, \ \alpha(K)(M1)=0.0374. \ \delta_{1} \ > 1.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ (1005 \ Pot) \ 2.37 \ from \ \alpha(H \ T) \ \alpha($
906.0 6 908.7 3 910.6 ^a 1 910.7 ^a 1 911.20 ^a 2	0.17 6 0.29 9 2.2 2 1.8 3 242 12	1928.37 1925.22 968.38 968.45 968.986	3 ⁺ 3 ⁺ ,4 ⁺ 2 ⁻ 4 ⁺ 2 ⁺	$\begin{array}{cccc} 1022.555 & (3)^+ \\ 1016.388 & 3^- \\ 57.775 & 2^+ \\ 57.775 & 2^+ \\ 57.775 & 2^+ \end{array}$	E2+M1	+24 8	0.01200 <i>18</i>	$\alpha(K)=0.00904 \ 14; \ \alpha(L)=0.00222 \ 4; \ \alpha(M)=0.000550 \ 8;$
								α (N+)=0.000188 3 α (N)=0.0001468 22; α (O)=3.42×10 ⁻⁵ 5; α (P)=6.38×10 ⁻⁶ 10; α (Q)=4.56×10 ⁻⁷ 7 Mult.: α (K)(E2)=0.0090 used for normalization of I(ce(K)) of 1973Ku09, 1960Ar06 to the I γ of 1995Ba42.

From ENSDF

 $^{228}_{90}{
m Th}_{138}$ -25

l

				²²⁸ F	a ε decay	1998We13	,1995Ba42 (co	ontinued)
					<u> </u>	(²²⁸ Th) (co	ntinued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger} &	Comments
911.7 ^{<i>a</i>} 1 913.3 2 916.6 3 919.1 2 920.46 ^{<i>a</i>} 3	0.8 4 0.39 13 0.17 5 0.36 9 <0.1	1290.08 1893.017 1939.10 2010.10 1899.93	$ \begin{array}{c} 4^+ \\ 3^+ \\ (4^+) \\ (2^+) \\ (2^+) \end{array} $	$\begin{array}{c} 378.214 & 6^+ \\ 979.460 & 2^+ \\ 1022.555 & (3)^+ \\ 1091.067 & 4^+ \\ 979.460 & 2^+ \end{array}$	[M1,E2]		0.027 15	$\alpha(K)=0.021 \ 13; \ \alpha(L)=0.0041 \ 20; \ \alpha(M)=0.0010 \ 5; \ \alpha(N+)=0.00034 \ 16 \ \alpha(N)=0.00027 \ 13; \ \alpha(Q)=6 \ E-5 \ 3; \ \alpha(P)=1 \ 2\times 10^{-5} \ 6;$
aaa ab a	0.10.4	070 460	2+	57 775 2+			0.027.15	$\alpha(Q)=1.1\times10^{-6} 7$ γ not reported in ²²⁸ Ac decay.
921.0*** 5	0.19 4	979.400	2	51.115 2	[MII,E2]		0.027 15	$\alpha(\mathbf{K})=0.021$ 13; $\alpha(\mathbf{L})=0.0041$ 20; $\alpha(\mathbf{M})=0.0010$ 3; $\alpha(\mathbf{N}+)=0.00034$ 16 $\alpha(\mathbf{N})=0.00027$ 13; $\alpha(\mathbf{O})=6.\mathrm{E}-5$ 3; $\alpha(\mathbf{P})=1.2\times10^{-5}$ 6; $\alpha(\mathbf{O})=1.1\times10^{-6}$ 7
922.5 ^a 2	2.06 12	1944.916	3+	1022.555 (3) ⁺	[M1,E2]		0.026 15	$\alpha(K)=0.021 \ I3; \ \alpha(L)=0.0041 \ 20; \ \alpha(M)=0.0010 \ 5; \ \alpha(N+)=0.00034 \ I6 \ \alpha(N)=0.00026 \ I3; \ \alpha(O)=6.E-5 \ 3; \ \alpha(P)=1.2\times10^{-5} \ 6; \ \alpha(O)=1 \ 1\times10^{-6} \ 7$
924.0 ^{<i>a</i>} 1 924.5 ^{<i>a</i>} 1 924.6 ^{<i>a</i>} 1 927.2 ^{<i>a</i>} 2 928.4 ^{<i>a</i>} 2 921.02 ^{<i>a</i>} 7	1.6 2 1.0 3 0.5 2 0.28 5 0.89 8	1893.017 1893.017 1893.017 1949.74 1944.916 1800.03	3^+ 3^+ 3^+ 2^+ 3^+ (2^+)	968.986 2 ⁺ 968.45 4 ⁺ 968.38 2 ⁻ 1022.555 (3) ⁺ 1016.388 3 ⁻ 968.986 2 ⁺	[M1 E2]		0.026.15	$\alpha(K) = 0.021, 12; \alpha(L) = 0.0040, 20; \alpha(M) = 0.0010, 5;$
931.02** 7	0.05 0	1899.95	(2)	908.980 2	[1411,62]		0.020 15	$\alpha(\mathbf{N})=0.021\ 12;\ \alpha(\mathbf{L})=0.0040\ 20;\ \alpha(\mathbf{M})=0.0010\ 3;\ \alpha(\mathbf{N}+)=0.00033\ 16$ $\alpha(\mathbf{N})=0.00026\ 12;\ \alpha(\mathbf{O})=6.\mathrm{E}-5\ 3;\ \alpha(\mathbf{P})=1.2\times10^{-5}\ 6;\ \alpha(\mathbf{O})=1.0\times10^{-6}\ 7$
931.1 ^{<i>a</i>} 2 933.1 3 935.8 2 939.9 2 944.31 6 948.0 2 956.6 ^{<i>a</i>} 2 956.6 ^{<i>a</i>} 2 956.8 ^{<i>a</i>} 2 958.69 ^{<i>a</i>} 11 959.1 ^{<i>a</i>} 1 964.3 ^{<i>a</i>} 3 964.80 ^{<i>a</i>} 2	$\begin{array}{c} 0.39 \ 7 \\ 0.25 \ 10 \\ 0.26 \ 5 \\ 0.23 \ 5 \\ 0.98 \ 8 \\ 0.27 \ 5 \\ 0.3 \ 1 \\ 2.2 \ 5 \\ 4.4 \ 6 \\ 0.59 \ 8 \\ 0.30 \ 13 \\ 120 \ 7 \end{array}$	$\begin{array}{c} 1450.408\\ 1901.94\\ 1958.19\\ 1908.47\\ 944.24\\ 1344.09\\ 1143.15\\ 1925.22\\ 1016.388\\ 1981.90\\ 1908.47\\ 1022.555\end{array}$	$\begin{array}{c} 4^{-} \\ 4^{+} \\ (2^{+}) \\ (3^{-}) \\ 1^{-} \\ 3^{-} \\ 5^{-} \\ 3^{+}, 4^{+} \\ 3^{-} \\ (3^{-}) \\ (3^{-}) \\ (3)^{+} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	E2+(M1)	-7.2 10	0.01119 23	$\alpha(K)=0.00853 \ 19; \ \alpha(L)=0.00199 \ 4; \ \alpha(M)=0.000492 \ 9; \ \alpha(N+)=0.000168 \ 3$
								$\alpha(N)=0.0001312\ 23;\ \alpha(O)=3.06\times10^{-5}\ 6;\ \alpha(P)=5.74\times10^{-6}\ 11;$

 $^{228}_{90}{\rm Th}_{138}\text{--}26$

 $^{228}_{90}$ Th $_{138}$ -26

					228	Pa ε decay	1998We13	3,1995Ba42 (continued)
							γ ⁽²²⁸ Th) (co	ntinued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger} &	Comments
0(5.2% 2	1.2.2	1044.016	2+	070.460	2+			$\alpha(Q)=4.28 \times 10^{-7} \ 10$ Mult.: $\alpha(K)\exp=0.012 \ 5 \ (1973Ku09), \ 0.011 \ (1960Ar06);$ theory: $\alpha(K)(E2)=0.00821; \ \alpha(K)(M1)=0.0295.$ δ : +33 20 from $1/\delta=+0.03 \ 4 \ (1998We13).$
965.3^{a} 2	1.2 2	1944.916	3+	979.460	2' 4+	(E2)	0.01066	$\alpha(K) = 0.00810, 12; \alpha(L) = 0.00102, 2; \alpha(M) = 0.000474, 7; \alpha(M) = 0.0001610$
900.04°	≤0.5	1155.451	2.	180.849	4.	[E2]	0.01066	$\alpha(\mathbf{N})=0.00810\ 12;\ \alpha(\mathbf{L})=0.00192\ 5;\ \alpha(\mathbf{M})=0.000474\ 7;\ \alpha(\mathbf{N}+)=0.0001819$ 23 $\alpha(\mathbf{N})=0.0001265\ 18;\ \alpha(\mathbf{O})=2.95\times10^{-5}\ 5;\ \alpha(\mathbf{P})=5.52\times10^{-6}\ 8;$
968.98 2	149 8	968.986	2+	0.0	0+	E2	0.01061	$\alpha(Q)=4.06\times10^{-6}$ 6 $\alpha(K)=0.00806$ 12; $\alpha(L)=0.00191$ 3; $\alpha(M)=0.000472$ 7; $\alpha(N+)=0.0001610$ 23
976.00 ^a 5	12.4 10	1944.916	3+	968.986	2+	M1	0.0356	$\begin{aligned} &\alpha(\text{N})=0.0001258\ 18;\ \alpha(\text{O})=2.93\times10^{-5}\ 5;\ \alpha(\text{P})=5.49\times10^{-6}\ 8;\\ &\alpha(\text{Q})=4.04\times10^{-7}\ 6\\ &\text{Mult.:}\ \alpha(\text{K})\text{exp}=0.0074\ 30\ (1973\text{Ku09}),\ 0.0082\ (1960\text{Ar06});\ \text{theory:}\\ &\alpha(\text{K})(\text{E1})=0.0030,\ \alpha(\text{K})(\text{E2})=0.00815.\\ &\alpha(\text{K})=0.0287\ 4;\ \alpha(\text{L})=0.00524\ 8;\ \alpha(\text{M})=0.001254\ 18;\ \alpha(\text{N}+)=0.000430\ 6\\ &\alpha(\text{N})=0.000334\ 5;\ \alpha(\text{O})=7.91\times10^{-5}\ 11;\ \alpha(\text{P})=1.537\times10^{-5}\ 22;\\ &\alpha(\text{Q})=1.468\times10^{-6}\ 21\\ &\text{Mult.:}\ \alpha(\text{K})\text{exp}=0.025\ 6\ (1973\text{Ku09}),\ 0.034\ (1960\text{Ar06});\ \text{theory:}\\ &\alpha(\text{K})(\text{M1})=0.0306,\ \alpha(\text{K})(\text{E2})=0.00804.\\ &\delta:\ 0.00\ 5\ \text{from}\ \gamma(\theta,\text{H},\text{T})\ (1995\text{Ba42}). \end{aligned}$
976.5 ^{fa} 1	0.6^{f}_{c} 2	1944.916	3+	968.45	4+			
976.5 [†] 1	$0.7^{f}_{0.7}$ 3	1944.916	3+	968.38	2-			
978.3 3 979.3 3	0.16 6 0.42 5	979.460	$\binom{(5)}{2^+}$	0.0	5 0 ⁺	[E2]	0.01039	α (K)=0.00791 <i>11</i> ; α (L)=0.00186 <i>3</i> ; α (M)=0.000460 <i>7</i> ; α (N+)=0.0001569
								$\alpha(N)=0.0001226 \ 18; \ \alpha(O)=2.86\times10^{-5} \ 4; \ \alpha(P)=5.36\times10^{-6} \ 8; \ \alpha(O)=3.96\times10^{-7} \ 6$
980.7 2 981.5 2	0.15 5 ≤0.1	1949.74 1168.395	2+ 3-	968.986 186.849	2+ 4+	[E1]	0.00357 5	$\alpha = 0.00357 \ 5; \ \alpha(K) = 0.00293 \ 5; \ \alpha(L) = 0.000485 \ 7; \ \alpha(M) = 0.0001145 \ 16; \alpha(N+) = 3.90 \times 10^{-5} \ 6 \alpha(N) = 3.04 \times 10^{-5} \ 5; \ \alpha(O) = 7.16 \times 10^{-6} \ 10; \ \alpha(P) = 1.377 \times 10^{-6} \ 20;$
987.7 ^a 1	3.3 4	1174.547	(5+)	186.849	4+	[M1,E2]	0.022 13	$\alpha(Q)=1.264\times10^{-7}$ 18 $\alpha(K)=0.018$ 10; $\alpha(L)=0.0035$ 17; $\alpha(M)=0.0008$ 4; $\alpha(N+)=0.00029$ 14 $\alpha(N)=0.00022$ 11; $\alpha(Q)=5.2\times10^{-5}$ 25; $\alpha(P)=1.0\times10^{-5}$ 5; $\alpha(Q)=9.E-7$ 6
988.4 ^{<i>a</i>} 1 990.3 2 1000.4 3 1000.68 ^{<i>b</i>}	$\begin{array}{c} 0.99 \ 10 \\ 0.22 \ 6 \\ 0.07 \ 3 \\ \leq 0.01 \\ 0.12 \ 6 \end{array}$	1175.24 1864.95 2022.88 1944.916	2^+ (2 ⁺) (2) ⁺ 3^+ 2 ⁺	186.849 874.508 1022.555 944.24	4^+ 2^+ $(3)^+$ 1^- 1^-			
1005.5 2 1013.44 ^{<i>a</i>}	0.12 4 ≤0.02	1949.74 1981.90	(3 ⁻)	944.24 968.45	$\frac{1}{4^{+}}$			

 $^{228}_{90} Th_{138}\text{--}27$

				²²⁸ Pa	ε decay	1998We13,199	25Ba42 (continued)
					<u>γ(</u>	(228Th) (continu	ued)
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	α^{\dagger} &	Comments
1013.54 ^{ea} 13	0.1 ^e 5	1200.60	3(+)	186.849 4+	[M1,E2]	0.021 12	α (K)=0.017 <i>10</i> ; α (L)=0.0032 <i>16</i> ; α (M)=0.0008 <i>4</i> ; α (N+)=0.00027 <i>13</i> α (N)=0.00021 <i>10</i> ; α (O)=4.9×10 ⁻⁵ <i>23</i> ; α (P)=9.E-6 <i>5</i> ; α (O)=8.E-7 <i>5</i>
1013.54 ^e 13	0.3 ^e 1	1981.90	(3-)	968.38 2-			
1016.1 ^b	≤ 0.07	1344.09	3-	328.034 1-			
1016.41 ^{ab}	≤0.045	1016.388	3-	$0.0 0^+$			I_{γ} : from branching ratio in ²²⁸ Ac β^- decay; $I_{\gamma} \leq 0.7$ (1995Ba42).
1017.0 <i>3</i> ^x 1017.2 ^a 2	0.21 <i>3</i> 0.82 <i>12</i>	1074.74	4+	57.775 2+			
1018.5 <i>1</i>	1.3 3	1893.017	3+	874.508 2+			
1019.9 ^b		1416.09	(3 ⁻)	396.108 3-			
^x 1024.4 2	0.43 6						
1033.27 7	7.6 4	1091.067	4+	57.775 2+	E2	0.00938 14	$\alpha = 0.00938 \ 14; \ \alpha(K) = 0.00720 \ 10; \ \alpha(L) = 0.001643 \ 23; \ \alpha(M) = 0.000404 \ 6; \\ \alpha(N+) = 0.0001380 \\ \alpha(N) = 0.0001078 \ 15; \ \alpha(O) = 2.52 \times 10^{-5} \ 4; \ \alpha(P) = 4.73 \times 10^{-6} \ 7; \\ \alpha(Q) = 3.58 \times 10^{-7} \ 5 \\ \text{Mult.: E2 in 1995Ba42; possibly from } \gamma(\theta, \text{H}, \text{T}), \ \text{although not listed in table 3}$
1039.87 6	2.92 15	1226.596	4-	186.849 4+			
1040.9 2	0.58 11	2010.10	(2^{+})	968.986 2+			
1048.2 <i>3</i>	0.13 5	2016.76	$(4^+, 5^-)$	968.45 4+			
1052.7 ^{<i>a</i>} 2	≤0.3	1448.87	3,4-	396.108 3-			
1053.8 1	0.36 14	1432.036	4+	378.214 6+			
1053.8 ^{<i>a</i>} 4	0.11 5	2022.88	$(2)^+$	968.986 2+		0.010.10	
1054.23 6	3.3 3	1450.408	4	396.108 3	[M1,E2]	0.019 10	$\alpha(K)=0.015\ 9;\ \alpha(L)=0.0029\ 14;\ \alpha(M)=0.0007\ 4;\ \alpha(N+)=0.00024\ 11$ $\alpha(N)=0.00019\ 9;\ \alpha(O)=4.4\times10^{-5}\ 21;\ \alpha(P)=9.E-6\ 4;\ \alpha(Q)=8.E-7\ 5$
^x 1058.5 <i>I</i>	0.66 7						
$^{1062.4}$ I	0.5 / 0 0.15 10	1110.0	0+	57 775 2+			
1062.4° 1 1065.21 ^{<i>a</i>} 7	0.15 10	1119.9	$\frac{0}{2^{-}}$	57.775 2+	[121]	0.00310.5	$\alpha = 0.00310.5$; $\alpha(K) = 0.00254.4$; $\alpha(L) = 0.000418.6$; $\alpha(M) = 0.87 \times 10^{-5}.14$;
1005.21 7	1.05 7	1122.906	2	51.115 2	[E1]	0.00510 5	$\begin{aligned} \alpha(N+) &= 3.36 \times 10^{-5} 5 \\ \alpha(N) &= 2.62 \times 10^{-5} 4; \ \alpha(O) &= 6.17 \times 10^{-6} 9; \ \alpha(P) &= 1.189 \times 10^{-6} 17; \\ \alpha(O) &= 1.100 \times 10^{-7} 16 \end{aligned}$
1065.4 ^{<i>a</i>} 4	0.11 4	1393.46	$1^+, 2, 3^-$	328.034 1-			
1070.40 7	1.20 8	1944.916	3+	874.508 2+			
^x 1074.7 ^a 3	0.42 5						
1074.7 ^a 3	0.28 5	1261.59	4+	186.849 4+			
1075.1 ^{<i>a</i>} 2	0.14 4	1949.74	2+	874.508 2+			
^x 1077.5 ^a 3	0.36 5						
1088.0 ^b	≤0.1	1416.09	(3 ⁻)	328.034 1-			
1095.74 14	0.32 6	1153.431	2+	57.775 2+	[M1,E2]	0.017 9	α (K)=0.014 8; α (L)=0.0026 13; α (M)=0.0006 3; α (N+)=0.00022 10 α (N)=0.00017 8; α (O)=4.0×10 ⁻⁵ 19; α (P)=8.E-6 4; α (Q)=7.E-7 4
1103.4 <i>I</i>	0.44 4	1290.08	4+	186.849 4+			

From ENSDF

 $^{228}_{90}\mathrm{Th}_{138}$ -28

						228 Pa ε deca	y 199	98We13,1995	Ba42 (continued)
							$\gamma(^{228}$	Th) (continue	<u>d)</u>
	Eγ‡	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger} &	Comments
	1110.55 ^{fa} 5	4.7 ^f 5	1168.395	3-	57.775 2+	E1		0.00288 4	$\begin{aligned} &\alpha = 0.00288 \ 4; \ \alpha(\text{K}) = 0.00237 \ 4; \ \alpha(\text{L}) = 0.000388 \ 6; \ \alpha(\text{M}) = 9.15 \times 10^{-5} \\ &I3 \ \alpha(\text{N}+) = 3.20 \times 10^{-5} \ 5 \\ &\alpha(\text{N}) = 2.43 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 5.73 \times 10^{-6} \ 8; \ \alpha(\text{P}) = 1.104 \times 10^{-6} \ 16; \\ &\alpha(\text{Q}) = 1.026 \times 10^{-7} \ 15; \ \alpha(\text{IPF}) = 7.70 \times 10^{-7} \ 11 \\ &I_{\gamma}: \ I\gamma(\text{doublet}) = 7.1 \ 4 \ \text{and} \ I\gamma(\gamma \ \text{from} \ 1297.42 \ \text{level}) = 2.4 \ 2 \ (\text{from coin}). \\ &\text{Mult.: for the} \ 1110.55 \ \text{doublet:} \ \alpha(\text{K}) \text{exp} = 0.0013 \ 3 \ (1973\text{Ku09}), \ 0.0019 \end{aligned}$
	1110.55 ^{fa} 5	2.4 ^f 2	1297.387	(5 ⁻)	186.849 4+	E1		0.00288 4	(1960Ar06); theory: $\alpha(K)=0.00237$. $\alpha=0.00288 4$; $\alpha(K)=0.00237 4$; $\alpha(L)=0.000388 6$; $\alpha(M)=9.15\times10^{-5}$ $I3$; $\alpha(N+)=3.20\times10^{-5} 5$ $\alpha(N)=2.43\times10^{-5} 4$; $\alpha(O)=5.73\times10^{-6} 8$; $\alpha(P)=1.104\times10^{-6} I6$; $\alpha(Q)=1.026\times10^{-7} I5$; $\alpha(IPF)=7.70\times10^{-7} II$ Mult.: for the 1110.55 doublet: $\alpha(K)\exp=0.0013 3$ (1973Ku09), 0.0019 (1960Ar06): theory: $\alpha(K)=0.00237$.
	1117.3 2	0.44 5	1175.24	2^+	57.775 2+				(
	1119.5 3 1135.39 ^b	0.10 <i>4</i> 0.014 <i>4</i>	1497.69	(5) 3 ⁺	378.214 6 ⁻ 396.108 3 ⁻				I _{γ} : from branching ratio in adopted γ 's; I $\gamma \le 0.1$ (1995Ba42);
29	1142.78 <i>15</i>	0.10 3	1200.60	3 ⁽⁺⁾	57.775 2+	[M1,E2]		0.016 8	$\alpha(K)=0.012$ 7; $\alpha(L)=0.0024$ 11; $\alpha(M)=0.0006$ 3; $\alpha(N+)=0.00020$ 9 $\alpha(N)=0.00015$ 7; $\alpha(O)=3.6\times10^{-5}$ 16; $\alpha(P)=7.E-6$ 4; $\alpha(Q)=6.E-7$ 4; $\alpha(IPE)=1$ 1×10 ⁻⁶ 5
	1148.2 ^{<i>a</i>} 2 1148.20 ^{<i>a</i>} 14 1153.6 3	0.21 <i>5</i> 0.06 <i>2</i> 0.37 <i>8</i>	1667.38 2022.88 1153.431	2^+ (2) ⁺ 2^+	519.212 5 ⁻ 874.508 2 ⁺ 0.0 0 ⁺				
	1157.3 ⁰ 1164.58 7	≤0.1 1.32 7	1344.09 1683.77	3 ⁻ (4 ⁻)	186.849 4 ⁺ 519.212 5 ⁻	(M1+E2)	1.09	0.015 8	$ α(K)=0.012 6; α(L)=0.0023 11; α(M)=0.00055 24; α(N+)=0.00019 9 $ $ α(N)=0.00015 7; α(O)=3.4×10^{-5} 16; α(P)=7.E-6 3; α(Q)=6.E-7 4; $ $ α(IPF)=2.2×10^{-6} 10 $ Mult.: $α(K)exp=0.012 2 (1973Ku09), 0.014 (1960Ar06); theory: $ $ α(K)(E2)=0.00588, α(K)(M1)=0.0193. $ δ: calculated from experimental conversion coefficient (evaluator).
	1175.4 2 1184.71 9	0.23 <i>5</i> 0.47 <i>4</i>	1175.24 1580.94	2 ⁺ (2 ⁻)	0.0 0 ⁺ 396.108 3 ⁻	(M1+E2)	1.29	0.014 7	$\alpha(K)=0.011\ 6;\ \alpha(L)=0.0022\ 10;\ \alpha(M)=0.00052\ 23;\ \alpha(N+)=0.00018\ 8$ $\alpha(N)=0.00014\ 6;\ \alpha(O)=3.3\times10^{-5}\ 15;\ \alpha(P)=6.E-6\ 3;\ \alpha(Q)=6.E-7\ 3;$ $\alpha(IPF)=3.8\times10^{-6}\ 17$ Mult.: $\alpha(K)\exp=0.0105\ 20\ (1973Ku09);\ theory:\ \alpha(K)(E2)=0.00571,$ $\alpha(K)(M1)=0.0185.$
	1191.09 ^b 1204.1 <i>3</i> 1229 2 ^b	≤0.1 0.23 <i>3</i> <0.15	2022.88 1261.59 1416.09	$(2)^+$ 4 ⁺ (3 ⁻)	831.72 0 ⁺ 57.775 2 ⁺ 186.849 4 ⁺				o. calculated from experimental conversion coefficient (evaluator).
	1245.17 6	5.6 3	1432.036	4 ⁺	186.849 4	[M1,E2]		0.013 6	$\alpha(K)=0.010$ 5; $\alpha(L)=0.0019$ 9; $\alpha(M)=0.00046$ 20; $\alpha(N+)=0.00017$ 8

 $^{228}_{90}$ Th $_{138}$ -29

From ENSDF

 $^{228}_{90}\mathrm{Th}_{138}$ -29

				2	²⁸ Pa	ε decay 1	998We13	8,1995Ba42	(continued)
						$\gamma(22)$	²⁸ Th) (co	ntinued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$\alpha^{\dagger} \&$	Comments
1247.07 5	8.2 4	1643.15	(3 ⁻)	396.108	3-	(M1)		0.0187	$\begin{aligned} \alpha(\text{N}) = 0.00012 \ 6; \ \alpha(\text{O}) = 2.9 \times 10^{-5} \ 13; \ \alpha(\text{P}) = 5.6 \times 10^{-6} \ 25; \\ \alpha(\text{Q}) = 5.\text{E} - 7 \ 3; \ \alpha(\text{IPF}) = 1.2 \times 10^{-5} \ 5 \\ \alpha(\text{K}) = 0.01505 \ 21; \ \alpha(\text{L}) = 0.00274 \ 4; \ \alpha(\text{M}) = 0.000654 \ 10; \\ \alpha(\text{N}+) = 0.000242 \ 4 \\ \alpha(\text{N}) = 0.0001743 \ 25; \ \alpha(\text{O}) = 4.13 \times 10^{-5} \ 6; \ \alpha(\text{P}) = 8.02 \times 10^{-6} \ 12; \\ \alpha(\text{Q}) = 7.69 \times 10^{-7} \ 11; \ \alpha(\text{IPF}) = 1.771 \times 10^{-5} \ 2 \\ \text{Mult.: for the } 1245 + 1246 \ \text{doublet: } \ \alpha(\text{K}) \exp = 0.0088 \ 11 \\ (1973\text{Ku09}), \ 0.021 \ (1960\text{Ar06}); \ \text{theory: } \ \alpha(\text{K})(\text{M1}) = 0.0162, \\ \alpha(\text{K})(\text{E2}) = 0.00521. \end{aligned}$
1249.7 2 1252.98 <i>10</i>	0.73 <i>10</i> 0.68 <i>6</i>	1645.933 1580.94	3 ⁺ (2 ⁻)	396.108 328.034	3- 1-	(M1+E2)	1.115	0.012 6	$\alpha(K)=0.010 5; \alpha(L)=0.0019 9; \alpha(M)=0.00045 20; \alpha(N+)=0.00017 8$ $\alpha(N)=0.00012 6; \alpha(O)=2.9\times10^{-5} 13; \alpha(P)=5.5\times10^{-6} 25; \alpha(Q)=5.E-7 3; \alpha(IPF)=1.4\times10^{-5} 6$ Mult.: $\alpha(K)\exp=0.010 3$ (1971Am05); theory: $\alpha(K)(E2)=0.00517, \alpha(K)(M1)=0.0160.$
1261.7 <i>4</i> <i>x</i> 1281.7 <i>2</i> 1282.6 <i>4</i>	≤0.15 0.29 <i>3</i> 0.09 <i>3</i>	1448.87 1678.43	3,4 ⁻ 2 ⁺	186.849 396.108	4+ 3-				<i>b</i> : calculated from experimental conversion coefficient (evaluator).
1286.0 ^{<i>a</i>} 3 ^{<i>x</i>} 1286.3 ^{<i>a</i>} 3	0.14 <i>5</i> 0.39 <i>9</i>	1804.690	4+	519.212	5-				E _γ : this γ is placed from the 1682.8 level by 1995Ba42. A 1286.27 20 γ seen in ²²⁸ Ac decay is placed from the 1344.08 level. However, the ratio $I\gamma/I\gamma(1496.15\gamma)=0.14$ 3 here does not agree with $I\gamma/I\gamma(1495.91\gamma)=0.058$ 15 in ²²⁸ Ac decay. The calculated energy of the transition from the 1682.8 level is 1286.73 3. From 1344.08 level the ratio $I\gamma/I\gamma(947.98\gamma)=0.47$ 10 in ²²⁸ Ac decay; in this decay, I(948γ)≈0.2 giving the estimated $I\gamma\approx0.1$ for that placement.
1286.3 ^b 1286.3 ^a 3	≤0.2 0.25 8	1344.09 1682.85	3 ⁻ (2 ⁺ ,3 ⁺ ,4 ⁺)	57.775 396.108	2+ 3-				E _γ : this γ is placed by 1995Ba42. A 1286.27 20 γ seen in ²²⁸ Ac decay is placed from the 1344.08 level. However, the ratio $I\gamma/I\gamma(1496.15\gamma)=0.14$ 3 here does not agree with $I\gamma/I\gamma(1495.91\gamma)=0.058$ 15 in ²²⁸ Ac decay. The calculated energy of the transition from the 1682.8 level is 1286.73 3. From 1344.08 level the ratio $I\gamma/I\gamma(947.98\gamma)=0.47$ 10 in ²²⁸ Ac decay; in this decay, $I(948\gamma)\approx0.2$ giving the estimated $I\gamma\approx0.1$ for that placement
1287.79 ^a 8	1.56 <i>11</i>	1683.77	(4 ⁻)	396.108	3-	(M1+E2)	0.91	0.012 6	$\alpha(K)=0.009 5; \alpha(L)=0.0018 8; \alpha(M)=0.00042 18; \alpha(N+)=0.00017 7 \alpha(N)=0.00011 5; \alpha(O)=2.7\times10^{-5} 12; \alpha(P)=5.1\times10^{-6} 23; \alpha(Q)=4.7\times10^{-7} 24; \alpha(IPF)=2.0\times10^{-5} 9$

From ENSDF

 $^{228}_{90}{\rm Th}_{138}\text{--}30$

 $^{228}_{90}{
m Th}_{138}$ -30

l

				²²⁸ P	a ε decay	1998We1	3,1995Ba42	(continued)
					<u> </u>	(^{228}Th) (co	ontinued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger} &	Comments
1298.3 2	0.45 4	1817.442	4-	519.212 5-	(M1+E2)	0.77	0.011 6	Mult.: $\alpha(K)\exp=0.0104 \ 15 \ (1973Ku09)$; theory: $\alpha(K)(M1)=0.0149$, $\alpha(K)(E2)=0.00492$. δ : calculated from experimental conversion coefficient (evaluator). $\alpha(K)=0.009 \ 5; \ \alpha(L)=0.0017 \ 8; \ \alpha(M)=0.00041 \ 18; \ \alpha(N+)=0.00016 \ 7$
								α(N)=0.00011 5; α(O)=2.6×10-5 11; α(P)=5.0×10-6 22; α(Q)=4.6×10-7 23; α(IPF)=2.3×10-5 10 Mult.: α(K)exp=0.011 4 (1973Ku09); theory: α(K)(M1)=0.0146, α(K)(E2)=0.00486, α(K)(E1)=0.00182, α(K)(M2)=0.0146. δ: calculated from experimental conversion coefficient (evaluator). +0.27≤δ≤+5 from γ(θ,H,T) (1995Ba42).
1304.2 3	0.07 3	1823.49	(4 ⁺)	519.212 5-				
1310.26 ^b ^x 1310.8 <i>I</i>	$\leq 0.02 \\ 0.48 5$	1638.300	2+	328.034 1-				I_{γ} : part of a multiplet, I_{γ} from ²²⁸ Ac β^- decay.
1310.8 1	0.48 5	1497.69	(5^{-})	186.849 4+				
1311.6 4 1315.2 2	$0.08 \ 3$ $0.20 \ 5$	1707.30 1643.15	$(2,3^{-})$ (3^{-})	396.108 3 ⁻ 328.034 1 ⁻	[E2]		0.006	$\alpha(K)=0.009$ 5; $\alpha(L)=0.0017$ 7; $\alpha(M)=0.00040$ 17; $\alpha(N+)=0.00016$
								α (N)=0.00011 5; α (O)=2.5×10 ⁻⁵ 11; α (P)=4.9×10 ⁻⁶ 21; α (Q)=4.5×10 ⁻⁷ 22; α (IPF)=2.7×10 ⁻⁵ 11
1344.65 ^b 1347.6 3 1357.2 3 1358.3 3 1359.9 3 1361.4 5 1365.72 12 1374.26 7 1379.2 2 1383.2 2 1405.5 2 1406.8 2 1415.5 2 1415.5 2	$\begin{array}{c} 0.013 \ 4\\ 0.16 \ 5\\ 0.15 \ 5\\ 0.34 \ 5\\ 0.13 \ 5\\ 0.12 \ 5\\ 0.40 \ 4\\ \approx 1.0\\ 0.31 \ 15\\ 0.55 \ 5\\ 0.32 \ 8\\ 0.32 \ 8\\ 0.6 \ 1\\ 0 \ 32 \ 7\end{array}$	1531.51 1743.90 1876.46 1416.09 1879.06 1758.06 1743.90 1432.036 1707.30 1901.94 1924.66 1802.90 1811.58 1743.90	$3^{+} \\ 4^{+} \\ (3^{-}, 4, 5^{-}) \\ (3^{-}) \\ 2^{+} \\ 4^{+} \\ 4^{+} \\ (2, 3^{-}) \\ 4^{+} \\ 4^{+}, 5^{-} \\ 2^{+} \\ (1^{-}, 2, 3^{-}) \\ 4^{+} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[E2]		0.01141	I_{γ} : from branching ratio in adopted γ's; $I_{\gamma} ≤ 0.1$ (1998We13). $α(K) = 0.00840, I_2$: $α(I_{\gamma}) = 0.00217, 3$: $α(M) = 0.000542, 8$:
1415.8 2	0.32 7	1743.90	4+	328.034 1-	[E3]		0.01141	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00849 \ 12; \ \alpha(\mathbf{L}) = 0.00217 \ 3; \ \alpha(\mathbf{M}) = 0.000542 \ 8; \\ &\alpha(\mathbf{N}+) = 0.000202 \ 3 \\ &\alpha(\mathbf{N}) = 0.0001450 \ 21; \ \alpha(\mathbf{O}) = 3.39 \times 10^{-5} \ 5; \ \alpha(\mathbf{P}) = 6.36 \times 10^{-6} \ 9; \\ &\alpha(\mathbf{Q}) = 4.71 \times 10^{-7} \ 7; \ \alpha(\mathbf{IPF}) = 1.605 \times 10^{-5} \ 23 \end{aligned}$
1419.8 2 1421.1 2	1.25 9	1817.442	(4 ⁺) 4 ⁻	396.108 3 ⁻	E2+M1	+2.0 5	0.0068 9	$ \begin{array}{l} \alpha = 0.0068 \; 9; \; \alpha(\mathrm{K}) = 0.0054 \; 8; \; \alpha(\mathrm{L}) = 0.00104 \; 13; \; \alpha(\mathrm{M}) = 0.00025 \; 3; \\ \alpha(\mathrm{N}+) = 0.000133 \; 16 \\ \alpha(\mathrm{N}) = 6.7 \times 10^{-5} \; 8; \; \alpha(\mathrm{O}) = 1.57 \times 10^{-5} \; 19; \; \alpha(\mathrm{P}) = 3.0 \times 10^{-6} \; 4; \\ \alpha(\mathrm{Q}) = 2.7 \times 10^{-7} \; 4; \; \alpha(\mathrm{IPF}) = 4.7 \times 10^{-5} \; 6 \\ \mathrm{Mult.:} \; \alpha(\mathrm{K}) \exp = 0.0055 \; 14 \; (1973 \mathrm{Ku09}); \; \mathrm{theory:} \; \alpha(\mathrm{K})(\mathrm{E2}) = 0.00414. \end{array} $

				²²⁸ Pa	a $arepsilon$ decay	1998We13,19	95Ba42 (continued)
					<u> </u>	⁽²²⁸ Th) (contir	nued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^π	E_f J	I_f^{π} Mult. [#]	α^{\dagger} &	Comments
1426.43 ^b	≤0.3	1804.690	4+	378.214	5 ⁺ [E2]	0.00518 8	$\alpha = 0.00518 \ 8; \ \alpha(K) = 0.00407 \ 6; \ \alpha(L) = 0.000809 \ 12; \ \alpha(M) = 0.000196 \ 3; \\ \alpha(N+) = 0.0001056 \ 15 \\ \alpha(N) = 5.21 \times 10^{-5} \ 8; \ \alpha(O) = 1.224 \times 10^{-5} \ 18; \ \alpha(P) = 2.33 \times 10^{-6} \ 4; \\ \alpha(O) = 1.97 \times 10^{-7} \ 3; \ \alpha(IPE) = 3.87 \times 10^{-5} \ 6$
1426.6 1	0.48 6	1945.74	4+,5-	519.212 5	5-		$u(Q) = 1.77 \times 10^{-5}$, $u(H1) = 5.67 \times 10^{-5}$
$1430.0 \ 3^{x} 1432^{f} \ 1$	$\begin{array}{c} 0.19 \ 7\\ \leq 1.3^{f} \end{array}$	1758.06	2+	328.034 1	[E_{γ} : This line seems to be a doublet of lines with $E_{\gamma} \approx 1431$ and 1433 keV which are both in coin with the 4 ⁺ to 2 ⁺ transition
1432 ^{<i>f</i>} 1	0.60 ^{<i>f</i>} 14	1618.04?	4+	186.849 4	ţ+		 E_γ: The measured intensity suggests that this line doublet with an unassigned line at Eγ≈1431. I_γ: from Iγ/Iγ(1560γ) in adopted γ's. Iγ(doublet)≤1.8 and. Mult.: for the doublet α(K)exp=0.0032 7 (1973Ku09); α(K)(E2)=0.00409, α(K)(M1)=0.0113.
1451.45 ^b	0.039 9	1638.300	2+	186.849 4	4+ [E2]	0.00502 7	α =0.00502 7; α (K)=0.00395 6; α (L)=0.000780 11; α (M)=0.000189 3; α (N+)=0.0001095 16 α (N)=5.02×10 ⁻⁵ 7; α (O)=1.180×10 ⁻⁵ 17; α (P)=2.25×10 ⁻⁶ 4; α (Q)=1.91×10 ⁻⁷ 3; α (IPF)=4.51×10 ⁻⁵ 7 L ₂ : from branching ratio in adopted γ 's: Ly<0.05 (1998We13)
1455.0 2 1459.2 2	1.16 7 8.6 5	1974.20 1645.933	(2 ⁺ ,3 ⁻) 3 ⁺	519.212 5 186.849 4	5- t ⁺ E2	0.00498 7	$\alpha = 0.00498 \ 7; \ \alpha(K) = 0.00391 \ 6; \ \alpha(L) = 0.000771 \ 11; \ \alpha(M) = 0.000186 \ 3; \\ \alpha(N) = 4.97 \times 10^{-5} \ 7; \ \alpha(O) = 1.167 \times 10^{-5} \ 17; \ \alpha(P) = 2.23 \times 10^{-6} \ 4; \\ \alpha(Q) = 1.89 \times 10^{-7} \ 3; \ \alpha(IPF) = 4.71 \times 10^{-5} \ 7 \\ Mult.: \ \alpha(K) \exp = 0.0045 \ 9 \ (1971 \text{Am05}), \ 0.0026 \ (1960 \text{Ar06}); \ \text{theory:} \\ \alpha(K) (E2) = 0.00395 \ \alpha(K) (M1) = 0.0108 \\ \end{array}$
1468.8 <i>3</i> 1474.8 <i>4</i> ^x 1480.4 ^a <i>3</i>	0.28 7 0.09 5 0.77 10	1864.95 1802.90	(2 ⁺) 2 ⁺	396.108 3 328.034 1	3- L-		Mult.: $\alpha(K)\exp=0.009\ 3\ (1973Ku09)$; theory: $\alpha(K)(E2)=0.00385$,
1480.4 ^{<i>a</i>} 3 1480.5 ^{<i>a</i>} 2 1482.9 ^{<i>a</i>} 3 ^{<i>x</i>} 1483.2 ^{<i>a</i>} 3 1483.5 ^{<i>a</i>} 2 ^{<i>x</i>} 1486.3 ^{<i>a</i>} 3	0.13 6 0.50 14 0.20 6 0.52 7 0.35 11 0.27 7	1876.46 1667.38 1879.06 1811.58	$(3^-,4,5^-)$ 2^+ (3^-) $(1^-,2,3^-)$	396.108 3 186.849 4 396.108 3 328.034 1	3- 1+ 3-		α(K)(M1)=0.0104.
1496.15 ^{<i>a</i>} 6	2.44 20	1682.85	(2 ⁺ ,3 ⁺ ,4 ⁺)	186.849 4	t⁺ (E2)	0.00477 7	$\begin{aligned} &\alpha = 0.00477 \ 7; \ \alpha(\text{K}) = 0.00374 \ 6; \ \alpha(\text{L}) = 0.000732 \ 11; \ \alpha(\text{M}) = 0.0001769 \ 25; \\ &\alpha(\text{N}+) = 0.0001177 \\ &\alpha(\text{N}) = 4.71 \times 10^{-5} \ 7; \ \alpha(\text{O}) = 1.107 \times 10^{-5} \ 16; \ \alpha(\text{P}) = 2.11 \times 10^{-6} \ 3; \\ &\alpha(\text{Q}) = 1.81 \times 10^{-7} \ 3; \ \alpha(\text{IPF}) = 5.73 \times 10^{-5} \ 8 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.0029 \ 9 \ (1973 \text{Ku} 09); \ \text{theory:} \ \alpha(\text{K})(\text{E2}) = 0.00378, \\ &\alpha(\text{K})(\text{M1}) = 0.0101. \end{aligned}$

From ENSDF

 $^{228}_{90}$ Th $_{138}$ -32

				22	⁸ Pa ε decay	1998W	/e13,1995Ba4	2 (continued)
						$\gamma(^{228}\text{Th})$	(continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	$\alpha^{\dagger \&}$	Comments
1497.5 ^{<i>a</i>} 2	0.30 2	2016.76	(4+,5)	519.212 5-				
1501.5 2	0.74 6	1688.42	$2^+, 3^+$	186.849 4 ⁺ 396 108 3 ⁻				Mult $\cdot \alpha(K) = 0.0050.23 (1073Ku00) \cdot theory:$
1505.7 2	0.72 0	1099.95	(2)	390.108 3				$\alpha(K)(E1)=0.00142, \ \alpha(K)(E2)=0.00374.$
								γ not reported in ²²⁸ Ac decay.
1505.9 2 1512 9 <mark>4</mark> 3	0.55 5	1901.94 1908.47	4^+ (3 ⁻)	396.108 3 ⁻ 396.108 3 ⁻				
1513.4 ^{<i>a</i>} 5	0.06 2	1842.23	(2,3)	328.034 1-				
1523.4 ^{<i>a</i>} 2	0.46 8	1580.94	(2^{-})	57.775 2 ⁺			0.00139	α =0.00139; α (K)=0.00139
1523.5° 2 1529.02 6	0.14 6 2.61 13	1901.94 1925.22	4^{+} $3^{+}.4^{+}$	378.214 6 396.108 3 ⁻	[E1]		0.00185 3	$\alpha = 0.00185 3$; $\alpha(K) = 0.001380 20$; $\alpha(L) = 0.000222 4$;
			- ,					$\alpha(M)=5.23\times10^{-5} 8; \alpha(N+)=0.000193 3$
								$\alpha(N)=1.388\times10^{-5}\ 20;\ \alpha(O)=3.28\times10^{-6}\ 5;\ \alpha(P)=6.35\times10^{-7}\ 9;$
								$\alpha(Q)=6.04\times10^{-6}$ 9; $\alpha(PF)=0.0001749$ 25 Mult : $\alpha(K)\exp=0.0034$ 11 (1973Ku09): theory:
								$\alpha(K)(E1)=0.00138, \ \alpha(K)(E2)=0.00364, \ \alpha(K)(M1)=0.0095;$
1536.8 ^{<i>a</i>} 3	0.14 5	1864.95	(2^+)	328.034 1-	[[[2]]		0.00455.7	a=0.00455 7; $a(K)=0.00256$ 5; $a(L)=0.000602$ 10;
1337.8 2	0.75 10	1724.301	2	180.849 4	[E2]		0.00433 /	$\alpha = 0.004357$, $\alpha (K) = 0.005565$, $\alpha (L) = 0.00069270$, $\alpha (M) = 0.000167024$; $\alpha (N+) = 0.0001269$
								$\alpha(N) = 4.44 \times 10^{-5}$ 7; $\alpha(O) = 1.045 \times 10^{-5}$ 15; $\alpha(P) = 2.00 \times 10^{-6}$ 3;
								$\alpha(Q)=1.720\times10^{-7}$ 24; $\alpha(IPF)=6.98\times10^{-5}$ 10 Mult - $\alpha(K)$ and $\alpha(Q)=0.0080$ 25 (1072K) (00)) theorem
								$\alpha(K)(E2)=0.00360.$ (1975K009); theory:
^x 1542.8 2	0.28 5	1005 00	2+ 4+					
1547.02	0.44 12	1925.22	3+,4+	3/8.214 6*				
1548.7 ^{<i>a</i>} 4	0.30 15	1735.64	4+	186.849 4+				
1548.8 ^{<i>a</i>} 2	122	1944.916	3^+	396.108 3-				I_{γ} : No intensity is given in 1998We13.
1549.5 2	4.42 22	1943.74 1743.90	4 ,3 4 ⁺	186.849 4 ⁺	(E2+M1)	+1.2 2	0.0070 6	α =0.0070 6; α (K)=0.0055 5; α (L)=0.00102 8; α (M)=0.000245
					. ,			19; $\alpha(N+)=0.000198$ 15
								$\alpha(N)=6.5\times10^{-5} 5; \alpha(O)=1.54\times10^{-5} 12; \alpha(P)=2.98\times10^{-6} 23;$
								$\alpha(Q) = 2.75 \times 10^{-24}$; $\alpha(P) = 0.000114^{-9}$ Mult.: $\alpha(K) \exp[= 0.0056 \ 11 \ (1973Ku09), 0.0061 \ (1960Ar06);$
1550 50 5	0.24.5	1 (10 0 / 2	4					theory: $\alpha(K)(E2)=0.00352$, $\alpha(K)(M1)=0.00908$.
1559.7 ⁴ 2 1561 7 4	0.34 5 0.10 <i>4</i>	1618.04? 1958-19	4^{+} (2 ⁺)	57.775 2 ⁺ 396.108 3 ⁻				
1567.6 3	0.23 11	1945.74	4+,5-	378.214 6+				
1572.0 ^{<i>a</i>} 1	0.4 1	1899.93	(2^+)	328.034 1-			0.00420.7	
15/5.54 3	5.6 10	1/60.32	2(1),3(1)	186.849 4	(E2)		0.00438 7	α =0.00438 /; α (K)=0.00342 5; α (L)=0.000600 10; α (M)=0.0001592 23; α (N+)=0.0001356

				228]	Pa ε decay	1998We13,199	5Ba42 (continued)
					<u> </u>	²²⁸ Th) (continue	ed)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E _f J	$\frac{\pi}{f}$ Mult. [#]	$lpha^{\dagger \&}$	Comments
1578 2 2	1 22 12	1074 20	(2+ 2-)	206 109 2	_		$\begin{aligned} &\alpha(\text{N}) = 4.24 \times 10^{-5} \ 6; \ \alpha(\text{O}) = 9.97 \times 10^{-6} \ 14; \ \alpha(\text{P}) = 1.91 \times 10^{-6} \ 3; \\ &\alpha(\text{Q}) = 1.650 \times 10^{-7} \ 24; \ \alpha(\text{IPF}) = 8.12 \times 10^{-5} \ 12 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.011 \ 4 \ (1973 \text{Ku09}); \ \text{theory:} \ \alpha(\text{K})(\text{M1}) = 0.00884, \\ &\alpha(\text{K})(\text{E2}) = 0.00346 \ \alpha(\text{K})(\text{E1}) = 0.00132. \end{aligned}$
1578.2 2 1580.5 ^{<i>a</i>} 3	1.33 <i>1</i> 3 2.18 <i>14</i>	1638.300	(2',3') 2 ⁺	57.775 2	+ (M1,E2)	0.007 3	α =0.007 3; α (K)=0.0057 24; α (L)=0.0011 4; α (M)=0.00025 10; α (N+)=0.00022 9 α (N)=7.E-5 3; α (O)=1.6×10 ⁻⁵ 6; α (P)=3.1×10 ⁻⁶ 12; α (Q)=2.9×10 ⁻⁷ 13; α (IPF)=0.00013 5 Mult.: α (K)exp=0.0046 15 (1973Ku09); theory: α (K)(M1)=0.0087, α (K)(F2) 0.00242
1585.5 2	0.32 10	1981.90	(3-)	396.108 3	-		$\alpha(K)(E2)=0.00343.$
1588.15 5	37.2 19	1645.933	3+	57.775 2	+ E2	0.00431 6	$\alpha = 0.00431 \ 6; \ \alpha(K) = 0.00337 \ 5; \ \alpha(L) = 0.000647 \ 9; \ \alpha(M) = 0.0001561 \ 22; \ \alpha(N+) = 0.0001396 \ 2 \ \alpha(N) = 4.15 \times 10^{-5} \ 6; \ \alpha(O) = 9.77 \times 10^{-6} \ 14; \ \alpha(P) = 1.87 \times 10^{-6} \ 3; \ \alpha(Q) = 1.622 \times 10^{-7} \ 23; \ \alpha(IPF) = 8.62 \times 10^{-5} \ 12 \ Mult.: \ \alpha(K) exp = 0.0025 \ 4 \ (1971 \text{ Am05}), \ 0.0031 \ (1960 \text{ Ar06}); \ theory: \ \alpha(K)(E2) = 0.0034, \ \alpha(K)(E1) = 0.0013, \ \alpha(K)(M1) = 0.0086. \ \delta_{1,2} \in 6 \ from pucker orientation \ (1905 \text{ Rad})$
1595.8 3	0.19 8	1974.20	$(2^+, 3^-)$	378.214 6	;+ + () (1)	0.00074.14	
1609.6 1	0.92 7	1796.43	4.	186.849 4	·· (M1)	0.00974 14	$\alpha = 0.00974 14; \ \alpha(K) = 0.00770 17; \ \alpha(L) = 0.001392 20; \ \alpha(M) = 0.000333 5; \ \alpha(N) = 0.000319 5$ $\alpha(N) = 8.86 \times 10^{-5} 13; \ \alpha(O) = 2.10 \times 10^{-5} 3; \ \alpha(P) = 4.08 \times 10^{-6} 6; \ \alpha(Q) = 3.92 \times 10^{-7} 6; \ \alpha(IPF) = 0.000205 3$ Mult : $\alpha(K) \exp = 0.014 3 (1973 Ku09)$: theory: $\alpha(K)(M1) = 0.0092$.
1618.0 <i>I</i>	0.90 6	1804.690	4+	186.849 4	+ (M1,E2)	0.007 3	$\begin{aligned} &\alpha = 0.007 \ 3; \ \alpha(\text{K}) = 0.0051 \ 9 \ (15) 514059, \ \text{ueory}, \ \alpha(\text{K})(\text{H1}) = 0.0052, \\ &\alpha = 0.007 \ 3; \ \alpha(\text{K}) = 0.0024 \ 9; \\ &\alpha(\text{N}+) = 0.00024 \ 9; \\ &\alpha(\text{N}) = 6.4 \times 10^{-5} \ 24; \ \alpha(\text{O}) = 1.5 \times 10^{-5} \ 6; \ \alpha(\text{P}) = 2.9 \times 10^{-6} \ 12; \\ &\alpha(\text{Q}) = 2.7 \times 10^{-7} \ 12; \ \alpha(\text{IPF}) = 0.00015 \ 6 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.012 \ 4 \ (1973 \text{Ku09}); \ \text{theory:} \ \alpha(\text{K})(\text{M1}) = 0.0096, \\ &\alpha(\text{K})(\text{E2}) = 0.0042. \end{aligned}$
1620.67 ^{<i>a</i>} 10	0.29 8	2016.76	$(4^+, 5^-)$	396.108 3	(M1+E2)		Mult.: $\alpha(K)\exp=0.0060 \ 15 \ (1973Ku09)$; theory: $\alpha(K)(M1)=0.0090$, $\alpha(K)(E2)=0.0034$
1625.0 2 1630.63 6	0.70 <i>14</i> 2.65 <i>13</i>	1682.85 1688.42	$(2^+,3^+,4^+)$ $2^+,3^+$	57.775 2 57.775 2	,+ ,+ ,+ (M1,E2)	0.007 3	$\alpha = 0.007 \ 3; \ \alpha(K) = 0.0053 \ 22; \ \alpha(L) = 0.0010 \ 4; \ \alpha(M) = 0.00023 \ 9; \ \alpha(N+) = 0.00024 \ 9 \ \alpha(N) = 6.2 \times 10^{-5} \ 24 \ \alpha(O) = 1.5 \times 10^{-5} \ 6: \ \alpha(P) = 2.0 \times 10^{-6} \ U;$
1638.30 ^{<i>a</i>} 7	1.88 11	1638.300	2+	0.0 0	⁺ (E2)	0.00410 6	$\begin{aligned} \alpha(Q) &= 2.7 \times 10^{-7} \ 12; \ \alpha(IPF) &= 0.00016 \ 6 \\ \alpha &= 0.00410 \ 6; \ \alpha(K) &= 0.00319 \ 5; \ \alpha(L) &= 0.000608 \ 9; \ \alpha(M) &= 0.0001463 \\ 21; \ \alpha(N+) &= 0.0001539 \ 2 \\ \alpha(N) &= 3.89 \times 10^{-5} \ 6; \ \alpha(O) &= 9.16 \times 10^{-6} \ 13; \ \alpha(P) &= 1.755 \times 10^{-6} \ 25; \end{aligned}$

 $^{228}_{90}$ Th $_{138}$ -34

l

					228 Pa ε decay		1998We13,1995Ba42 (0		continued)	
γ ⁽²²⁸ Th) (continued)										
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger} &	Comments	
1638 5 ^{<i>a</i>} 3	0.09.4	2016 76	(1+ 5-)	378 214	6+				$\alpha(Q)=1.533 \times 10^{-7} 22; \ \alpha(IPF)=0.0001039$ Mult.: $\alpha(K)\exp=0.0026 \ 8 \ (1973Ku09);$ theory: $\alpha(K)(M1)=0.0087, \ \alpha(K)(E2)=0.0034.$	
1666.53 6	3.35 17	1724.301	(+ ,5) 2 ⁺	57.775	2+	M1		0.00895 13	α =0.00895 <i>13</i> ; α (K)=0.00702 <i>10</i> ; α (L)=0.001269 <i>18</i> ; α (M)=0.000303 <i>5</i> ; α (N+)=0.000351 <i>5</i> α (N)=8.08×10 ⁻⁵ <i>12</i> ; α (O)=1.91×10 ⁻⁵ <i>3</i> ; α (P)=3.72×10 ⁻⁶ <i>6</i> ; α (Q)=3.58×10 ⁻⁷ <i>5</i> ; α (IPF)=0.000247 <i>4</i> Mult.: α (K)exp=0.0081 <i>21</i> (1971Am05); theory:	
									$\alpha(K)(M1) = 0.0084.$ $\delta: 0.00.5 \text{ from } \gamma(\theta, H, T) (1995Ba42).$	
1677.9 <i>1</i> 1686 15 7	0.65 5	1735.64	4^+	57.775	$2^+_{2^+}$	$(\mathbf{F2})$		0.00391.6	$\alpha = 0.00301$ 6: $\alpha(K) = 0.00303$ 5: $\alpha(L) = 0.000573$ 8:	
1080.15 /	2.39 12	1743.90	4	51.115	2	(E2)		0.00391 0	$\begin{array}{l} \alpha = 0.00591\ 0,\ \alpha(\text{N}) = 0.00505\ 3,\ \alpha(\text{L}) = 0.000575\ 8,\\ \alpha(\text{M}) = 0.0001378\ 20;\ \alpha(\text{N}+) = 0.0001689\ 2\\ \alpha(\text{N}) = 3.67 \times 10^{-5}\ 6;\ \alpha(\text{O}) = 8.64 \times 10^{-6}\ 12;\ \alpha(\text{P}) = 1.655 \times 10^{-6}\ 24;\\ \alpha(\text{Q}) = 1.455 \times 10^{-7}\ 21;\ \alpha(\text{IPF}) = 0.0001217\\ \text{M} = 0.0$	
									Mult.: α (K)exp=0.0031 <i>11</i> (1973Ku09); theory: α (K)(E2)=0.0032, α (K)(M1)=0.0082.	
1702.6 ^{<i>a</i>} 3 1706.16 7	1.15 <i>11</i> 2.84 <i>14</i>	1760.32 1893.017	2 ⁽⁺⁾ ,3 ⁽⁺⁾ 3 ⁺	57.775 186.849	2+ 4+	M1+E2	+0.42 4	0.00776 16	$ \begin{array}{l} \alpha = 0.00776 \ 16; \ \alpha(\mathrm{K}) = 0.00605 \ 13; \ \alpha(\mathrm{L}) = 0.001097 \ 22; \\ \alpha(\mathrm{M}) = 0.000262 \ 6; \ \alpha(\mathrm{N}+) = 0.000345 \ 7 \\ \alpha(\mathrm{N}) = 6.99 \times 10^{-5} \ 14; \ \alpha(\mathrm{O}) = 1.65 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 3.21 \times 10^{-6} \ 7; \\ \alpha(\mathrm{Q}) = 3.07 \times 10^{-7} \ 7; \ \alpha(\mathrm{IPF}) = 0.000256 \ 6 \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.0071 \ 16 \ (1973\mathrm{Ku}09), \ 0.0063 \ (1960\mathrm{Ar}06); \\ \mathrm{theory:} \ \alpha(\mathrm{K})(\mathrm{M}1) = 0.0079, \ \alpha(\mathrm{K})(\mathrm{E2}) = 0.0031. \end{array} $	
1713.16 ^b 1715.06 <i>10</i>	≤0.1 0.50 <i>3</i>	1899.93 1901.94	(2 ⁺) 4 ⁺	186.849 186.849	4+ 4+					
1724.0 2 1738.48 5	0.50 <i>5</i> 0.96 <i>5</i>	1724.301 1925.22	2+ 3+,4+	0.0 186.849	0 ⁺ 4 ⁺	M1+E2	0.65 5	0.0059 22	α =0.0059 22; α (K)=0.0046 17; α (L)=0.0008 3; α (M)=0.00020 7; α (N+)=0.00029 11 α (N)=5.3×10 ⁻⁵ 19; α (O)=1.3×10 ⁻⁵ 5; α (P)=2.4×10 ⁻⁶ 9; α (Q)=2.3×10 ⁻⁷ 10; α (IPF)=0.00022 8 δ : calculated from experimental conversion coefficient (evaluator). Mult.: α (K)exp=0.0061 8 (1971Am05), 0.0057 (1960Ar06); theory: α (K)(M1)=0.0074, α (K)(F2)=0.0030	
1741.6 2 ^x 1746.2 2	0.42 8 0.34 <i>4</i>	1928.37	3+	186.849	4+					
1746.84 ^b 1752.1 2 1758.11 5	≤0.3 0.37 <i>4</i> 9.0 <i>5</i>	1804.690 1939.10 1944.916	4 ⁺ (4 ⁺) 3 ⁺	57.775 186.849 186.849	2+ 4+ 4+	E2+M1	-9 1	0.00371 6	α =0.00371 6; α (K)=0.00285 5; α (L)=0.000533 8; α (M)=0.0001281 19; α (N+)=0.000195 3	

From ENSDF

 $^{228}_{90}$ Th $_{138}$ -35

					$^{228}\mathbf{Pa}\ \varepsilon$ decay		1998We13	3,1995Ba42 (co	ontinued)		
							γ ⁽²²⁸ Th) (continued)				
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	a^{\dagger} &	Comments		
									α (N)=3.41×10 ⁻⁵ 5; α (O)=8.03×10 ⁻⁶ 12; α (P)=1.542×10 ⁻⁶ 23; α (Q)=1.369×10 ⁻⁷ 20; α (IPF)=0.0001515 Mult.: α (K)exp=0.0038 8 (1971Am05), 0.0015 (1960Ar06); theory: α (K)(E2)=0.0029, α (K)(M1)=0.0072.		
1778.0 6 1784.4 2 1787.2 2 1795 15 6	0.06 2 0.62 5 0.37 4	1965.05 1842.23 1974.20	$(2^+) (2,3) (2^+,3^-) (3^-)$	186.849 57.775 186.849	4^+ 2^+ 4^+ 4^+				• • • • • • • • • • • •		
1795.15 0 1807.2 <i>1</i>	0.60 5	1864.95	(3 ⁺) (2 ⁺)	57.775	4 2 ⁺				Mult.: α (K)exp=0.006 <i>3</i> (1973Ku09); theory: α (K)(M1)=0.0068, α (K)(E2)=0.0028.		
1823.19 <i>10</i> 1835.26 <i>5</i>	0.47 <i>3</i> 9.8 <i>5</i>	2010.10 1893.017	(2 ⁺) 3 ⁺	186.849 57.775	4+ 2+	E2+M1	+2.9 3	0.00382 10	$ \begin{array}{l} \alpha = 0.00382 \ 10; \ \alpha(\text{K}) = 0.00291 \ 8; \ \alpha(\text{L}) = 0.000536 \ 14; \\ \alpha(\text{M}) = 0.000128 \ 4; \ \alpha(\text{N}+) = 0.000246 \ 7 \\ \alpha(\text{N}) = 3.42 \times 10^{-5} \ 9; \ \alpha(\text{O}) = 8.06 \times 10^{-6} \ 21; \ \alpha(\text{P}) = 1.55 \times 10^{-6} \ 4; \\ \alpha(\text{Q}) = 1.41 \times 10^{-7} \ 4; \ \alpha(\text{IPF}) = 0.000202 \ 6 \\ \text{Mult.:} \ \alpha(\text{K}) \exp = 0.0036 \ 6 \ (1971 \text{Am05}), \ 0.0055 \ (1960 \text{Ar06}); \\ \end{array} $		
1842.15 8	2.29 12	1899.93	(2+)	57.775	2+	M1+E2	-0.86 14	0.0055 4	theory: $\alpha(K)(E2)=0.00275$, $\alpha(K)(M1)=0.0065$. $\alpha=0.00554$; $\alpha(K)=0.0042025$; $\alpha(L)=0.000765$; $\alpha(M)=0.00018211$; $\alpha(N+)=0.00036321$ $\alpha(N)=4.9\times10^{-5}3$; $\alpha(O)=1.15\times10^{-5}7$; $\alpha(P)=2.23\times10^{-6}13$; $\alpha(Q)=2.10\times10^{-7}13$; $\alpha(IPF)=0.00030118$ Mult.: $\alpha(K)\exp=0.005920$ (1971Am05); theory: $\alpha(K)(M1)=0.0064, \alpha(K)(E2)=0.0027$.		
1865.1 <i>1</i> 1870.80 <i>9</i>	0.80 <i>4</i> 0.73 <i>4</i>	1864.95 1928.37	(2 ⁺) 3 ⁺	0.0 57.775	0+ 2+	(M1+E2)		0.0051 <i>18</i>	$\alpha = 0.0051 \ 18; \ \alpha(K) = 0.0038 \ 14; \ \alpha(L) = 0.00070 \ 24; \alpha(M) = 0.00017 \ 6; \ \alpha(N+) = 0.00036 \ 13 \alpha(N) = 4.4 \times 10^{-5} \ 15; \ \alpha(O) = 1.1 \times 10^{-5} \ 4; \ \alpha(P) = 2.0 \times 10^{-6} \ 7; \alpha(Q) = 1.9 \times 10^{-7} \ 8; \ \alpha(IPF) = 0.00030 \ 11 Mult.: \ \alpha(K) exp = 0.0028 \ 14 \ (1973Ku09); theory: \alpha(K)(E2) = 0.0026, \ \alpha(K)(M1) = 0.0071 \ \alpha(K)(E1) = 0.00100, \alpha(K)(M2) = 0.0138. $		
1887.13 5	24.0 12	1944.916	3+	57.775	2+	E2+M1	-9.1 9	0.00333 5	$\alpha = 0.00333 5; \alpha(K) = 0.00251 4; \alpha(L) = 0.000462 7; \alpha(M) = 0.0001107 16; \alpha(N+) = 0.000243 4 \alpha(N) = 2.95 \times 10^{-5} 5; \alpha(O) = 6.95 \times 10^{-6} 10; \alpha(P) = 1.336 \times 10^{-6} 19; \alpha(Q) = 1.201 \times 10^{-7} 18; \alpha(IPF) = 0.000205 3 Mult.: \alpha(K) exp = 0.0028 5 (1971 Am05), 0.0023 (1960 Ar06); theory: \alpha(K)(F2) = 0.0026 \alpha(K)(M1) = 0.0059$		
1900.3 <i>3</i> 1907.13 <i>11</i> 1916.6 <i>3</i>	0.34 <i>5</i> 0.99 <i>5</i> 0.15 <i>3</i>	1899.93 1965.05 1974.20	(2^+) (2^+) $(2^+,3^-)$	0.0 57.775 57.775	$0^+ 2^+ 2^+$				$u(\mathbf{x})(\mathbf{E}_2) = 0.0020, \ u(\mathbf{x})(\mathbf{W}_1) = 0.0039.$		
*1919.4 2 1924.2 2 *1936.0 2	0.26 <i>3</i> 0.18 <i>2</i> 0.20 <i>3</i>	1981.90	(3-)	57.775	2+						

L

γ (²²⁸Th) (continued)

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
1952.39 10	0.76 5	2010.10	(2^{+})	57.775	2+
1958.1 2	0.29 3	1958.19	(2^{+})	0.0	0^+
1965.22 ^{ea} 12	0.43 ^e 4	1965.05	(2^{+})	0.0	0^+
1965.22 ^{ea} 12	0.43 ^e 4	2022.88	$(2)^{+}$	57.775	2^{+}

[†] Additional information 1.

^{*} From 1998We13 and 1995Ba42, unless otherwise noted. [#] Based on $\gamma(\theta,H,T)$ of 1995Ba42 and on α 's and Ice ratios. α 's deduced from I(ce(K)) of 1973Ku09, 1971Am05 and/or 1960Ar06 as noted and I γ of 1995Ba42. The I(ce(K)) are normalized to I γ at 911.204 γ (α (K)(E2)=0.0091).

[@] From $\gamma(\theta, H, T)$ in 1995Ba42, unless otherwise noted.

[&] Calculated using BrIcc v2.2s, 2008Ki07, "Frozen Orbitals".

^{*a*} γ is seen as unresolved doublet in γ -ray singles spectrum.

^b Energy calculated from E(level), existence of γ suggested by ²²⁸Ac decay.

^c From α data of 1995Ba42 (data not given).

^d For absolute intensity per 100 decays, multiply by 0.0093 5.

^e Multiply placed with undivided intensity.

^f Multiply placed with intensity suitably divided.

^g Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

Decay Scheme

Decay Scheme (continued)

Decay Scheme (continued)

Decay Scheme (continued)

 $^{228}_{90}\text{Th}_{138}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{228}_{90}{\rm Th}_{138}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided Legend $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ 0.0 22 h *l* Qε=2152 4 $\%\epsilon + \%\beta^+ = 98.15$ ²²⁸₉₁Pa₁₃₇ $I\beta^+$ Log ft <u>I</u>£ $\begin{array}{c} \frac{4^-}{(1^-,2,3^-)}\\ \underline{4^+}\\ \underline{2^+}\\ \underline{4^+}\\ \underline{2^+,3^+}\\ \underline{(4^-)}\\ \underline{(2^+,3^+,4^+)}\\ \underline{3^+} \end{array}$ 1817.442 0.52 7.80 1811.58 0.090 8.58 1804.690 1.44 7.40 6 1802.90 0.04 8.96 1796.45 ≤ 0.15 ≥ 8.4 1688.42 0.25 8.48 1683.77 0.300 8.41 1682.85 ≤ 0.2 ≥ 8.6 $\frac{3^+}{(4^-)}$ 1645.933 4.1 7.35 7.31 1588.369 5.8 4 4 1450.408 7.36 8.7 1432.036 31.8 6.82 ≤ 0.3 1226.596 ≥ 9.1 $\frac{\frac{4^{-}}{(5^{+})}}{\frac{3^{-}}{2^{+}}}$ $\frac{\frac{4^{+}}{(3)^{+}}}{(3)^{+}}$ 1174.547 0.05 9.9 1168.395 0.07 9.78 1153.431 8.93 0.51 1143.15 0.0026 11.23 1091.067 0.013 10.6 1022.555 0.1 9.8 2^{+} 968.986 1.02 8.79 519.212 9.373^{1u} 5 0.53 396.108 0.00133 0.800 9.262 378.214 328.034 11.7^{1u} 0.04 186.849 4+ 0.001 9.8 0.3 2^{+} 57.775 0.001 0.2 10.0 0^+ 0.0

 $^{228}_{90}{\rm Th}_{138}$

Decay Scheme (continued)

 $^{228}_{90}{\rm Th}_{138}$

Decay Scheme (continued)

Decay Scheme (continued)

 $^{228}_{90}{\rm Th}_{138}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{228}_{90}{\rm Th}_{138}$

Decay Scheme (continued)

 $^{228}_{90}{
m Th}_{138}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{228}_{90}\text{Th}_{138}$

²²⁸Pa ε decay 1998We13,1995Ba42 (continued)

 $^{228}_{90}{
m Th}_{138}$