228 Ac β^- decay 1987Da28

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Khalifeh Abusaleem	NDS 116, 163 (2014)	31-Dec-2012

Parent: ²²⁸Ac: E=0; $J^{\pi}=3^+$; $T_{1/2}=6.15$ h 2; $Q(\beta^-)=2134$ 3; $\%\beta^-$ decay=100.0

 228 Ac-Q(β^{-}) from 2012Wa38.

1987Da28: Radiochemically separated ²²⁸Ac source. 17% Ge, 10% Ge(Li), and LEPS detectors to measure $E\gamma$, γ - γ , and $I\gamma$.

1984Da05: ²²⁸Ac source was prepared using radiochemical separation from ²²⁸Ra sources primarily isolated from Th(No3)4.

Measured E_{γ} and I_{γ} for 242 γ -rays using two HPGe and a planar HPGe detectors. However, neither levels in ²²⁸Th nor scheme are presented in this work. These are presented in 1987Da28 (same working group).

2006Xu10: Observed β^- delayed fission of ²²⁸Ac. ²²⁸Ac source was chemically prepared from Thorium solution, then exposed to mica foils (α -detector) and HPGe (γ -detector) for 720 days. 17 α -events were observed. These were interpreted from ²²⁸Ac fission based on analysis of β^- decay energy and fissility systematics. Also, several γ -rays were observed and interpreted from the β^- decay of ²²⁸Ac. These γ -rays are presented in figure 2 of 2006Xu10. However, no γ - uncertainty, intensity, or level energies are given. Probability of β^- delayed fission (N_{BDF}/N_{β}) was found to be 5×10⁻¹² 2.

²²⁸Th Levels

2009So02: discussion of log ft.

1992Li05: measured absolute I γ .

1987Da28: measured E γ , I γ , $\gamma\gamma$. Earlier report: 1984Da05.

1983Sc13, 1982Sa36: measured absolute Iy.

1982Ma52, 1960Ar06, 1957Bj56: measured ce.

1979Bo30: measured E γ ; not included in E γ calculation because five out of twelve E γ disagree with measurements of 1987Da28 and 1979He10 (deviation>3 x σ).

1979He10: measured $E\gamma$.

1974De14: measured $E\gamma$, $I\gamma$, $\beta\gamma(\theta)$, $\beta\gamma(\operatorname{circ} \operatorname{pol})(\theta)$.

1974Da17: measured E γ , I γ , $\gamma\gamma$. Deduced levels and J^{π} .

1971He23: measured E-conversion electron, I-conversion electron. Deduced J^{π} and Icc and polarity.

The decay scheme is that proposed by 1987Da28.

CC calculated using BrIcc v2.3S published in 2008Ki07.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0#	0^{+}	
57.763 [#] 4	2+	
186.827 [#] 4	4+	
328.006 [@] 4	1-	
378.178 [#] 11	6+	
396.083 [@] 5	3-	
519.195 [@] 6	5-	
831.822 ^{&} 10	0^+	
874.48 ^{&} <i>3</i>	2^{+}	J^{π} : γ s to 0 ⁺ and 4 ⁺ in g.s. band (1987Da28).
938.61 ^{<i>a</i>} 5	0^{+}	J^{π} : 2 ⁺ in 1987Da28 while no ruling out of 0 ⁺ .
944.200 13	1-	
968.335 ⁴ 25	2	$J^{(1)}$ γ s to 1 (1987/Da28).
968.45	4'	E(level): Level from ε decay.
968.972° 5	2+	
979.507 14	2+	J^{π} : 0 or 2 from γ_{s} to 0 ⁺ and 2 ⁺ levels in g.s. and 1 ⁻ and 3 ⁻ levels of the octupole band (1987Da28).
1016.386 23	3-	J^{a} : (2 ⁺) in 1987 Da28 from γ to 0 ⁺ g.s.
1022.531 ^b 6	$(3)^{+}$	

²²⁸Ac β^- decay **1987Da28** (continued)

²²⁸Th Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
1059.94 7	4-		
1091.020 ^b 9	4+		
1122.949° 6 1153 465 10	$\frac{2^{-}}{2^{+}}$	0.29 ns 2	J^{*} : \approx Member of a rotational band (1987/Da28). T _{1/2} : from 1974De14
1168.377 [°] 5	3-	0.29 115 2	
1174.50 ^b 7	(5 ⁺)		
1175.45 5	2+		J^{π} : γ s to 0 ⁺ , 2 ⁺ , and 4 ⁺ in g.s. and to 2 ⁺ level (1987Da28).
1200.5 <i>10</i> 1226 566 ^C 8	4-		E(level): Placement suggested by ²²⁸ Pa decay.
1297.440 [°] 11	(5)-		
1344.082 11	3-		J^{π} : γ s to 1 ⁻ and 5 ⁻ (1987Da28).
1416.09 / 1431.981 6	(3) 4 ⁺		J ^{π} : E2 and M1 γ s K ^{π} =2 ⁺ band (1987Da28). γ -ray to 1 ⁻ level supports 3 ⁺ rather than
1450.35 <i>3</i>	4-		+ (1707Da20).
1531.478 6	3+		
1539.24 9	2+ 4+		
1638.283^{d} 10	+ 2 ⁺		Ouasiparticle configuration= $((\pi 3/2^+)(651))(\pi 1/2^+)(660))$ or configuration= $((\pi 3/2^+)(651))(\pi 1/2^+)(660))$
	_		$3/2^+[651])(\pi 1/2^+[400]))$ suggested for this level. J^{π} : γ s to 0 ⁺ and 4 ⁺ levels of the g.s. (1987Da28).
1643.119 <i>16</i>	(3^{-})		
1646.005 <i>11</i> 1682 754 <i>19</i>	$(2^+ 3^+ 4^+)$		
1683.71 7	(4^{-})		
1688.398 ^d 11	$2^+, 3^+$		
1724.288 6	$2^+_{4^+}$		
1743.87 3	4 4 ⁺		
1758.24 12	2+		
1760.17 ^{<i>a</i>} 3	$2^{(+)}, 3^{(+)}$		
1795.65 8	$\frac{4}{2^{+}}$		
1893.02 4	3+		
1899.97 6	(2+)		Quasiparticle configuration= $((\pi 3/2[651])(\pi 1/2[660]))$ or configuration= $((\pi 3/2[651])(\pi 1/2[400]))$ suggested for this level. J^{π} : γ s to 0 ⁺ and 4 ⁺ levels of g.s. (1987Da28).
1906.63 10	(2^{+})		
1928.66 7	3^+ 2+ 3 4+		
1937.189 1011 83 $\frac{d}{3}$	2+,3,4* 3+		
1958.72 22	(2^+)		
1987.46 10	4 ⁺		
2010.20 5	(2+)		1987Da28 suggests that this is the 4 ⁺ level of $K^n = 2^+$ rotational band built on the 1900.0 level. However, the relatively strong 887.33 γ to the 1123-keV level would then have M2 mult
2013.6 <i>3</i>	2+,3,4+		then have 1912 mult.
2022.64 9	$2^+_{2^+}$		J^{π} : From 1987Da28.
2030.39 11	2^+ 2^+ 3 4 ⁺		
2123.1 3	$(2^+)^{2,3,4}$		

$^{228}\mathrm{Ac}\,\beta^-$ decay 1987Da28 (continued)

²²⁸Th Levels (continued)

[†] From 1971He23 and 1974Da17. [‡] From Adopted Levels.

- # Band(A): g.s. Rotational band.
 [@] Band(B): K^π=0⁻ octupole band.
 & Band(C): K^π=0⁺ two octupole phonon band.
- ^{*a*} Band(D): $K^{\pi}=1^{-}$ octupole band.
- ^b Band(E): $K^{\pi}=2^+ \gamma$ -vibrational band.

^{*c*} Band(F): $K^{\pi}=2^{-}$ octupole band. ^{*d*} Band(G): $K^{\pi}=2^{+}$ rotational band on quasiparticle state.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(11 3)	2123.1	0.0042 10	4.9 5	av Eβ=2.73 76
(97 3)	2037.00	0.0062 10	7.58 9	av E β =25.15 81
(104 3)	2030.39	0.019 3	7.18 8	av $E\beta = 26.94 \ 82$
$(111 \ 3)$	2022.64	0.054 6	6.82 6	av $E\beta = 29.04 \ 82$
(120 3)	2013.6	0.0029 9	8.19 14	av $E\beta = 31.51 \ 83$
(124 3)	2010.20	0.28 3	6.25 6	av $E\beta = 32.44 \ 83$
(147 3)	1987.46	0.038 <i>3</i>	7.34 5	av $E\beta = 38.72 \ 84$
(175 3)	1958.72	0.0033 7	8.64 10	av $E\beta = 46.79 \ 86$
(189 3)	1944.83	0.251 14	6.86 4	av $E\beta = 50.75 \ 86$
(197 3)	1937.18	0.046 5	7.66 6	av $E\beta = 52.94 \ 87$
(205 3)	1928.66	0.056 7	7.63 6	av $E\beta = 55.39 \ 87$
$(227 \ 3)$	1906.63	0.034 5	7.98 7	av $E\beta = 61.79 \ 88$
(234 3)	1899.97	0.077 6	7.67 4	av $E\beta = 63.71 \ 91$
(241 3)	1893.02	0.117 7	7.53 4	av $E\beta = 65.77 89$
(336 3)	1797.66	0.045 6	8.40 6	av $E\beta = 94.51 \ 93$
(338 3)	1795.65	< 0.01	>9.1	av $E\beta = 95.13 \ 93$
(374 3)	1760.17	0.119 10	8.13 4	av $E\beta = 106.17 \ 95$
(376 3)	1758.24	0.062 13	8.42 10	av $E\beta = 106.77 \ 95$
(390 3)	1743.87	0.389 18	7.673 23	av $E\beta = 111.29 95$
(398 3)	1735.508	0.133 8	8.17 3	av $E\beta = 113.94~96$
(410 3)	1724.288	1.76 5	7.087 17	av $E\beta = 117.50 \ 96$
(446 3)	1688.398	2.43 15	7.07 3	av $E\beta = 129.00 \ 97$
(450 3)	1683.71	0.164 17	8.25 5	av $E\beta = 130.51 \ 97$
(451 3)	1682.754	1.12 5	7.420 22	av $E\beta = 130.82 \ 97$
(488 3)	1646.005	4.19 19	6.958 22	av $E\beta = 142.79 \ 99$
(491 3)	1643.119	3.0 8	7.11 12	av $E\beta = 143.7399$
(496 3)	1638.283	1.15 5	7.542 21	av $E\beta = 145.32$ 99
(516 3)	1617.78	0.095 9	8.68 5	av $E\beta = 152.1 \ 10$
(603 3)	1531.478	7.6 4	7.003 24	av $E\beta = 181.0 \ 11$
(684 3)	1450.35	0.60 7	8.29 6	av $E\beta = 208.9 \ 11$
(702 3)	1431.981	1.2 4	8.03 15	av $E\beta = 215.3 \ 11$
(718 3)	1416.09	0.060 8	9.36 6	av $E\beta = 220.9 \ 11$
(790 3)	1344.082	0.217 15	8.95 <i>3</i>	av $E\beta = 246.4 \ 11$
(837 3)	1297.440	0.058 13	9.97 ¹ <i>u</i> 10	av $E\beta = 260.3 \ 10$
(907 3)	1226.566	0.67 4	8.66 <i>3</i>	av $E\beta = 288.8 \ 11$
(959 3)	1175.45	0.17 3	9.34 8	av $E\beta = 307.6 \ 11$
(960 3)	1174.50	< 0.005	>10.9	av $E\beta = 307.9 \ 11$
. /				$I\beta^-$: From 1987Da28.
(966 3)	1168.377	3.11 7	8.091 11	av $E\beta = 310.2 \ 11$
(981 3)	1153.465	5.8 9	7.84 7	av $E\beta = 315.7 \ 12$
(1011 3)	1122.949	5.90 14	7.883 12	av E β =327.0 12
				-

Continued on next page (footnotes at end of table)

228 Ac β^- decay 1987Da28 (continued)

β^- radiations (continued)

E(decay)	E(level)	Ιβ ^{-†‡}	Log <i>ft</i>		Comments
(1043 3)	1091.020	0.26 5	9.29 9	av Eβ=338.9 12	
(1074 3)	1059.94	0.070 11	9.90 7	av E β =350.6 12	
(1111 3)	1022.531	3.11 15	8.306 22	av E β =364.7 12	
(1118 3)	1016.386	0.33 5	9.29 7	av E β =367.0 12	
(1154 3)	979.507	0.14 4	9.71 <i>13</i>	av E β =381.0 12	
(1165 3)	968.972	29.9 10	7.395 16	av E β =385.0 12	
(1166 3)	968.335			av Eβ=385.3 12	
(1190 3)	944.200	0.041 23	10.29 25	av Eβ=394.4 12	
(1260 3)	874.48	0.21 8	9.67 17	av E β =421.2 12	
(1615 3)	519.195	0.01 5	$12.2^{1u} 22$	av E β =536.9 12	
(1738 3)	396.083	11.65 24	8.435 10	av E β =609.7 12	
(1756 3)	378.178	0.116 18	10.45 7	av Eβ=616.9 12	
(1806 3)	328.006	0.59 17	10.75 ¹ <i>u</i> 13	av E β =609.3 12	
(1947 3)	186.827	0.6 5	9.9 4	av Eβ=694.3 13	
(2076 3)	57.763	75	8.9 4	av $E\beta = 747.0 \ 13$	

 † Deduced from intensity balance in the level scheme. ‡ Absolute intensity per 100 decays.

 $\gamma(^{228}{\rm Th})$

I γ normalization: From absolute I γ , based on measurements by 1992Li05, 1983Sc13 and 1982Sa36. This normalization leads to I β (g.s.)=6% 6, although consistent with zero as expected from the spin change Δ J=3, it may indicate that some g.s. transitions are missing from the level scheme.

${\rm E_{\gamma}}^{\ddagger}$	Ι _γ # <i>l</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.@	δ	α^{\dagger}	$I_{(\gamma+ce)}^{l}$	Comments
(18.4)	0.014 4	1450.35	4 ⁻ 2 ⁺ ,3 ⁺	1431.981	4 ⁺ 3 ⁺	[E1] [M1]		6.47	0.11 3	ce(L)/(γ +ce)=0.513 7; ce(M)/(γ +ce)=0.268 5; ce(N+)/(γ +ce)=0.0851 15 ce(N)/(γ +ce)=0.0690 13; ce(O)/(γ +ce)=0.0141 3; ce(P)/(γ +ce)=0.00195 4; ce(Q)/(γ +ce)=5.60×10 ⁻⁵ 11 I _(γ+ce) ,I _{γ} : deduced from branching ratio in Pa decay. α (L)=35.0 5; α (M)=8.43 13; α (N+)=2.89 5 α (N)=2.25 4; α (O)=0.533 8; α (P)=0.1034 15; α (Q)=0.00986 15 Mult.: From intensity balance at 1646 level, multipolarity cannot be pure E2. Some E2 admixture, however, cannot be ruled out.
^x 56.96 5 57.766 ^{&} 5	0.019 <i>4</i> 0.47 ^{<i>f</i>} <i>3</i>	57.763	2+	0.0	0+	E2		153.1		α (L)=112.0 <i>16</i> ; α (M)=30.7 <i>5</i> ; α (N+)=10.35 <i>15</i> α (N)=8.22 <i>12</i> ; α (O)=1.83 <i>3</i> ; α (P)=0.302 <i>5</i> ; α (Q)=0.000869 <i>13</i> Mult.: α (L)exp=124 <i>11</i> (1971He23); L12/L3=1.42 (1982Ma52), 1.14 <i>8</i> (1960Ar06), 1.15 <i>15</i> (1957Bj56); theory: α (K)=114 L12(L3=1.23)
77.34 3	0.026 5	1168.377	3-	1091.020	4+	[E1]		0.232		$\alpha(L)=0.1747 \ 25; \ \alpha(M)=0.0426 \ 6; \ \alpha(N+)=0.01416 \ 20 \\ \alpha(N)=0.01118 \ 16; \ \alpha(O)=0.00252 \ 4; \ \alpha(P)=0.000435 \ 7; \\ \alpha(Q)=2.30\times10^{-5} \ 4$
99.509 ^{&} 6	1.26 ^{<i>f</i>} 7	1531.478	3+	1431.981	4+	M1		3.84		$\alpha(L)=2.90 4$; $\alpha(M)=0.699 10$; $\alpha(N+)=0.240 4$ $\alpha(N)=0.186 3$; $\alpha(O)=0.0442 7$; $\alpha(P)=0.00857 12$; $\alpha(Q)=0.000815 12$ Mult.: $\alpha(L12)\exp=3.0 3$ (1971He23), 2.0 3 (1960Ar06); L3 not seen (1960Ar06).
100.41 3	0.093 <i>13</i>	1122.949	2-	1022.531	(3)+	(E1+M2)	≈0.23	≈3.10		α(L)≈2.27; α(M)≈0.615; α(N+)≈0.215 α(N)≈0.1676; α(O)≈0.0393; α(P)≈0.00738; α(Q)≈0.000589 Mult.,δ: α(L3)exp≈0.43 (1971He23); theory: α(L3)(E1)=0.0213, α(L3)(M2)=8.66. α(L3)exp could also fit M1+E2; however, level scheme requires $ $
114.56 7	0.0098 21	1646.005	3+	1531.478	3+	[M1,E2]		94		$\begin{array}{l} \alpha(\mathrm{K}) = 5 \ 5; \ \alpha(\mathrm{L}) = 3.2 \ 13; \ \alpha(\mathrm{M}) = 0.8 \ 4; \ \alpha(\mathrm{N} +) = 0.28 \ 13 \\ \alpha(\mathrm{N}) = 0.22 \ 10; \ \alpha(\mathrm{O}) = 0.051 \ 22; \ \alpha(\mathrm{P}) = 0.009 \ 4; \\ \alpha(\mathrm{Q}) = 0.00030 \ 24 \end{array}$
129.065 ^{&} 1	2.42 ^c 9	186.827	4+	57.763	2+	E2		3.74		$\alpha(K)=0.264$ 4; $\alpha(L)=2.54$ 4; $\alpha(M)=0.697$ 10;

 $^{228}_{90}{\rm Th}_{138}$ -5

					-	228 Ac β^- decay	y 1	1987Da28	(continued))
						γ ⁽²²	⁸ Th)	(continued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#l}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	δ	α^{\dagger}	$I_{(\gamma+ce)}^{l}$	Comments
							_			α (N+)=0.236 4 α (N)=0.187 3; α (O)=0.0417 6; α (P)=0.00696 10; α (Q)=4.23×10 ⁻⁵ 6 Mult.: L12/L3=1.94 14 (1960Ar06), 1.7 2 (1957Bj56). K/L=0.10 1 (1971He23), 0.12 3 (1957Bj56); theory: L12/L3=1.70, K/L=0.10.
135.54 5	0.018 4	1226.566	4-	1091.020	4+	E1 ^h		0.238		$\begin{aligned} \alpha(K) = 0.185 \ 3; \ \alpha(L) = 0.0401 \ 6; \ \alpha(M) = 0.00970 \ 14; \\ \alpha(N+) = 0.00325 \ 5 \\ \alpha(N) = 0.00256 \ 4; \ \alpha(O) = 0.000585 \ 9; \ \alpha(P) = 0.0001053 \ 15; \\ \alpha(Q) = 6.66 \times 10^{-6} \ 10 \\ \text{Mult.:} \ \alpha(K) \exp \approx 3 \ (1971\text{He}23); \ \text{theory:} \ \alpha(K) = 0.185, \end{aligned}$
^x 137.91 5	0.024 5					M1		7.44		discrepant $\alpha(K)$ for E1 γ -ray. $\alpha(K)=5.94$ 9; $\alpha(L)=1.135$ 16; $\alpha(M)=0.273$ 4; $\alpha(N+)=0.0937$ 14 $\alpha(N)=0.0728$ 11; $\alpha(O)=0.01724$ 25; $\alpha(P)=0.00335$ 5; $\alpha(Q)=0.000318$ 5 Mult: $\alpha(K)=0.00318$ 5 Mult: $\alpha(K)=0.00318$ 5
141.02 3	0.050 8	519.195	5-	378.178	6+	E1 ^h		0.217		$\begin{aligned} \alpha(K) &= 0.1689\ 24;\ \alpha(L) &= 0.0362\ 5;\ \alpha(M) &= 0.00875\ 13;\\ \alpha(N) &= 0.00294\ 5\\ \alpha(N) &= 0.00231\ 4;\ \alpha(O) &= 0.000529\ 8;\ \alpha(P) &= 9.53 \times 10^{-5}\ 14;\\ \alpha(Q) &= 6.10 \times 10^{-6}\ 9\\ \end{aligned}$ Mult : $\alpha(K) &= x_0 = 0.7\ 5\ (1971 \text{He}23);\ \text{theory:}\ \alpha(K)(E1) &= 0\ 171 \end{aligned}$
145.849 <i>10</i>	0.158 ^f 8	1168.377	3-	1022.531	(3)+	E1 ^h		0.200		$\begin{aligned} \alpha(\mathbf{K}) = 0.1561 \ 22; \ \alpha(\mathbf{L}) = 0.0332 \ 5; \ \alpha(\mathbf{M}) = 0.00802 \ 12; \\ \alpha(\mathbf{N}+) = 0.00269 \ 4 \\ \alpha(\mathbf{N}) = 0.00212 \ 3; \ \alpha(\mathbf{O}) = 0.000485 \ 7; \ \alpha(\mathbf{P}) = 8.76 \times 10^{-5} \ 13; \\ \alpha(\mathbf{Q}) = 5.66 \times 10^{-6} \ 8 \\ \end{aligned}$ $\begin{aligned} \text{Mult:} \ \alpha(\mathbf{K}) \exp = 1.3 \ 4 \ (1971\text{He}23); \text{ theory:} \ \alpha(\mathbf{K}) = 0.158. \text{ ce} \\ \text{ pot scare by } 1060 \text{ ArOff} \end{aligned}$
153.977 10	0.722 ^c 21	1122.949	2-	968.972	2+	E1		0.1757		not seen by 1960Ar06. $\alpha(K)=0.1375\ 20;\ \alpha(L)=0.0289\ 4;\ \alpha(M)=0.00697\ 10;\ \alpha(N+)=0.00234\ 4$ $\alpha(N)=0.00184\ 3;\ \alpha(O)=0.000422\ 6;\ \alpha(P)=7.65\times10^{-5}\ 11;\ \alpha(Q)=5.02\times10^{-6}\ 7$ Mult.: $\alpha(K)$ exp=0.095 16 (1971He23); theory: $\alpha(K)$ =0.129.
168.65 ⁿ 10	0.010 ⁿ 3	1344.082	3-	1175.45	2+	[E1]		0.1414		$\begin{array}{l} \alpha(\mathrm{K}) = 0.1111 \ 16; \ \alpha(\mathrm{L}) = 0.0229 \ 4; \ \alpha(\mathrm{M}) = 0.00552 \ 8; \\ \alpha(\mathrm{N}+) = 0.00186 \ 3 \\ \alpha(\mathrm{N}) = 0.001458 \ 21; \ \alpha(\mathrm{O}) = 0.000335 \ 5; \ \alpha(\mathrm{P}) = 6.11 \times 10^{-5} \ 9; \\ \alpha(\mathrm{Q}) = 4.10 \times 10^{-6} \ 6 \\ \mathrm{I}_{\gamma}: \ \mathrm{Total \ intensity} \ (\mathrm{I}_{\gamma} = 0.013 \ 3) \ \mathrm{placed \ from \ 1344.1 \ level \ by} \\ 1987\mathrm{Da28}. \ \mathrm{Alternate \ placement \ from \ 1928.6 \ level} \\ \mathrm{suggested \ by} \ {}^{228}\mathrm{Pa \ decay}. \end{array}$
168.65 ⁿ 10	0.0030 ⁿ 7	1928.66	3+	1760.17	2(+),3(+)	[M1,E2]		2.7 15		α (K)=1.8 <i>16</i> ; α (L)=0.70 <i>7</i> ; α (M)=0.18 <i>3</i> ; α (N+)=0.062 <i>10</i> α (N)=0.049 <i>8</i> ; α (O)=0.0111 <i>15</i> ; α (P)=0.00200 <i>12</i> ; α (O)=0.00010 <i>8</i>

L

						228 Ac β^-	decay 1987	Da28 (cont	inued)	
							$\gamma(^{228}\text{Th})$ (cor	tinued)		
	E_{γ}^{\ddagger}	$I_{\gamma}^{\#l}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	δ	α^{\dagger}	$I_{(\gamma+ce)}^{l}$	Comments
	173.964 ^{&} <i>13</i>	0.035 5	1153.465	2+	979.507 2+	M1+E2	1.2 +11-6	2.2 9		I _γ : Total intensity (I _γ =0.013 <i>3</i>) placed from 1344.1 level by 1987Da28. Alternate placement from 1928.6 level suggested by ²²⁸ Pa decay. $\alpha(K)=1.4$ 10; $\alpha(L)=0.63$ 3; $\alpha(M)=0.166$ 14; $\alpha(N+)=0.056$ 5 $\alpha(N)=0.044$ 4; $\alpha(O)=0.0101$ 7; $\alpha(P)=0.00180$ 5;
	184.54 2	0.070 8	1153.465	2+	968.972 2+	E0+M1		63 8	4.5 8	$\alpha(Q)=8.E-5.5$ Mult., δ : from $\alpha(K)\exp=1.5.8$ (1971He23); also fits E1+M2 with $\delta=0.35.12$, level scheme requires $\Delta\pi=\text{no. Theory: } \alpha(K)(E1)=0.104, \alpha(K)(E2)=0.203, \alpha(K)(M1)=3.26, \alpha(K)(M2)=12.9.$ $\alpha(K)=53.7; \alpha(L)=10.2.13; \alpha(M)=0.126; \alpha(N+)=0.0462$ Mult.: K/L=4.0.5, L1/L2=33.6, L1/L3>>50 (1974De14), $\alpha(K)\exp=53.7$ (1971He23); measured $\alpha(K)\exp$ yields an E0 transition with an admixture of: 5.4% M1 with K/L=5.2, L1/L2=30, L1/L3=3300,
J	191.353 <i>10</i>	0.123 ^{<i>f</i>} 8	378.178	6+	186.827 4+	E2		0.776		or 1.4% E2 with K/L=5.0, L1/L2=16.5, L1/L3=58. Thus the ratios support E0+M1 transition. α : from α (K)exp. α (K)=0.1710 24; α (L)=0.443 7; α (M)=0.1209 17; α (N+)=0.0409 6 α (N)=0.0324 5; α (O)=0.00726 11; α (P)=0.001224 18;
	199.407 <i>10</i>	0.315 ^{<i>f</i>} 5	1168.377	3-	968.972 2+	E1 ^h		0.0950		$\alpha(Q)=1.375\times10^{-5}20$ Mult.: $\alpha(K)\exp=0.24$ 7, K/L=1.0 5; theory: $\alpha(K)(E2)=0.174$, K/L(E2)=0.39, $\alpha(K)(M1)=2.49$, K/L(M1)=5.25. $\alpha(K)=0.0752$ 11; $\alpha(L)=0.01502$ 21; $\alpha(M)=0.00362$ 5; $\alpha(N+)=0.001220$ 17 $\alpha(N)=0.000956$ 14; $\alpha(O)=0.000221$ 3; $\alpha(P)=4.05\times10^{-5}$ 6; $\alpha(Q)=2.84\times10^{-6}$ 4
	204.026 10	0.112 ^{<i>f</i>} 15	1226.566	4-	1022.531 (3)+	E1		0.0900		Mult.: ce(K), ce(L) not seen (1971He23,1960Ar06), suggests E1 mult. $\alpha(K)=0.0713 \ 10; \ \alpha(L)=0.01419 \ 20; \ \alpha(M)=0.00342 \ 5; \ \alpha(N+)=0.001152 \ 17 \ \alpha(N)=0.000903 \ 13; \ \alpha(O)=0.000208 \ 3; \ \alpha(P)=3.83\times10^{-5} \ 6; \ \alpha(Q)=2.70\times10^{-6} \ 4$
	209.253 6	3.89 ^c 7	396.083	3-	186.827 4+	E1		0.0848		Mult.: $\alpha(L)\exp<0.23$ (19/1He23); theory: $\alpha(L)(E1)=0.0143$, $\alpha(L)(E2)=0.342$. $\alpha(K)=0.0672$ 10; $\alpha(L)=0.01333$ 19; $\alpha(M)=0.00321$ 5; $\alpha(N+)=0.001082$ 16 $\alpha(N)=0.000848$ 12; $\alpha(O)=0.000196$ 3; $\alpha(P)=3.60\times10^{-5}$ 5; $\alpha(Q)=2.55\times10^{-6}$ 4

I

						228 Ac β^- de	ecay 1987D	a28 (cont	tinued)
						<u>2</u>	(²²⁸ Th) (conti	inued)	
E_{γ}^{\ddagger}	Ι _γ # <i>l</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ	α^{\dagger}	Comments
214.85 5 214.85 ^a 10	0.76 <i>11</i> 0.029 <i>4</i>	1153.465 2010.20	2^+ (2 ⁺)	938.61 1795.65	0^+ 4^+	[E2]		0.516	Mult.: from K/L and L subshell ratios in ²²⁸ Pa ε decay. Other: K/L=2.4 4 (1971He23). E _y : From figure 4 in 1987Da28.
223.85 10	0.054 5	1450.35	4-	1226.566	4-	M1+E2 ^h	-0.18 ^h 5	1.85 4	α (K)=1.47 4; α (L)=0.285 5; α (M)=0.0688 10; α (N+)=0.0236 4 α (N)=0.0184 3; α (O)=0.00434 7; α (P)=0.000839 13; α (Q)=7.80×10 ⁻⁵ 18 Mult.: α (K)exp=1.7 5, K/L=4.2 19 (1971He23); theory:
231.42 10	0.025 4	1175.45	2+	944.200	1-	[D,E2]		1.1 7	$\alpha(\mathbf{K})=1.50$ 3, K/L=5.2.
257.52 10	0.030 <i>3</i>	1431.981	4+	1174.50	(5+)	(M1) ^{<i>h</i>}		1.285	α (K)=1.028 <i>15</i> ; α (L)=0.194 <i>3</i> ; α (M)=0.0466 <i>7</i> ; α (N+)=0.01600 23 α (N)=0.01243 <i>18</i> ; α (O)=0.00294 <i>5</i> ; α (P)=0.000571 <i>8</i> ;
263.58 10	0.040 4	1431.981	4+	1168.377	3-	E1 ^h		0.0498	$\begin{aligned} \alpha(Q) &= 5.42 \times 10^{-5} \ 8 \\ \alpha(K) &= 0.0397 \ 6; \ \alpha(L) &= 0.00760 \ 11; \ \alpha(M) &= 0.00182 \ 3; \\ \alpha(N+) &= 0.000617 \ 9 \\ \alpha(N) &= 0.000482 \ 7; \ \alpha(O) &= 0.0001119 \ 16; \ \alpha(P) &= 2.08 \times 10^{-5} \ 3; \\ \alpha(O) &= 1.553 \times 10^{-6} \ 22 \end{aligned}$
270.245 ^{&} 2	3.46 ^{<i>c</i>} 6	328.006	1-	57.763	2+	E1		0.0470	$\alpha(Q) = 1.535 \times 10^{-4} 22$ $\alpha(K) = 0.0376 \ 6; \ \alpha(L) = 0.00716 \ 10; \ \alpha(M) = 0.001717 \ 24; \alpha(N+) = 0.000581 \ 9 \alpha(N) = 0.000454 \ 7; \ \alpha(Q) = 0.0001054 \ 15; \ \alpha(P) = 1.96 \times 10^{-5} \ 3; \alpha(Q) = 1.473 \times 10^{-6} \ 21 $
278.95 ⁿ 5	0.160 ⁿ 21	1153.465	2+	874.48	2+	(M1,E2)		0.6 4	Mult: $\alpha(K)\exp=0.029 \ 4 \ (1971He23)$; theory: $\alpha(K)=0.0379$. $\alpha(K)=0.54$; $\alpha(L)=0.123$; $\alpha(M)=0.0316$; $\alpha(N+)=0.010722$ $\alpha(N)=0.008316$; $\alpha(O)=0.00195$; $\alpha(P)=0.0003610$; $\alpha(Q)=2.4\times10^{-5}19$ Mult: $\alpha(K)\exp(doublet)=0.184 \ (1960Ar06)$, $\alpha(L)\exp(279\gamma+282\gamma)=0.377 \ (1971He23)$; theory:
278.95 ^{na} 5	0.031 ^{<i>n</i>} 5	1431.981	4+	1153.465	2+	[E2]		0.211	$\alpha(K)(M1)=0.872, \alpha(K)(E2)=0.0854.$ $\alpha(K)=0.0842 \ I2; \alpha(L)=0.0935 \ I4; \alpha(M)=0.0252 \ 4; \alpha(N+)=0.00853 \ I2$ $\alpha(N)=0.00675 \ I0; \alpha(O)=0.001521 \ 22; \alpha(P)=0.000261 \ 4; \alpha(Q)=5.39\times10^{-6} \ 8$ γ not placed here by 1987Da28; this alternate placement is suggested in 228 Pa decay.
282.00 ^{&} 3	0.072 ^{<i>f</i>} 19	1450.35	4-	1168.377	3-	M1+E2 ^h	-0.51 ^h 12	0.83 7	$\alpha(K)=0.65 \ 6; \ \alpha(L)=0.138 \ 6; \ \alpha(M)=0.0337 \ 11; \ \alpha(N+)=0.0115 \ 4 \ \alpha(N)=0.0090 \ 3; \ \alpha(O)=0.00211 \ 7; \ \alpha(P)=0.000403 \ 16; \ \alpha(Q)=3.4\times10^{-5} \ 3$
321.646 ^{&} 8	0.226 ^b 11	1153.465	2+	831.822	0+	[E2]		0.1369	$\alpha(K)=0.0635 \ 9; \ \alpha(L)=0.0540 \ 8; \ \alpha(M)=0.01444 \ 21; \ \alpha(N+)=0.00490 \ 7 \ \alpha(N)=0.00387 \ 6; \ \alpha(O)=0.000875 \ 13; \ \alpha(P)=0.0001514 \ 22;$

 ∞

 $^{228}_{90}{
m Th}_{138}{
m -8}$

l

						$^{228}\mathrm{Ac}\beta^{-}\mathrm{de}$	ecay 1987	Da28 (conti	nued)
						<u>2</u>	/(²²⁸ Th) (con	tinued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#l}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [@]	δ	α^{\dagger}	Comments
226.04.20	0.022.5	1759 24	2+	1421 081	4+			0.12	$\alpha(Q)=3.88\times10^{-6} 6$ Mult.: $\alpha(K)\exp=0.49 \ 8 \ (1971He23)$ indicating mainly M1 transition $(\alpha(K)(M1)=0.590)$ which is not in agreement with the level scheme. 1960Ar06 did not see ce(K) suggesting that the $\alpha(K)\exp$ may be unreliable.
(327.44)	0.12 4	1450.35	4-	1122.949	2-	[E2]		0.1299	α(K)=0.0613 9; α(L)=0.0505 7; α(M)=0.01349 19; α(N+)=0.00458 7 α(N)=0.00361 5; α(O)=0.000818 12; α(P)=0.0001417 20; α(Q)=3.72×10-6 6 Eγ,Iγ: γ not reported in this decay. Placement suggested by 228Pa decay. Iγ deduced from branching ratio in 228Pa decay. γ may be masked by strong 328.000γ. Eγ: Eγ from E(level).
328.000 6	2.95 ^{<i>f</i>} 12	328.006	1-	0.0	0+	E1		0.0305	$\alpha(K)=0.0245 \ 4; \ \alpha(L)=0.00455 \ 7; \ \alpha(M)=0.001089 \ 16; \ \alpha(N+)=0.000369 \ 6 \ \alpha(N)=0.000288 \ 4; \ \alpha(O)=6.71\times10^{-5} \ 10; \ \alpha(P)=1.256\times10^{-5} \ 18; \ \alpha(Q)=9.82\times10^{-7} \ 14 \ Mult.; \ \alpha(K)=0.0245, \ (1971He23); \ theory \ \alpha(K)=0.0245.$
332.370 ^{&} 4	0.40 ^C 4	519.195	5-	186.827	4+	E1 ^h		0.0297	$\alpha(K)=0.0238 4; \alpha(L)=0.00441 7; \alpha(M)=0.001056 15; \alpha(N+)=0.000358 5 \alpha(N)=0.000280 4; \alpha(O)=6.51\times10^{-5} 10; \alpha(P)=1.219\times10^{-5} 17; \alpha(Q)=9.56\times10^{-7} 14$ Mult.: ce(K) not seen by 1960Ar06. $\alpha(K)$ exp=0.41 8 (1971He23) does not agree with [E1] required by the level scheme or E1 measured in ²²⁸ Pa decay.
338.320 ^{&} 3	11.27 ^b 19	396.083	3-	57.763	2+	E1		0.0285	$\alpha(K)=0.0229 \ 4; \ \alpha(L)=0.00424 \ 6; \ \alpha(M)=0.001014 \ 15; \ \alpha(N+)=0.000344 \ 5 \ \alpha(N)=0.000269 \ 4; \ \alpha(O)=6.25\times10^{-5} \ 9; \ \alpha(P)=1.172\times10^{-5} \ 17; \ \alpha(Q)=9.22\times10^{-7} \ 13 \ Mult.: \ \alpha(K)=0.0231.$
340.96 5	0.369 ^c 21	1431.981	4+	1091.020	4+	E2+M1 ^h	-5.2 ^h 18	0.133 21	$\alpha(K)=0.072 \ 19; \ \alpha(L)=0.0451 \ 21; \ \alpha(M)=0.0119 \ 5; \ \alpha(N+)=0.00405 \ 16 \ \alpha(N)=0.00319 \ 13; \ \alpha(O)=0.00073 \ 3; \ \alpha(P)=0.000127 \ 7; \ \alpha(Q)=4.2\times10^{-6} \ 10 \ Mult.: \ \alpha(K)exp=0.66 \ 7 \ (1971He23) \ suggests \ an \ M1 \ transition.$
356.94 10	0.0170 <i>18</i>	1531.478	3+	1174.50	(5+)	[E2]		0.1015	$\begin{aligned} \alpha(\text{K}) = 0.0517 \ 8; \ \alpha(\text{L}) = 0.0368 \ 6; \ \alpha(\text{M}) = 0.00977 \ 14; \\ \alpha(\text{N}+) = 0.00331 \ 5 \\ \alpha(\text{N}) = 0.00261 \ 4; \ \alpha(\text{O}) = 0.000593 \ 9; \ \alpha(\text{P}) = 0.0001033 \ 15; \\ \alpha(\text{Q}) = 3.07 \times 10^{-6} \ 5 \end{aligned}$

From ENSDF

L

						228	3 Ac β^{-} deca	ıy 1987E	0a28 (conti	nued)
							$\gamma(^2$	²⁸ Th) (cont	inued)	
	${\rm E}_{\gamma}$ ‡	I_{γ} ^{#l}	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ	α^{\dagger}	Comments
										Mult.: $\alpha(K)\exp=1.9$ 9 (1971He23) does not agree with multipolarity deduced from level scheme. Theory: $\alpha(K)=0.0523$.
	372.57 ^a 20 377.99 10	0.0067 <i>15</i> 0.025 <i>3</i>	2010.20 1531.478	(2^+) 3^+	1638.283 1153.465	$2^+ 2^+$	[D,E2] [M1,E2]		0.28 <i>19</i> 0.27 <i>18</i>	$\alpha(K)=0.20 \ 16; \ \alpha(L)=0.049 \ 19; \ \alpha(M)=0.012 \ 5; \ \alpha(N+)=0.0041$
										$\alpha(N)=0.0032 \ 11; \ \alpha(O)=0.0007 \ 3; \ \alpha(P)=0.00014 \ 6; \ \alpha(Q)=1.1\times10^{-5} \ 8$
	384.63 20 389.12 <i>15</i>	0.0067 <i>15</i> 0.0103 <i>15</i>	2022.64 1928.66	2+ 3+	1638.283 1539.24	2^+ 2^+	[D,E2] [M1,E2]		0.25 <i>18</i> 0.25 <i>17</i>	$\alpha(K)=0.19$ 15; $\alpha(L)=0.044$ 18; $\alpha(M)=0.011$ 4; $\alpha(N+)=0.0038$
										$\alpha(N)=0.0029 \ 11; \ \alpha(O)=0.0007 \ 3; \ \alpha(P)=0.00013 \ 6; \ \alpha(Q)=1.0\times10^{-5} \ 8$
	397.94 <i>10</i> 399.62 <i>10</i>	0.027 <i>3</i> 0.029 <i>3</i>	1937.18 1743.87	2 ⁺ ,3,4 ⁺ 4 ⁺	1539.24 1344.082	2+ 3-	[D,E2] [E1]		0.0200	$\alpha(K)=0.01613\ 23;\ \alpha(L)=0.00292\ 4;\ \alpha(M)=0.000697\ 10;\ \alpha(N+)=0.000236\ 4$
1								- ih a		$\alpha(N)=0.000185 \ 3; \ \alpha(O)=4.31\times10^{-5} \ 6; \ \alpha(P)=8.11\times10^{-6} \ 12; \\ \alpha(Q)=6.58\times10^{-7} \ 10$
0	409.462 [∞] 6	1.92° 4	1431.981	4+	1022.531	(3) ⁺	E2+M1	-5.4" 8	0.080 4	$\alpha(K)=0.048 \ 3; \ \alpha(L)=0.0236 \ 5; \ \alpha(M)=0.00618 \ 12; \\ \alpha(N+)=0.00210 \ 5 \\ \alpha(N)=0.00165 \ 4; \ \alpha(O)=0.000378 \ 8; \ \alpha(P)=6.69\times10^{-5} \ 15; \\ \alpha(O)=2.69\times10^{-6} \ 16 $
	416.30 20	0.0132 21	1539.24	2+	1122.949	2-	[E1]		0.0183	Mult.: $\alpha(K) \exp=0.058 \ 9$, K/L=2.0 4 (1971He23), $\alpha(K) \exp=0.049 \ 4$ (1960Ar06). Theory: $\alpha(K)=0.049 \ 4$, K/L=2.02 14. $\alpha(K)=0.01482 \ 21$; $\alpha(L)=0.00267 \ 4$; $\alpha(M)=0.000637 \ 9$; $\alpha(N+)=0.000216 \ 3$
										$\alpha(N)=0.0001686\ 24;\ \alpha(O)=3.94\times10^{-5}\ 6;\ \alpha(P)=7.43\times10^{-6}\ 11;\ \alpha(O)=6.07\times10^{-7}\ 9$
	419.42 10	0.021 3	1646.005	3+	1226.566	4-	[E1]		0.0181	$\alpha(K)=0.01460\ 21;\ \alpha(L)=0.00262\ 4;\ \alpha(M)=0.000626\ 9;\ \alpha(N+)=0.000213\ 3$
	440.44 5	0.121 8	1531.478	3+	1091.020	4+	M1		0.295	$\alpha(N)=0.0001659\ 24;\ \alpha(O)=3.88\times10^{-5}\ 6;\ \alpha(P)=7.31\times10^{-6}\ 11;\\ \alpha(Q)=5.98\times10^{-7}\ 9\\ \alpha(K)=0.237\ 4;\ \alpha(L)=0.0442\ 7;\ \alpha(M)=0.01061\ 15;\\ \alpha(L)=0.00264\ 5$
										$\alpha(N+)=0.00564.5$ $\alpha(N)=0.00283.4; \alpha(O)=0.000670.10; \alpha(P)=0.0001300.19;$ $\alpha(Q)=1.234\times10^{-5}.18$
	Q_									Mult.: $\alpha(K)\exp=0.26\ 9\ (1971He23)$; theory: $\alpha(K)=0.252$. Limit of E2 admixture $\delta<0.8$.
	449.15 [∞] 5	0.048 5	968.45	4+	519.195	5-				$\alpha(K)=0.0331 5; \alpha(L)=0.01653 24; \alpha(M)=0.00432 6; \alpha(N+)=0.001469 21 \alpha(N)=0.001157 17; \alpha(O)=0.000264 4; \alpha(P)=4.68\times10^{-5} 7;$
	452 47 10	0.015.5	1431 081	<u>4</u> +	979 507	2+	[F2]		0 0544	$\alpha(Q)=1.86 \times 10^{-6} 3$ E _y : Placement from ε decay. $\alpha(K)=0.0326 5$; $\alpha(L)=0.01613 23$; $\alpha(M)=0.00422 6$;
	152.17 10	0.015 5	1151.701		717.501	-	[104]		0.0011	a(11) 0.0520 5, a(1)=0.01015 25, a(11)=0.00122 0,

l

					22	28 Ac β^- dec	ay	1987Da28 ((continued))
						<u>γ(</u>	²²⁸ Th)	(continued)	<u>)</u>	
E_{γ}^{\ddagger}	Ι _γ # <i>l</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	δ	α^{\dagger}	$I_{(\gamma+ce)}^{l}$	Comments
457.17 <i>15</i>	0.0150 23	1683.71	(4-)	1226.566	4-	[M1,E2]		0.16 11		$\begin{aligned} \alpha(\text{N}+)=0.001433\ 20\\ \alpha(\text{N})=0.001128\ 16;\ \alpha(\text{O})=0.000258\ 4;\ \alpha(\text{P})=4.57\times10^{-5}\ 7;\\ \alpha(\text{Q})=1.83\times10^{-6}\ 3\\ \alpha(\text{K})=0.12\ 10;\ \alpha(\text{L})=0.028\ 13;\ \alpha(\text{M})=0.007\ 3;\\ \alpha(\text{N}+)=0.0023\ 10\\ \alpha(\text{N})=0.0018\ 8;\ \alpha(\text{O})=0.00043\ 18;\ \alpha(\text{P})=8.\text{E}-5\ 4;\\ \alpha(\text{Q})=6.\text{E}-6\ 5 \end{aligned}$
463.004 ^{&} 6	4.40 [°] 7	1431.981	4+	968.972	2+	E2		0.0514		$\begin{aligned} &\alpha(\text{K})=0.0312\ 5;\ \alpha(\text{L})=0.01495\ 21;\ \alpha(\text{M})=0.00390\ 6;\\ &\alpha(\text{N}+)=0.001326\ 19\\ &\alpha(\text{N})=0.001044\ 15;\ \alpha(\text{O})=0.000238\ 4;\ \alpha(\text{P})=4.24\times10^{-5}\ 6;\\ &\alpha(\text{Q})=1.744\times10^{-6}\ 25\\ &\text{Mult.:}\ \alpha(\text{K})\text{exp}=0.036\ 4,\ \text{K/L}=3.0\ 7\ (1971\text{He23});\\ &\alpha(\text{K})\text{exp}=0.028\ 3\ (1960\text{Ar06});\ \text{theory:}\ \alpha(\text{K})=0.0316,\\ &\text{K/L}=2.1. \end{aligned}$
470.25 20	0.029 5	1638.283	2+	1168.377	3-	[E1]		0.01428		$\alpha(K)=0.01157 \ 17; \ \alpha(L)=0.00205 \ 3; \ \alpha(M)=0.000489 \ 7; \ \alpha(N)=0.0001661 \ 24 \ \alpha(N)=0.0001295 \ 19; \ \alpha(O)=3.03\times10^{-5} \ 5; \ \alpha(P)=5.74\times10^{-6} \ 8; \ \alpha(O)=4.79\times10^{-7} \ 7$
471.76 <i>15</i> 474.75 <i>10</i>	0.033 <i>3</i> 0.022 <i>3</i>	1416.09 1643.119	(3 ⁻) (3 ⁻)	944.200 1168.377	1- 3-	[E2] [M1,E2]		0.049 0.14 <i>10</i>		$\alpha(K)=0.11 \ 9; \ \alpha(L)=0.025 \ 12; \ \alpha(M)=0.006 \ 3; \ \alpha(N+)=0.0021 \ 9 \ \alpha(N)=0.0016 \ 7; \ \alpha(O)=0.00038 \ 17; \ \alpha(P)=7.E-5 \ 4; \ \alpha(O)=0.00038 \ 17; \ \alpha(P)=7.E-5 \ 4;$
478.33 ^{<i>a</i>} 5	0.209 15	874.48	2+	396.083	3-	E1		0.01380		$\alpha(Q)=0.E-6.5$ $\alpha(K)=0.01119\ 16;\ \alpha(L)=0.00198\ 3;\ \alpha(M)=0.000471\ 7;$ $\alpha(N+)=0.0001601\ 23$ $\alpha(N)=0.0001249\ 18;\ \alpha(O)=2.92\times10^{-5}\ 4;\ \alpha(P)=5.54\times10^{-6}\ 8;$ $\alpha(O)=4.63\times10^{-7}\ 7$
480.94 ^{<i>i</i>} 20	0.023 5	1450.35	4-	968.972	2+	[M2]		0.645		$\alpha(K)=0.484\ 7;\ \alpha(L)=0.1200\ 17;\ \alpha(M)=0.0300\ 5; \alpha(N+)=0.01038\ 15 \alpha(N)=0.00807\ 12;\ \alpha(O)=0.00191\ 3;\ \alpha(P)=0.000367\ 6; \alpha(Q)=3.29\times10^{-5}\ 5$ Not reported in ²²⁸ Pa decay.
490.33 <i>15</i> 492.37 <i>10</i>	0.0111 23 0.0235 23	1906.63 1646.005	(2 ⁺) 3 ⁺	1416.09 1153.465	(3 ⁻) 2 ⁺	[M1,E2]		0.13 9		α (K)=0.10 8; α (L)=0.022 11; α (M)=0.0055 24; α (N)=0.0019 8 α (N)=0.0015 7; α (O)=0.00034 15; α (P)=7.E-5 3; α (Q)=5.E-6 4
497.49 ⁱ 15	0.0059 18	1724.288	2+	1226.566	4-	[M2]		0.581		$\begin{array}{l} \alpha(\mathrm{K}) = 0.438 \ 7; \ \alpha(\mathrm{L}) = 0.1075 \ 15; \ \alpha(\mathrm{M}) = 0.0269 \ 4; \\ \alpha(\mathrm{N}+) = 0.00928 \ 13 \\ \alpha(\mathrm{N}) = 0.00722 \ 11; \ \alpha(\mathrm{O}) = 0.001705 \ 24; \ \alpha(\mathrm{P}) = 0.000328 \ 5; \\ \alpha(\mathrm{Q}) = 2.95 \times 10^{-5} \ 5 \\ \mathrm{E}_{\gamma} \mathrm{J}_{\gamma}: \ \mathrm{In} \ ^{228} \mathrm{Pa} \ \mathrm{decay} \ \mathrm{this} \ \gamma \ \mathrm{is} \ \mathrm{assigned} \ \mathrm{to} \ \mathrm{this} \ \mathrm{level} \ \mathrm{based} \\ \mathrm{on \ the \ level} \ \mathrm{scheme,} \ \mathrm{and} \ \mathrm{is} \ \mathrm{given} \ \mathrm{an \ intensity} \ \mathrm{upper} \ \mathrm{limit}. \end{array}$

						²²⁸ Ac β^- decay 1987Da28 (continued)		(continued))		
γ ⁽²²⁸ Th) (continued)								<u>)</u>			
E_{γ}^{\ddagger}	Ι _γ # <i>l</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ	α^{\dagger}	$I_{(\gamma+ce)}^{l}$	Comments	
503.823 ^{&} 13	0.182 ^e 12	831.822	0+	328.006	1-	(E1)		0.01243		$\alpha(K)=0.01009 \ 15; \ \alpha(L)=0.001775 \ 25; \ \alpha(M)=0.000422 \ 6; \ \alpha(N+)=0.0001435 \ 20$	

L

						2	28 Ac β^- dec	ay 1987D	a28 (contin	nued)
							<u> </u>	²²⁸ Th) (conti	nued)	
	E_{γ}^{\ddagger}	I_{γ} # <i>l</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f} .	\mathbf{J}_f^{π}	Mult. [@]	δ	α^{\dagger}	Comments
	508.959 ^{&} 17	0.45 5	1531.478	3+	1022.531 (2	3)+	E2(+M1)	>+1.1	0.08 4	$\begin{aligned} &\alpha(\text{N})=0.0001119 \ 16; \ \alpha(\text{O})=2.62\times10^{-5} \ 4; \ \alpha(\text{P})=4.97\times10^{-6} \ 7; \\ &\alpha(\text{Q})=4.19\times10^{-7} \ 6 \\ &\text{Mult.: Ice not seen (1971He23), upper limit in Ice suggests E1.} \\ &\alpha(\text{K})=0.06 \ 3; \ \alpha(\text{L})=0.015 \ 5; \ \alpha(\text{M})=0.0038 \ 10; \ \alpha(\text{N}+)=0.0013 \ 4 \\ &\alpha(\text{N})=0.0010 \ 3; \ \alpha(\text{O})=0.00024 \ 7; \ \alpha(\text{P})=4.4\times10^{-5} \ 13; \\ &\alpha(\text{Q})=3.0\times10^{-6} \ 16 \end{aligned}$
	515.06 10	0.049 5	1638.283	2+	1122.949 2	2-	[E1]		0.01190	Mult., δ : α (K)exp=0.06 3 (1971He23); theory: α (K)(E2)=0.0264, α (K)(M1)=0.171. α (K)=0.00966 14; α (L)=0.001695 24; α (M)=0.000403 6; α (N+)=0.0001371 20 α (N)=0.0001069 15; α (O)=2.50×10 ⁻⁵ 4; α (P)=4.75×10 ⁻⁶ 7;
	520.151 ^{&} 16	0.067 5	1643.119	(3-)	1122.949 2	2-	(M1)		0.189	$\alpha(Q) = 4.02 \times 10^{-7} \ 6$ $\alpha(K) = 0.1516 \ 22; \ \alpha(L) = 0.0282 \ 4; \ \alpha(M) = 0.00676 \ 10;$ $\alpha(N+) = 0.00232 \ 4$ $\alpha(N) = 0.00180 \ 3; \ \alpha(O) = 0.000426 \ 6; \ \alpha(P) = 8.27 \times 10^{-5} \ 12;$
13	523.131 ^{&a} 16	0.103 8	1646.005	3+	1122.949 2	2-	[E1]		0.01153	$\alpha(Q)=7.86 \times 10^{-6} 11$ Mult.: $\alpha(K)\exp=0.31 12$ (1971He23); theory: $\alpha(K)=0.161$. $\alpha(K)=0.00937 14$; $\alpha(L)=0.001641 23$; $\alpha(M)=0.000390 6$; $\alpha(N+)=0.0001327 19$
	540.76 <i>10</i>	0.026 3	1059.94	4-	519.195 5	;-	[M1,E2]		0.10 7	$\begin{aligned} \alpha(N) &= 0.0001035 \ 15; \ \alpha(O) &= 2.42 \times 10^{-5} \ 4; \ \alpha(P) &= 4.60 \times 10^{-6} \ 7; \\ \alpha(Q) &= 3.91 \times 10^{-7} \ 6 \end{aligned}$ Mult.: $\alpha(K) \exp \leq 0.08 \ (1971 \text{He}23); \text{ theory: } \alpha(K)(E1) &= 0.0094, \\ \alpha(K)(E2) &= 0.0251, \ \alpha(K)(E3) &= 0.0610, \ \alpha(K)(M1) &= 0.158. \\ \alpha(K) &= 0.08 \ 6; \ \alpha(L) &= 0.017 \ 9; \ \alpha(M) &= 0.0042 \ 19; \ \alpha(N+) &= 0.0014 \ 7 \end{aligned}$
	546.47 5	0.201 13	874.48	2+	328.006 1	_	[E1]		0.01058	$\begin{aligned} &\alpha(N)=0.0011 \ 5; \ \alpha(O)=0.00026 \ 12; \ \alpha(P)=5.0\times10^{-3} \ 25; \\ &\alpha(Q)=4.E-6 \ 3 \\ &\alpha(K)=0.00860 \ 12; \ \alpha(L)=0.001500 \ 21; \ \alpha(M)=0.000357 \ 5; \\ &\alpha(N+)=0.0001212 \ 17 \end{aligned}$
	548.73 15	0.023 3	1724.288	2+	1175.45 2	+	[M1,E2]		0.10 7	$\begin{aligned} &\alpha(N) = 9.45 \times 10^{-5} \ 14; \ \alpha(O) = 2.22 \times 10^{-5} \ 4; \ \alpha(P) = 4.21 \times 10^{-6} \ 6; \\ &\alpha(Q) = 3.60 \times 10^{-7} \ 5 \\ &\alpha(K) = 0.08 \ 6; \ \alpha(L) = 0.017 \ 8; \ \alpha(M) = 0.0041 \ 18; \ \alpha(N+) = 0.0014 \ 7 \\ &\alpha(N) = 0.0011 \ 5; \ \alpha(O) = 0.00025 \ 12; \ \alpha(P) = 4.8 \times 10^{-5} \ 24; \end{aligned}$
	555.12 10	0.046 5	1646.005	3+	1091.020 4	ļ+	[M1,E2]		0.10 7	$\alpha(Q)=4.E-6.3$ $\alpha(K)=0.07.6; \ \alpha(L)=0.016.8; \ \alpha(M)=0.0039.18; \ \alpha(N+)=0.0013.6$ $\alpha(N)=0.0010.5; \ \alpha(Q)=0.00025.12; \ \alpha(P)=4.7\times10^{-5}.23;$ $\alpha(Q)=4.E-6.3$
	562.500 ^{&} 4	0.87 ^c 3	1531.478	3+	968.972 2	2+	E2+M1	+1.6 ^h 6	0.07 3	$\alpha(Q) = 4.2 - 0.5$ $\alpha(K) = 0.050 \ 23; \ \alpha(L) = 0.012 \ 4; \ \alpha(M) = 0.0030 \ 8; \ \alpha(N+) = 0.0010$ $\beta(R) = 0.00081 \ 20; \ \alpha(O) = 0.00019 \ 5; \ \alpha(P) = 3.5 \times 10^{-5} \ 10;$ $\alpha(Q) = 2.6 \times 10^{-6} \ 12$ Mult.: $\alpha(K) \exp = 0.048 \ 10 \ (1971 \text{He}23); \ E1 + M2 \ \text{mixture requires}$ $\delta = 0.39.$

				2	228 Ac β^- dec	cay 1987Da	28 (continued)
					<u> </u>	(²²⁸ Th) (contin	ued)
${\rm E_{\gamma}}^{\ddagger}$	I_{γ} #l	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	α^{\dagger}	Comments
570.91 10	0.182 ^e 24	1724.288	2+	1153.465 2+	(M1)	0.1472	α(K)=0.1182 17; α(L)=0.0219 3; α(M)=0.00525 8; α(N+)=0.00180 3 α(N)=0.001401 20; α(O)=0.000332 5; α(P)=6.44×10-5 9; α(Q)=6.12×10-6 9 Mult.: α(K)exp=0.20 8 (1971He23); theory: α(K)=0.125. 1987Da28 assigns this γ to be the 1539.2 to 968.4 transition on the basis of coin with 911.2γ. However, the E(level) difference is 570.25 9. In 228Pa decay this γ is assigned to the 1724.3 level; energy, intensity, multipolarity, and coin results agree with this assignment.
572.14 ^{&} 8	0.150 16	968.335	2-	396.083 3-	[M1,E2]	0.09 6	$\alpha(K)=0.075; \alpha(L)=0.0157; \alpha(M)=0.003617; \alpha(N+)=0.00126$ $\alpha(N)=0.00105; \alpha(Q)=0.0002314; \alpha(P)=43\times10^{-5}24; \alpha(Q)=36\times10^{-6}25$
583.41 5	0.111 <i>10</i>	979.507	2+	396.083 3-	[E1]	0.00932 13	$\begin{array}{l} \alpha(N)=0.00105, \alpha(K)=0.0002511, \alpha(1)=4.3\times10^{-2.1}, \alpha(Q)=0.0010125;\\ \alpha(0)=0.0003213; \alpha(K)=0.00075911; \alpha(L)=0.00131319; \alpha(M)=0.0003125;\\ \alpha(N+)=0.0001061\\ \alpha(N)=8.27\times10^{-5}12; \alpha(Q)=1.94\times10^{-5}3; \alpha(P)=3.69\times10^{-6}6;\\ \alpha(Q)=3.18\times10^{-7}5 \end{array}$
(590.4)	0.017 3	1743.87	4+	1153.465 2+	[E2]	0.0292	$\alpha(\mathbf{K}) = 0.0197 \ 3; \ \alpha(\mathbf{L}) = 0.00703 \ 10; \ \alpha(\mathbf{M}) = 0.00180 \ 3; \ \alpha(\mathbf{N}+) = 0.000613 \ 9$ $\alpha(\mathbf{N}) = 0.000481 \ 7; \ \alpha(\mathbf{O}) = 0.0001107 \ 16; \ \alpha(\mathbf{P}) = 2.00 \times 10^{-5} \ 3; \ \alpha(\mathbf{Q}) = 1.056 \times 10^{-6} \ 15$
610.64 <i>10</i>	0.023 5	938.61	0+	328.006 1-	[E1]	0.00853 12	E _γ ,I _γ : γ not reported in this decay. Placement suggested by ²¹² Pla decay. Iγ deduced from branching ratio in ²²⁸ Pla decay. α =0.00853 <i>12</i> ; α (K)=0.00695 <i>10</i> ; α (L)=0.001198 <i>17</i> ; α (M)=0.000284 <i>4</i> ; α (N+)=9.67×10 ⁻⁵ <i>14</i> α (N)=7.54×10 ⁻⁵ <i>11</i> ; α (O)=1.769×10 ⁻⁵ <i>25</i> ; α (P)=3.37×10 ⁻⁶ <i>5</i> ; α (Q)=2.93×10 ⁻⁷ <i>4</i>
616.22 ^{&} 3	0.080 5	944.200	$1^{-}_{2^{-}}$	328.006 1-			
620.38 5 623.27 ^a 20	0.080 5 0.011 3	1646.005	3 3+	396.083 3 1022.531 (3) ⁺	[M1,E2]	0.07 5	α (K)=0.06 4; α (L)=0.012 6; α (M)=0.0028 13; α (N+)=0.0010 5 α (N)=0.0008 4; α (O)=0.00018 9; α (P)=3.4×10 ⁻⁵ 17; α (Q)=2.9×10 ⁻⁶ 20
$ \begin{array}{r} 627.23 \ 20 \\ 629.40 \ 5 \\ ^{x}634.18 \ 10 \end{array} $	0.014 <i>3</i> 0.045 <i>5</i> 0.0106 <i>21</i>	1643.119 1646.005	(3^{-}) 3^{+}	1016.386 3 ⁻ 1016.386 3 ⁻	[D,E2]	0.07 5	
640.34 ^{&} 3	0.054 5	968.335	2-	328.006 1-	[E2]	0.0245	$\alpha(K)=0.01700\ 24;\ \alpha(L)=0.00556\ 8;\ \alpha(M)=0.001416\ 20;\ \alpha(N+)=0.000482\ 7$ $\alpha(N)=0.000378\ 6;\ \alpha(O)=8.73\times10^{-5}\ 13;\ \alpha(P)=1.589\times10^{-5}\ 23;$
648.84 ^{ma} 10	0.040 ^m 4	1168.377	3-	519.195 5-	[E2]	0.0238	$\alpha(Q) = 0.98 \times 10^{-15}$ $\alpha(K) = 0.01659 \ 24; \ \alpha(L) = 0.00536 \ 8; \ \alpha(M) = 0.001363 \ 19;$ $\alpha(N+) = 0.000464 \ 7$ $\alpha(N) = 0.000364 \ 5; \ \alpha(O) = 8.40 \times 10^{-5} \ 12; \ \alpha(P) = 1.532 \times 10^{-5} \ 22;$ $\alpha(Q) = 8.75 \times 10^{-7} \ 13$
648.84 ^m 10	0.040 ^m 4	1617.78	4+	968.972 2+			
651.51 ^{&} 3	0.090 8	979.507	2+	328.006 1-	[E1]	0.00754 11	α =0.00754 <i>11</i> ; α (K)=0.00615 <i>9</i> ; α (L)=0.001053 <i>15</i> ; α (M)=0.000250 <i>4</i> ; α (N+)=8.50×10 ⁻⁵ <i>12</i>

L

						β^{-} decay	1987Da28 (con	ntinued)
						γ ⁽²²⁸ Th)	(continued)	
${\rm E_{\gamma}}^{\ddagger}$	Ι _γ # <i>l</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
660.1 <i>3</i>	≈0.005	1682.754	(2 ⁺ ,3 ⁺ ,4 ⁺)	1022.531	(3)+	[M1,E2]	0.06 4	$\alpha(N)=6.62\times10^{-5} \ 10; \ \alpha(O)=1.555\times10^{-5} \ 22; \ \alpha(P)=2.97\times10^{-6} \ 5; \ \alpha(Q)=2.60\times10^{-7} \ 4 \ \alpha(K)=0.05 \ 4; \ \alpha(L)=0.010 \ 5; \ \alpha(M)=0.0024 \ 12; \ \alpha(N+)=0.0008 \ 4 \ \alpha(N)=0.0006 \ 3; \ \alpha(O)=0.00015 \ 8; \ \alpha(P)=2.9\times10^{-5} \ 15; \ \alpha(O)=2.5\times10^{-6} \ 17$
663.82 10	0.028 6	1059.94	4-	396.083	3-	(M1+E2) ^h	0.06 4	$\alpha(Q)=2.5\times10^{-17}$ $\alpha(K)=0.05 4; \ \alpha(L)=0.010 5; \ \alpha(M)=0.0024 \ 12; \ \alpha(N+)=0.0008 4$ $\alpha(N)=0.0006 \ 3; \ \alpha(O)=0.00015 \ 8; \ \alpha(P)=2.9\times10^{-5} \ 15;$ $\alpha(Q)=2.5\times10^{-6} \ 17$
666.45 ⁿ 10	0.057 ⁿ 6	1646.005	3+	979.507	2+	[M1,E2]	0.06 4	$\alpha(Q)=2.5\times10^{-17}$ $\alpha(K)=0.05 4; \ \alpha(L)=0.010 5; \ \alpha(M)=0.0024 11; \ \alpha(N+)=0.0008 4$ $\alpha(N)=0.0006 3; \ \alpha(O)=0.00015 7; \ \alpha(P)=2.8\times10^{-5} 15; \ \alpha(Q)=2.4\times10^{-6} 16$ $I_{\gamma}: Intensity of the doublet divided by evaluator by comparison with branching ratios and the intensities of the doublet as measured in both 228Ac and 228Pa decays.$
666.45 ⁿ 10	0.005 ⁿ 2	1893.02	3+	1226.566	4-	[E1]	0.00722 11	Ty(doublet)=0.032 3. All of intensity placed here by 1987Da28, α =0.00722 11; α (K)=0.00590 9; α (L)=0.001007 15; α (M)=0.000239 4; α (N+)=8.13×10 ⁻⁵ 12 α (N)=6.33×10 ⁻⁵ 9; α (O)=1.487×10 ⁻⁵ 21; α (P)=2.84×10 ⁻⁶ 4; α (Q)=2.50×10 ⁻⁷ 4 I _γ : Intensity of the doublet divided by evaluator by comparison with branching ratios and the intensities of the doublet as measured in both ²²⁸ Ac and ²²⁸ Pa decays.
672.00 15	0.026 8	1688.398	2+,3+	1016.386	3-			γ listed in table I of 1987Da28 as deexciting the 1683.8 level; however, on level scheme (fig. 4) shown as deexciting the 1688.4 level.
674.16 ^j	≤0.109	1643.119	(3 ⁻)	968.972	2+	[E1]	0.00707 10	$\alpha = 0.00707 \ 10; \ \alpha(K) = 0.00577 \ 8; \ \alpha(L) = 0.000985 \ 14; \alpha(M) = 0.000233 \ 4; \ \alpha(N+) = 7.95 \times 10^{-5} \ 12 \alpha(N) = 6.19 \times 10^{-5} \ 9; \ \alpha(O) = 1.454 \times 10^{-5} \ 21; \ \alpha(P) = 2.78 \times 10^{-6} \ 4; \alpha(Q) = 2.44 \times 10^{-7} \ 4 E : deduced from E(level)$
674.75 ^j	2.1 7	1643.119	(3 ⁻)	968.335	2-	[M1,E2]	0.06 4	$\alpha(K)=0.05 \ 3; \ \alpha(L)=0.009 \ 5; \ \alpha(M)=0.0023 \ 11; \ \alpha(N+)=0.0008 \ 4 \ \alpha(N)=0.0006 \ 3; \ \alpha(O)=0.00014 \ 7; \ \alpha(P)=2.7\times10^{-5} \ 14; \ \alpha(Q)=2.4\times10^{-6} \ 16 \ I_{\gamma}: \ From \ ^{228}Pa \ decay \ with \ respect \ to \ I1247.07=8.2 \ 4. \ E \ : \ deduced \ from \ E(level)$
677.11 10	0.062 5	1646.005	3+	968.972	2+	[M1,E2]	0.06 4	$\alpha(K)=0.05 \ 3; \ \alpha(L)=0.009 \ 5; \ \alpha(M)=0.0023 \ 11; \ \alpha(N+)=0.0008 \ 4 \ \alpha(N)=0.0006 \ 3; \ \alpha(O)=0.00014 \ 7; \ \alpha(P)=2.7\times10^{-5} \ 14; \ \alpha(O)=2.3\times10^{-6} \ 16$
(684.0)	0.019 5	1743.87	4+	1059.94	4-	[E1]	0.00688 10	$\alpha = 0.00688 \ 10; \ \alpha(K) = 0.00562 \ 8; \ \alpha(L) = 0.000957 \ 14;$

From ENSDF

				2	²²⁸ Ac	β^- decay 198	7Da28 (cont	inued)
						γ ⁽²²⁸ Th) (co	ontinued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#l}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
								α (M)=0.000227 4; α (N+)=7.72×10 ⁻⁵ 11 α (N)=6.02×10 ⁻⁵ 9; α (O)=1.413×10 ⁻⁵ 20; α (P)=2.70×10 ⁻⁶ 4; α (Q)=2.38×10 ⁻⁷ 4 E _{γ} ,I _{γ} : γ not reported in this decay. Placement suggested by ²²⁸ Pa decay. In deduced from branching ratio in ²²⁸ Pa decay.
688.10 ^{<i>ao</i>} 5	0.067 5	874.48	2+	186.827 4	4+	[E2]	0.0210	$\alpha(K)=0.01490\ 21;\ \alpha(L)=0.00455\ 7;\ \alpha(M)=0.001153\ 17;\alpha(N+)=0.000393\ 6\alpha(N)=0.000308\ 5;\ \alpha(O)=7.12\times10^{-5}\ 10;\ \alpha(P)=1.303\times10^{-5}\ 19;$
688.10 ^{<i>a</i>} 5	0.067 5	1016.386	3-	328.006	1-			$\alpha(Q)=7.79\times10^{-7}$ 11 γ not placed here by 1987Da28; this placement of the γ suggested in ²²⁸ Pa decay.
(692.5)	0.0056 7	1893.02	3+	1200.5		(M1+E2+E0)	0.05 4	$\begin{aligned} \alpha(\mathbf{K}) = 0.04 \ 3; \ \alpha(\mathbf{L}) = 0.009 \ 5; \ \alpha(\mathbf{M}) = 0.0021 \ 10; \ \alpha(\mathbf{N}+) = 0.0007 \ 4 \\ \alpha(\mathbf{N}) = 0.0006 \ 3; \ \alpha(\mathbf{O}) = 0.00013 \ 7; \ \alpha(\mathbf{P}) = 2.6 \times 10^{-5} \ 13; \\ \alpha(\mathbf{Q}) = 2.2 \times 10^{-6} \ 15 \\ \end{aligned}$ $\begin{aligned} \mathbf{Mult:} \ \alpha(\mathbf{K}) \exp[=0.17 \ 3 \ (1973 \mathrm{Ku09}), \ 0.13 \ (1960 \mathrm{Ar06}); \ \mathrm{theory:} \\ \alpha(\mathbf{K}) = 0.0149 \ \alpha(\mathbf{K}) \otimes 10^{-2} \ $
								$\alpha(K)(E2)=0.0148$, $\alpha(K)(M1)=0.0751$. $\alpha(K)exp$ may indicate E0 presence. $E_{\gamma},I_{\gamma}: \gamma$ not reported in this decay. Placement suggested by ²²⁸ Pa decay. I γ deduced from branching ratio in ²²⁸ Pa decay.
699.08 <i>15</i>	0.037 5	1643.119	(3 ⁻)	944.200	1-	[E2]	0.020	
701.747 ^{&} 14	0.173 10	1724.288	2+	1022.531 ((3)+	(M1) ^{<i>n</i>}	0.0850	$\alpha(K)=0.0684 \ 10; \ \alpha(L)=0.01261 \ 18; \ \alpha(M)=0.00302 \ 5; \\ \alpha(N+)=0.001036 \ 15 \\ \alpha(N)=0.00805 \ 12; \ \alpha(O)=0.000191 \ 3; \ \alpha(P)=3.70\times10^{-5} \ 6; $
								$\alpha(Q)=3.52\times10^{-6} 5$
707.41 5	0.155 ^f 15	1226.566	4-	519.195 5	5-	(E2) ^{<i>h</i>}	0.0198	α (K)=0.01417 20; α (L)=0.00422 6; α (M)=0.001067 15; α (N+)=0.000364 5
								α (N)=0.000285 4; α (O)=6.59×10 ⁻⁵ 10; α (P)=1.209×10 ⁻⁵ 17; α (Q)=7.38×10 ⁻⁷ 11
718.48 <i>15</i>	0.019 4	1944.83	3+	1226.566 4	4-	(E1) ^{<i>h</i>}	0.00628 9	$\alpha = 0.00628 \ 9; \ \alpha(K) = 0.00513 \ 8; \ \alpha(L) = 0.000870 \ 13; \alpha(M) = 0.000206 \ 3; \ \alpha(N+) = 7.02 \times 10^{-5} \ 10 \alpha(N) = 5.46 \times 10^{-5} \ 8; \ \alpha(O) = 1.284 \times 10^{-5} \ 18; \ \alpha(P) = 2.46 \times 10^{-6} \ 4; \alpha(O) = 2.18 \times 10^{-7} \ 3; $
726.863 15	0.62 8	1122.949	2-	396.083	3-	(E2)	0.0187	$\alpha(K) = 0.01349 \ 19; \ \alpha(L) = 0.00393 \ 6; \ \alpha(M) = 0.000990 \ 14; \alpha(N+) = 0.000337 \ 5 \alpha(N) = 0.000264 \ 4; \ \alpha(O) = 6.12 \times 10^{-5} \ 9; \ \alpha(P) = 1.125 \times 10^{-5} \ 16;$
737.72 5	0.037 4	1760.17	2 ⁽⁺⁾ ,3 ⁽⁺⁾	1022.531 ((3)+	[M1,E2]	0.05 3	$\begin{aligned} &\alpha(Q) = 7.00 \times 10^{-7} \ 10 \\ &\text{Mult.: } \alpha(K) \exp \approx 0.012 \ (1971\text{He23}); \text{ theory: } \alpha(K) = 0.0136. \\ &\alpha(K) = 0.037 \ 24; \ \alpha(L) = 0.007 \ 4; \ \alpha(M) = 0.0018 \ 9; \ \alpha(N+) = 0.0006 \ 3 \\ &\alpha(N) = 0.00048 \ 23; \ \alpha(O) = 0.00011 \ 6; \ \alpha(P) = 2.2 \times 10^{-5} \ 11; \\ &\alpha(Q) = 1.9 \times 10^{-6} \ 12 \\ &\text{Mult.: } \alpha(K) \exp = 0.28 \ 14 \ (1971\text{He23}); \text{ theory: } \alpha(K)(M1) = 0.0637, \end{aligned}$

L

					228	Ac β^- decay	1987Da28 (c	continued)	
						$\gamma(228)$	Th) (continued)		
E_{γ}^{\ddagger}	Ι _γ # <i>l</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	δ	α^{\dagger}	Comments
	L								$\alpha(K)(E2)=0.0133$, $\alpha(K)(M2)=0.147$. Unconfirmed $\alpha(K)$ exp seems to indicate E0 admixture.
755.315 ^{&} 4	1.00 ^b 3	1724.288	2+	968.972	2+	M1		0.0700	$\alpha(K)=0.0563 \ 8; \ \alpha(L)=0.01036 \ 15; \ \alpha(M)=0.00248 \ 4; \ \alpha(N+)=0.000851 \ 12 \ \alpha(N)=0.000661 \ 10; \ \alpha(O)=0.0001566 \ 22; \ \alpha(P)=3.04\times10^{-5} \ 5; \ \alpha(Q)=2.90\times10^{-6} \ 4 \ Mult.: \ \alpha(K)exp=0.055 \ 9 \ (1971He23), \ 0.057 \ 8 \ (19604 \ r06); \ theory; \ \alpha(K)(M1)=0.0599 \ A \ A \ A \ A \ A \ A \ A \ A \ A \$
(770.04)	0.0063 8	1893.02	3+	1122.949	2-	[E1]		0.00552 8	$\alpha = 0.00552 \ 8; \ \alpha(K) = 0.00452 \ 7; \ \alpha(L) = 0.000762 \ 11; \alpha(M) = 0.000180 \ 3; \ \alpha(N+) = 6.14 \times 10^{-5} \ 9 \alpha(N) = 4.78 \times 10^{-5} \ 7; \ \alpha(O) = 1.124 \times 10^{-5} \ 16; \alpha(P) = 2.15 \times 10^{-6} \ 3; \ \alpha(Q) = 1.93 \times 10^{-7} \ 3 E_{\gamma}, I_{\gamma}: \ \gamma \text{ not reported in this decay. Placement suggested by } ^{228} Pa \ decay. I_{\gamma} \ deduced from branching ratio in } ^{228} Pa \ decay.$
772.291 ^{&} 5	1.49 ^c 3	1168.377	3-	396.083	3-	E2+M1	-3.4 ^h +8-27	0.021 3	α (K)=0.0154 22; α (L)=0.0039 4; α (M)=0.00096 9; α (N+)=0.00033 3 α (N)=0.000256 22; α (O)=6.0×10 ⁻⁵ 6; α (P)=1.11×10 ⁻⁵ 11; α (Q)=7.9×10 ⁻⁷ 12 Mult.: α (K)exp=0.016 7 (1971He23), 0.019 3 (1960Ar06); theory: α (K)=0.0157 24
774.1 2	≈0.06	831.822	0+	57.763	2+	[E2]		0.01649	$\alpha(\mathbf{K})=0.01204 \ 17; \ \alpha(\mathbf{L})=0.00333 \ 5; \ \alpha(\mathbf{M})=0.000835 \ 12; \\ \alpha(\mathbf{N}+)=0.000285 \ 4 \\ \alpha(\mathbf{N})=0.000223 \ 4; \ \alpha(\mathbf{O})=5.17\times10^{-5} \ 8; \ \alpha(\mathbf{P})=9.54\times10^{-6} \\ \mathcal{U}: \ \alpha(\mathbf{O})=6 \ 10\times10^{-7} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $
776.56 <i>10</i> (778.23)	0.019 <i>6</i> 0.022 <i>6</i>	1944.83 1297.440	3 ⁺ (5) ⁻	1168.377 519.195	3- 5-	[M1,E2]		0.040 25	$\alpha(K)=0.032 \ 20; \ \alpha(L)=0.006 \ 4; \ \alpha(M)=0.0016 \ 8; \\ \alpha(N+)=0.0005 \ 3 \\ \alpha(N)=0.00042 \ 20; \ \alpha(O)=0.00010 \ 5; \ \alpha(P)=1.9\times10^{-5} \ 10; \\ \alpha(Q)=1.6\times10^{-6} \ 11$
782.142 ^{&} 5	0.485 ^c 19	968.972	2+	186.827	4+	[E2]		0.01615	E _γ ,I _γ : γ not reported in this decay. Placement suggested by ²²⁸ Pa decay. Iγ deduced from branching ratio in ²²⁸ Pa decay. $\alpha(K)=0.01182 \ 17; \ \alpha(L)=0.00324 \ 5; \ \alpha(M)=0.000812 \ 12; \ \alpha(N+)=0.000277 \ 4 \ \alpha(N)=0.000217 \ 3; \ \alpha(Q)=5.03\times10^{-5} \ 7; \ \alpha(P)=9.29\times10^{-6} \ 13; \ \alpha(Q)=6.07\times10^{-7} \ 9 \ Mult.: \ \alpha(K)exp=0.024 \ 3 \ (1960Ar06), \ 0.07 \ 3 \ 3 \ \alpha(Q)=5.03\times10^{-6} \ 3 \ 3 \ \alpha(Q)=5.03\times10^{-6} \ 3 \ 3 \ \alpha(Q)=5.03\times10^{-5} \ \alpha($
791.49 ⁿ 25	0.010 ⁿ 3	1760.17	2 ⁽⁺⁾ ,3 ⁽⁺⁾	968.972	2+	[M1,E2]		0.039 23	(1971He23) inconsistent with each other and with E2 assignment required by level scheme. $\alpha(K)=0.031$ 19; $\alpha(L)=0.006$ 3; $\alpha(M)=0.0015$ 7; $\alpha(N+)=0.00051$ 25

From ENSDF

I

					22	28 Ac β^- decay	1987Da2	8 (continued)	
						γ (²²⁸	Th) (continu	ed)	
E_{γ}^{\ddagger}	Ι _γ # <i>l</i>	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ	α^{\dagger}	Comments
791.49 ⁿ 25	0.013 ⁿ 3	1944.83	3+	1153.465	2+	(M1)		0.0618	$\alpha(N)=0.00040 \ 19; \ \alpha(O)=9.E-5 \ 5; \ \alpha(P)=1.8\times10^{-5} \ 9; \ \alpha(Q)=1.6\times10^{-6} \ 10 \ \gamma$ placed here with I $\gamma=0.023 \ 7$ by 1987Da28. $\alpha(K)=0.0497 \ 7; \ \alpha(L)=0.00915 \ 13; \ \alpha(M)=0.00219 \ 3; \ \alpha(M)=0.002751 \ 11 \ M$
									α (N+)=0.000751 <i>II</i> α (N)=0.000584 9; α (O)=0.0001382 20; α (P)=2.68×10 ⁻⁵ 4; α (Q)=2.56×10 ⁻⁶ 4 I _{γ} : Intensity of the doublet divided by evaluator by comparison with branching ratios and the intensities of the doublet as measured in both ²²⁸ Ac and ²²⁸ Pa decays. This placement suggested by ²²⁸ Pa decay. Mult.: α (K)exp(doublet)=0.054 <i>II</i> (1973Ku09), Ia(doublet)=3.8: theorem α (K)(M1)=0.0407
792.8	≈0.08	979.507	2+	186.827	4+	[E2]		0.01572	$\alpha(K)=0.01154\ 17;\ \alpha(L)=0.00313\ 5;\ \alpha(M)=0.000784\ 11;\ \alpha(N+)=0.000267\ 4$ $\alpha(N)=0.000209\ 3;\ \alpha(O)=4.85\times10^{-5}\ 7;\ \alpha(P)=8.98\times10^{-6}\ 13;\ \alpha(O)=5.91\times10^{-7}\ 9$
794.947 ^{&} 5	4.25 ^b 7	1122.949	2-	328.006	1-	E2+M1	-4.4 ^h 10	0.0179 <i>14</i>	$\alpha(K)=0.0133 \ 12; \ \alpha(L)=0.00340 \ 19; \ \alpha(M)=0.00085 \ 5; \ \alpha(N+)=0.000289 \ 16 \ \alpha(N)=0.000226 \ 12; \ \alpha(O)=5.3\times10^{-5} \ 3; \ \alpha(P)=9.8\times10^{-6} \ 6; \ \alpha(Q)=6.8\times10^{-7} \ 6 \ Mult.: \ \alpha(K)exp=0.0118 \ 20, \ K/L=1.6 \ 7 \ (1971He23), \ \alpha(K)exp=0.0139 \ 19 \ (1960Ar06); \ theory: \ \alpha(K)(E2)=0.0116 \ 20 \ (K)(M1)=0.0524 \ (M1)=0.0524 $
813.77 15	0.0070 <i>16</i>	1688.398	2+,3+	874.48	2+	[M1,E2]		0.036 22	$\alpha(\mathbf{K})(\mathbf{E}_{2})=0.0116, \alpha(\mathbf{K})(\mathbf{M}_{1})=0.0524.$ $\alpha(\mathbf{K})=0.029\ 18; \ \alpha(\mathbf{L})=0.006\ 3; \ \alpha(\mathbf{M})=0.0014\ 7; \ \alpha(\mathbf{N}+)=0.00047\ 23$ $\alpha(\mathbf{N})=0.00037\ 18; \ \alpha(\mathbf{O})=9.\mathrm{E}-5\ 5; \ \alpha(\mathbf{P})=1.7\times10^{-5}\ 9; \ \alpha(\mathbf{O})=1\ 5\times10^{-6}\ 0$
816.71 10	0.030 3	874.48	2+	57.763	2+	[M1,E2]		0.036 21	$\alpha(\text{Q})=1.5\times10^{-9}$ $\alpha(\text{K})=0.028\ 18;\ \alpha(\text{L})=0.006\ 3;\ \alpha(\text{M})=0.0014\ 7;$ $\alpha(\text{N}+)=0.00047\ 23$ $\alpha(\text{N})=0.00037\ 18;\ \alpha(\text{O})=9.\text{E}-5\ 5;\ \alpha(\text{P})=1.7\times10^{-5}\ 9;$ $\alpha(\text{O})=1.5\times10^{-6}\ 9$
824.934 ^{&} 23	0.050 5	1344.082	3-	519.195	5-	[E2]		0.01452	$\alpha(K)=0.01074 \ 15; \ \alpha(L)=0.00283 \ 4; \ \alpha(M)=0.000706 \ 10; \\ \alpha(N+)=0.000241 \ 4 \\ \alpha(N)=0.000188 \ 3; \ \alpha(O)=4.38\times10^{-5} \ 7; \ \alpha(P)=8.12\times10^{-6} \ 12; \\ \alpha(O)=5.48\times10^{-7} \ 8 $
830.486 ^{&} 8	0.540 ^{<i>d</i>} 21	1226.566	4-	396.083	3-	E2(+M1) ^{<i>h</i>}	-7.7 ^h 9	0.0150 <i>3</i>	$\begin{aligned} &\alpha(K) = 0.01117 \ 22; \ \alpha(L) = 0.00287 \ 5; \ \alpha(M) = 0.000715 \ 12; \\ &\alpha(N+) = 0.000244 \ 4 \\ &\alpha(N) = 0.000191 \ 3; \ \alpha(O) = 4.43 \times 10^{-5} \ 8; \ \alpha(P) = 8.24 \times 10^{-6} \ 14; \\ &\alpha(Q) = 5.69 \times 10^{-7} \ 12 \\ &\text{Mult.:} \ \alpha(K) \exp = 0.020 \ 11 \ (1971\text{He}23); \ \text{theory:} \\ &\alpha(K) = 0.0113 \ 2. \end{aligned}$

L

					2	28 Ac β^- dec	ay <mark>1987D</mark> a	a28 (continued)
						<u>γ(</u>	²²⁸ Th) (contin	nued)
E_{γ}^{\ddagger}	Ι _γ # <i>l</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
835.710 ^{&} 6	1.61 ^c 6	1022.531	(3)+	186.827	4+	E2 ^{<i>h</i>}	0.01415	$\alpha(K)=0.01050 \ 15; \ \alpha(L)=0.00274 \ 4; \ \alpha(M)=0.000683 \ 10; \ \alpha(N+)=0.000233$
840.377 ^{&} 7	0.91 [°] 4	1168.377	3-	328.006	1-	E2 ^h	0.01400	4 $\alpha(N)=0.000182 \ 3; \ \alpha(O)=4.24\times10^{-5} \ 6; \ \alpha(P)=7.86\times10^{-6} \ 11;$ $\alpha(Q)=5.34\times10^{-7} \ 8$ Mult.: $\alpha(K)\exp\leq0.015 \ (1971He23);$ theory: $\alpha(K)=0.0106.$ $\alpha(K)=0.01039 \ 15; \ \alpha(L)=0.00270 \ 4; \ \alpha(M)=0.000673 \ 10; \ \alpha(N+)=0.000230$ 4 $\alpha(N)=0.000180 \ 3; \ \alpha(O)=4.18\times10^{-5} \ 6; \ \alpha(P)=7.75\times10^{-6} \ 11;$ $\alpha(Q)=5.29\times10^{-7} \ 8$ Mult.: $\alpha(K)\exp\leq0.026 \ (1971He23);$ theory: $\alpha(K)=0.0105$
^x 853.17 <i>10</i>	0.0088 ^k 18							u(k) = 0.0105.
853.17 ^{<i>a</i>} 10	$0.0031^k 4$	1944.83	3+	1091.020	4+	[M1,E2]	0.032 19	α (K)=0.025 <i>16</i> ; α (L)=0.0050 <i>25</i> ; α (M)=0.0012 <i>6</i> ; α (N+)=0.00042 <i>20</i> α (N)=0.00033 <i>16</i> ; α (O)=8.E–5 <i>4</i> ; α (P)=1.5×10 ⁻⁵ <i>8</i> ; α (Q)=1.3×10 ⁻⁶ <i>8</i> L: from branching ratio in ²²⁸ Pa decay.
870.46 ^{&} 4	0.044 4	1893.02	3+	1022.531	(3)+	M1 ^{<i>h</i>}	0.0481	$\alpha(K)=0.0387\ 6;\ \alpha(L)=0.00710\ 10;\ \alpha(M)=0.001699\ 24;\ \alpha(N+)=0.000583\ 9$ $\alpha(N)=0.000453\ 7;\ \alpha(O)=0.0001073\ 15;\ \alpha(P)=2.08\times10^{-5}\ 3;$
873.17 15	0.031 6	1059.94	4-	186.827	4+	[E1]	0.00440 7	$\alpha(Q)=1.99\times10^{-6} 3$ $\alpha=0.00440 7; \ \alpha(K)=0.00361 5; \ \alpha(L)=0.000601 9; \ \alpha(M)=0.0001421 20; \alpha(N+)=4.84\times10^{-5} 7$ $\alpha(N)=3.77\times10^{-5} 6; \ \alpha(O)=8.87\times10^{-6} 13; \ \alpha(P)=1.704\times10^{-6} 24; \alpha(Q)=1.546\times10^{-7} 22$
874.44 ^{&} 7	0.047 10	874.48	2+	0.0	0+	[E2]	0.01294	$\alpha(K)=0.00968 \ 14; \ \alpha(L)=0.00245 \ 4; \ \alpha(M)=0.000608 \ 9; \ \alpha(N+)=0.000208 \ 3 \ \alpha(N)=0.0001623 \ 23; \ \alpha(O)=3.78\times10^{-5} \ 6; \ \alpha(P)=7.03\times10^{-6} \ 10; \ \alpha(O)=4.90\times10^{-7} \ 7$
877.46 10	0.014 3	1899.97	(2 ⁺)	1022.531	(3)+	[M1,E2]	0.030 18	$\alpha(\mathbf{x}) =50 \times 10^{-1} \text{ (M)} = 0.0047 \ 23; \ \alpha(\mathbf{M}) = 0.0011 \ 6; \ \alpha(\mathbf{N}+) = 0.00039 \ 19$
880.76 <i>10</i>	0.0062 18	938.61	0+	57.763	2+	[E2]	0.01276	$\alpha(N)=0.00050\ 15;\ \alpha(O)=7.E-5\ 4;\ \alpha(P)=1.4\times10^{-7}\ 7;\ \alpha(Q)=1.2\times10^{-8}\ 8$ $\alpha(K)=0.00956\ 14;\ \alpha(L)=0.00240\ 4;\ \alpha(M)=0.000597\ 9;\ \alpha(N+)=0.000204\ 3$ $\alpha(N)=0.0001594\ 23;\ \alpha(O)=3.71\times10^{-5}\ 6;\ \alpha(P)=6.90\times10^{-6}\ 10;$ $\alpha(O)=4.83\times10^{-7}\ 7$
887.33 10	0.027 3	2010.20	(2^{+})	1122.949	2-			
901.23 15	0.016 3	1297.440	(5)-	396.083	3-	[E2]	0.01220	$\begin{aligned} &\alpha(\text{K}) = 0.00917 \ 13; \ \alpha(\text{L}) = 0.00227 \ 4; \ \alpha(\text{M}) = 0.000564 \ 8; \ \alpha(\text{N}+) = 0.000192 \ 3 \\ &\alpha(\text{N}) = 0.0001504 \ 21; \ \alpha(\text{O}) = 3.50 \times 10^{-5} \ 5; \ \alpha(\text{P}) = 6.53 \times 10^{-6} \ 10; \\ &\alpha(\text{Q}) = 4.63 \times 10^{-7} \ 7 \end{aligned}$
904.20 ^{&} 4	0.77 ^{<i>d</i>} 3	1091.020	4+	186.827	4+	E2 ^h	0.01212	$\begin{aligned} &\alpha(\text{K}) = 0.00912 \ 13; \ \alpha(\text{L}) = 0.00225 \ 4; \ \alpha(\text{M}) = 0.000559 \ 8; \ \alpha(\text{N}+) = 0.000191 \ 3 \\ &\alpha(\text{N}) = 0.0001492 \ 21; \ \alpha(\text{O}) = 3.47 \times 10^{-5} \ 5; \ \alpha(\text{P}) = 6.48 \times 10^{-6} \ 9; \\ &\alpha(\text{Q}) = 4.60 \times 10^{-7} \ 7 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.027 \ 10 \ (1971\text{He}23), \ \text{ce}(\text{K}) \ \text{not seen} \ (1960\text{Ar06}); \\ &\alpha(\text{K}) \text{exp does not agree with} \ \alpha(\text{K}) \text{exp measured in} \ ^{228}\text{Pa} \ \varepsilon \ \text{decay.} \end{aligned}$

From ENSDF

 $^{228}_{90}$ Th $_{138}$ -19

					²²⁸ A	$\Delta c \beta^{-}$ decay	1987Da2	8 (continued)	
						$\gamma(^{228})$	Гh) (continu	ed)	
E_{γ}^{\ddagger}	I_{γ} #l	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [@]	δ	$lpha^{\dagger}$	Comments
911.204 ^{&} 4	25.8 ^b 4	968.972	2+	57.763	2+	E2		0.01194	$\alpha(K)=0.00900 \ 13; \ \alpha(L)=0.00221 \ 3; \ \alpha(M)=0.000549 \ 8; \ \alpha(N+)=0.000187 \ 3 \ \alpha(N)=0.0001463 \ 21; \ \alpha(O)=3.41\times10^{-5} \ 5; \ \alpha(P)=6.36\times10^{-6} \ 9; \ \alpha(Q)=4.53\times10^{-7} \ 7 \ Mult.: \ \alpha(K)exp=0.0104 \ 10, \ K/L=4.6 \ 5 \ (1971He23), \ \alpha(K)exp=0.0092 \ 9 \ (1960Ar06); \ theory: \ \alpha(K)=0.0091, \ K/L = 4.04 \ 5 \ +24.9 \ 5 \ rms^{-22} \ Bp \ doesy \ 100000000000000000000000000000000000$
918.97 10	0.027 3	2010.20	(2 ⁺)	1091.020	4+				Mult.: $\alpha(K)$ exp=1.1 2 (1971He23) indicates E0 component; however, then the relatively strong 887.33 γ
921.98 ^{ma} 10	0.0147 ^m 21	979.507	2+	57.763	2+	[M1,E2]		0.027 15	$ α(K)=0.021 \ I3; α(L)=0.0041 \ 20; α(M)=0.0010 \ 5; α(N+)=0.00034 \ I6 α(N)=0.00027 \ I3; α(O)=6.E-5 \ 3; α(P)=1.2×10-5 \ 6; α(Q)=1.1×10-6 \ 7 Mult.: α(K)exp=2.0 \ 4 \ (1971He23) may indicate an E0 component. Total intensity placed here by 1987Da28 $
921.98 ^{ma} 10 (924.03)	0.0147 ^{<i>m</i>} 21 0.0075 10	1944.83 1893.02	3+ 3+	1022.531 968.972	(3) ⁺ 2 ⁺	[M1,E2]		0.026 15	This placement suggested by ²²⁸ Pa decay. $\alpha(K)=0.021 \ I3$; $\alpha(L)=0.0041 \ 20$; $\alpha(M)=0.0010 \ 5$; $\alpha(N+)=0.00034 \ I6$ $\alpha(N)=0.00026 \ I3$; $\alpha(O)=6.E-5 \ 3$; $\alpha(P)=1.2\times10^{-5} \ 6$; $\alpha(Q)=1.1\times10^{-6} \ 7$ $E_{\gamma},I_{\gamma}: \gamma$ not reported in this decay. Placement suggested by ²²⁸ Pa decay. Iy deduced from branching ratio in ²²⁸ Pa decay.
930.93 ^m 10	0.0124^{m} 18	1450.35	4 ⁻	519.195	5^{-}				
930.93 ^{<i>m</i>} 10 939.87 ^{<i>a</i>} 15 944.196 ^{&} 14	0.0124 ^m 18 0.009 3 0.095 8	1899.97 2030.39 944.200	(2^{+}) 2^{+} 1^{-}	968.972 1091.020 0.0	2 ⁺ 4 ⁺ 0 ⁺				This placement of γ suggested in ²²⁰ Pa decay.
947.982 ^{&} 11	0.106 8	1344.082	3-	396.083	3-	[M1,E2]		0.025 14	$\alpha(K)=0.020 \ 12; \ \alpha(L)=0.0038 \ 19; \ \alpha(M)=0.0009 \ 5; \ \alpha(N+)=0.00032 \ 15 \ \alpha(N)=0.00025 \ 12; \ \alpha(O)=6.E-5 \ 3; \ \alpha(P)=1.1\times10^{-5} \ 6; \ \alpha(O)=1.0\times10^{-6} \ 6$
958.61 ^{&} 4	0.28^{f} 4	1016.386	3-	57.763	2+		h		
964.766 ^{&} 10	4.99 [°] 9	1022.531	(3)+	57.763	2+	E2+M1	-7.2^{n} 10	0.01119 23	$\begin{aligned} &\alpha(\text{K}) = 0.00853 \ 19; \ \alpha(\text{L}) = 0.00199 \ 4; \ \alpha(\text{M}) = 0.000492 \ 9; \\ &\alpha(\text{N}+) = 0.000168 \ 3 \\ &\alpha(\text{N}) = 0.0001312 \ 23; \ \alpha(\text{O}) = 3.06 \times 10^{-5} \ 6; \ \alpha(\text{P}) = 5.74 \times 10^{-6} \\ &11; \ \alpha(\text{Q}) = 4.28 \times 10^{-7} \ 10 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.0084 \ 9 \ (1971\text{He}23); \ \text{theory:} \\ &\alpha(\text{K}) = 0.00821. \end{aligned}$
968.971 ^{&} 17	15.8 ^b 3	968.972	2+	0.0	0+	E2		0.01061	$\alpha(K)=0.00806$ 12; $\alpha(L)=0.00191$ 3; $\alpha(M)=0.000472$ 7;

From ENSDF

 $^{228}_{90}{\rm Th}_{138}\text{--}20$

 $^{228}_{90}\mathrm{Th}_{138}$ -20

					²²⁸ A	$\Delta c \beta^{-} decay$	1987Da28	(continued)
						γ ⁽²²⁸	³ Th) (continue	<u>d)</u>
${\rm E_{\gamma}}^{\ddagger}$	Ι _γ # <i>l</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f} .	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
								α (N+)=0.0001610 23 α (N)=0.0001258 18; α (O)=2.93×10 ⁻⁵ 5; α (P)=5.49×10 ⁻⁶ 8; α (Q)=4.04×10 ⁻⁷ 6 Mult.: α (L)exp=0.0016 3 (1971He23); theory: α (K)=0.00815, α (L)=0.0194; α (K)exp used in normalization of the ce spectra.
975.96 <i>5</i>	0.050 5	1944.83	3+	968.972	2+	M1 ^{<i>h</i>}	0.0356	$\alpha(\mathbf{K})=0.0287 \ 4; \ \alpha(\mathbf{L})=0.00524 \ 8; \ \alpha(\mathbf{M})=0.001254 \ 18; \\ \alpha(\mathbf{N}+)=0.000430 \ 6 \\ \alpha(\mathbf{N})=0.000334 \ 5; \ \alpha(\mathbf{O})=7.91\times10^{-5} \ 11; \ \alpha(\mathbf{P})=1.537\times10^{-5} \ 22; \\ \alpha(\mathbf{O})=1.468\times10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 21 \ 10^{-6} \ 10^{-6$
979.48 10	0.026 3	979.507	2+	0.0 (0+	[E2]	0.01039	$\alpha(Q) = 1.408 \times 10^{-7} 21$ $\alpha(K) = 0.00791 \ 11; \ \alpha(L) = 0.00186 \ 3; \ \alpha(M) = 0.000460 \ 7;$ $\alpha(N+) = 0.0001568 \ 22$ $\alpha(N) = 0.0001225 \ 18; \ \alpha(O) = 2.86 \times 10^{-5} \ 4; \ \alpha(P) = 5.36 \times 10^{-6} \ 8;$ $\alpha(Q) = 3.96 \times 10^{-7} \ 6$
987.71 20	0.077 13	1174.50	(5 ⁺)	186.827	4+	[M1,E2]	0.022 13	$\alpha(\mathbf{x}) = 0.0018 \ 10; \ \alpha(\mathbf{L}) = 0.0035 \ 17; \ \alpha(\mathbf{M}) = 0.0008 \ 4; \ \alpha(\mathbf{N}+) = 0.00029 \ 14 \ \alpha(\mathbf{N}) = 0.00022 \ 11; \ \alpha(\mathbf{O}) = 5 \ 25; \ \alpha(\mathbf{P}) = 1.0 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 9 \ \mathbf{E} = 7.6$
988.63 20	0.077 13	1175.45	2+	186.827	4+	[E2]	0.01021	$\begin{aligned} \alpha(N) = 0.00022 \ 11, \ \alpha(O) = 5.2 \times 10^{-25}, \ \alpha(I) = 1.0 \times 10^{-5}, \ \alpha(Q) = 9.2 = 7.6 \\ \alpha(K) = 0.00778 \ 11; \ \alpha(L) = 0.00182 \ 3; \ \alpha(M) = 0.000449 \ 7; \\ \alpha(N+) = 0.0001534 \ 22 \\ \alpha(N) = 0.0001198 \ 17; \ \alpha(O) = 2.79 \times 10^{-5} \ 4; \ \alpha(P) = 5.24 \times 10^{-6} \ 8; \\ \alpha(Q) = 3.89 \times 10^{-7} \ 6 \end{aligned}$
1000.69 <i>15</i> 1013.58 <i>20</i> 1016.44 ^{<i>m</i>} <i>15</i> 1016.44 ^{<i>m</i>} <i>15</i> 1017.92 <i>20</i> 1019.86 <i>10</i>	0.005 0.0046 <i>13</i> 0.019 ^m <i>3</i> 0.019 ^m <i>3</i> 0.0057 <i>13</i> 0.021 <i>4</i>	1944.83 2030.39 1016.386 1344.082 1987.46 1416.09	3^+ 2^+ 3^- 3^- 4^+ (3^-)	944.200 1016.386 0.0 328.006 968.972 396.083	1^{-} 3^{-} 0^{+} 1^{-} 2^{+} 3^{-}			γ not seen in ²²⁸ Pa decay. I γ <0.002 from upper limit in ²²⁸ Pa decay.
1033.248 & 9	0.201 13	1091.020	4 ⁺	57.763	2+	E2 ^h	0.00938 14	α =0.00938 <i>14</i> ; α (K)=0.00720 <i>10</i> ; α (L)=0.001643 <i>23</i> ; α (M)=0.000404 6; α (N+)=0.0001380 α (N)=0.0001078 <i>15</i> ; α (O)=2.52×10 ⁻⁵ <i>4</i> ; α (P)=4.73×10 ⁻⁶ 7; α (O)=3.58×10 ⁻⁷ 5
1039.65 <i>15</i> 1040.92 <i>15</i> 1053.09 ^{<i>a</i>} 20 1054.11 20 1062.55 <i>15</i> 1065.18 ^{&} 4 1074.71 <i>15</i> 1088.18 <i>15</i>	0.044 9 0.044 9 0.013 4 0.018 5 0.010 3 0.132 10 0.010 3 0.0059 13	1226.566 2010.20 2022.64 1450.35 1937.18 1122.949 1906.63 1416.09	$ \begin{array}{c} 4^{-} \\ (2^{+}) \\ 2^{+} \\ 4^{-} \\ 2^{+},3,4^{+} \\ 2^{-} \\ (2^{+}) \\ (3^{-}) \end{array} $	186.827 4 968.972 2 396.083 2 874.48 2 57.763 2 831.822 0 328.006	4 ⁺ 2 ⁺ 3 ⁻ 2 ⁺ 2 ⁺ 0 ⁺ 1 ⁻			
1095.679 ^{&} 20 1103.41 ^{ai} 10	0.129 <i>10</i> 0.0150 <i>23</i>	1153.465 1431.981	2 ⁺ 4 ⁺	57.763 2 328.006	2 ⁺ 1 ⁻	[M1,E2] [E3]	0.017 <i>9</i> 0.0195	$\alpha(K)=0.014 \ 8; \ \alpha(L)=0.0026 \ 13; \ \alpha(M)=0.0006 \ 3; \ \alpha(N+)=0.00022 \ 10$ $\alpha(N)=0.00017 \ 8; \ \alpha(O)=4.0\times10^{-5} \ 19; \ \alpha(P)=8.E-6 \ 4; \ \alpha(Q)=7.E-7 \ 4$ $\alpha(K)=0.01377 \ 20; \ \alpha(L)=0.00429 \ 6; \ \alpha(M)=0.001090 \ 16;$ $\alpha(N+)=0.000373 \ 6$

From ENSDF

 $^{228}_{90}\text{Th}_{138}\text{--}21$

					228 Ac β^- deca	ny 1987Da	28 (continued)
					$\gamma(^2$	²⁸ Th) (continu	ued)
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#l}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.@	α^{\dagger}	Comments
							α (N)=0.000292 4; α (O)=6.78×10 ⁻⁵ 10; α (P)=1.256×10 ⁻⁵ 18; α (Q)=8.16×10 ⁻⁷ 12; α (IPF)=3.24×10 ⁻⁸ 5
1110.610 ^{n&} 10	0.285 ⁿ 23	1168.377	3-	57.763 2+	E1 ^{<i>h</i>}	0.00288 4	$ \begin{array}{l} \alpha = 0.00288 \; 4; \; \alpha(\mathrm{K}) = 0.00237 \; 4; \; \alpha(\mathrm{L}) = 0.000388 \; 6; \; \alpha(\mathrm{M}) = 9.15 \times 10^{-5} \; 13; \\ \alpha(\mathrm{N}+) = 3.20 \times 10^{-5} \; 5 \\ \alpha(\mathrm{N}) = 2.43 \times 10^{-5} \; 4; \; \alpha(\mathrm{O}) = 5.73 \times 10^{-6} \; 8; \; \alpha(\mathrm{P}) = 1.104 \times 10^{-6} \; 16; \end{array} $
							$\alpha(Q)=1.025\times10^{-7}$ 15; $\alpha(IPF)=7.72\times10^{-7}$ 11 I _y : Intensity of the doublet divided by evaluator by comparison with branching ratios and the intensities of the doublet as measured in both ²²⁸ Ac and ²²⁸ Pa decays.
1110.610 ⁿ 10	0.019 ⁿ 10	1297.440	(5)-	186.827 4+	E1 ^{<i>h</i>}	0.00288 4	α =0.00288 4; α (K)=0.00237 4; α (L)=0.000388 6; α (M)=9.15×10 ⁻⁵ 13; α (N+)=3.20×10 ⁻⁵ 5 α (N)=2.43×10 ⁻⁵ 4; α (O)=5.73×10 ⁻⁶ 8; α (P)=1.104×10 ⁻⁶ 16; α (Q)=1.025×10 ⁻⁷ 15; α (IPF)=7.72×10 ⁻⁷ 11 I _γ : Intensity of the doublet divided by evaluator by comparison with branching ratios and the intensities of the doublet as measured in both ²²⁸ Ac and ²²⁸ Pa decays.
1117.63 <i>10</i> 1135.24 <i>15</i>	0.054 8	1175.45 1531 478	$2^+_{3^+}$	57.763 2^+			
1142.85 15	0.0103 21	1539.24	2^+ 2^+	$396.083 \ 3^{-}$ $374 \ 48 \ 2^{+}$			
1153.52 ^{&} 4	0.139 10	1153.465	2+ 2+	$0.0 0^+$			
1157.14 15 1164.50 8	0.065 5	1344.082 1683.71	3 (4 ⁻)	186.827 4 ⁻ 519.195 5 ⁻	(M1+E2) ^h	0.015 8	α (K)=0.012 7; α (L)=0.0023 11; α (M)=0.00055 24; α (N+)=0.00019 9 α (N)=0.00015 7; α (O)=3.4×10 ⁻⁵ 16; α (P)=7.E-6 3; α (Q)=6.E-7 4; α (IPE)=2.2×10 ⁻⁶ 10
1175.31 10	0.024 3	1175.45	2^+	$0.0 0^+$			
1190.81 20 $1217.03^{a} 10$	0.0062 <i>16</i> 0.021 <i>3</i>	2022.64 1735.508	21 4 ⁺	831.822 0 ⁺ 519.195 5 ⁻			
1229.40 <i>15</i>	0.0075 23	1416.09	(3^{-})	186.827 4 ⁺	IM1 E21	0.012.6	a(W) = 0.010.5, $a(U) = 0.0010.0$, $a(W) = 0.00046.20$, $a(W) = 0.00017.8$
1243.05" 20	0.095 18	1431.981	4	180.827 4	[M1,E2]	0.013 0	$\alpha(\text{K})=0.010\ 5;\ \alpha(\text{L})=0.0019\ 9;\ \alpha(\text{M})=0.00046\ 20;\ \alpha(\text{N}+)=0.00017\ 8$ $\alpha(\text{N})=0.00012\ 6;\ \alpha(\text{O})=2.9\times10^{-5}\ 13;\ \alpha(\text{P})=5.6\times10^{-6}\ 25;\ \alpha(\text{Q})=5.\text{E}-7\ 3;$ $\alpha(\text{IPF})=1.2\times10^{-5}\ 5$
1247.08 ^{&a} 4	0.50 ^g 3	1643.119	(3 ⁻)	396.083 3-	(M1)	0.0187	$\alpha(K)=0.01505\ 21;\ \alpha(L)=0.00274\ 4;\ \alpha(M)=0.000654\ 10;\ \alpha(N+)=0.000242\ 4$
							α (N)=0.0001743 25; α (O)=4.13×10 ⁻⁵ 6; α (P)=8.02×10 ⁻⁶ 12; α (Q)=7.69×10 ⁻⁷ 11; α (IPF)=1.771×10 ⁻⁵ 2
1250.04 ^{&} 10 1276.69 10	0.062 <i>5</i> 0.014 <i>3</i>	1646.005 1795.65	3+ 4+	396.083 3 ⁻ 519.195 5 ⁻			
1286.27 20	0.050 10	1344.082 1683 71	3^{-} (4^{-})	57.763 2 ⁺ 396.083 3 ⁻	$(M1+F2)^{h}$	0.012.6	$\alpha(\mathbf{K}) = 0.009.5; \alpha(\mathbf{L}) = 0.0018.8; \alpha(\mathbf{M}) = 0.00042.18; \alpha(\mathbf{M} \pm \mathbf{L}) = 0.00017.7$
1207.00 20	0.000 13	1003./1	(4)	590.005 5	(1 VI 1+E2)	0.012 0	$a(\mathbf{x}) = 0.007.5, a(\mathbf{L}) = 0.0016.6, a(\mathbf{w}) = 0.00042.16, a(\mathbf{w} +) = 0.00017.7$

From ENSDF

 $^{228}_{90}$ Th $_{138}$ -22

I

	228 Ac β^- decay				β^- decay	1987	Da28 (contin	ued)		
			γ (²²⁸ T	h) (cor	ntinued)					
${\rm E_{\gamma}}^{\ddagger}$	Ι _γ # <i>l</i>	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ	$lpha^{\dagger}$	$I_{(\gamma+ce)}^{l}$	Comments
							_			$\alpha(N)=0.00011 5; \alpha(O)=2.7\times10^{-5} 12; \alpha(P)=5.1\times10^{-6}$ 23; $\alpha(Q)=4.7\times10^{-7} 24; \alpha(IPF)=2.0\times10^{-5} 9$ γ listed in table I of 1987Da28 as deexciting the 1682.8 level; however, on level scheme (fig. 4) shown as deexciting the 1683.8 level. The energy fit is much better from the 1683.8 level.
1309.71 20	0.019 6	1638.283	2+	328.006	1-					
1315.34 <i>10</i> <i>x</i> 1337.33 <i>20</i>	0.015 <i>3</i> 0.0049 <i>15</i>	1643.119	(3 ⁻)	328.006	1-	[E2]		0.006		
1344.59 15	0.0090 18	1531.478	3+	186.827	4^{+}					
1347.50 15	0.015 3	1743.87	4+	396.083	3-					γ is uncertain in ²²⁸ Pa decay with I γ = 0.16 5.
1357.78 ^a 15	0.020 4	1735.508	4+	378.178	6+					
1365.70 15	0.014 3	1743.87	4+	378.178	6+					
1374.19 10	0.014 4	1431.981	4+	57.763	2^{+}	[E2]				
^x 1378.23 10	0.0059 18									
x1385.39 10	0.0106 21				_					
1401.49 10	0.012 3	1797.66	2+	396.083	3-					
1415.66' 10	0.021 4	1743.87	4+	328.006	1-	[E3]		0.01141		$\begin{aligned} &\alpha(\mathbf{K}) = 0.00849 \ 12; \ \alpha(\mathbf{L}) = 0.00217 \ 3; \ \alpha(\mathbf{M}) = 0.000543 \ 8; \\ &\alpha(\mathbf{N}+) = 0.000202 \ 3 \\ &\alpha(\mathbf{N}) = 0.0001450 \ 21; \ \alpha(\mathbf{O}) = 3.39 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{P}) = 6.36 \times 10^{-6} \ 9; \ \alpha(\mathbf{Q}) = 4.71 \times 10^{-7} \ 7; \\ &\alpha(\mathbf{IPF}) = 1.604 \times 10^{-5} \ 23 \end{aligned}$
1430.95 <i>10</i> <i>x</i> 1434.22 <i>15</i> <i>x</i> 1438.01 <i>10</i>	0.035 7 0.0080 23 0.0059 15	1617.78	4+	186.827	4+					
1451.40 15	0.0106 21	1638.283	2+	186.827	4+					
1459.138 ^{&} 15	0.83 ^g 8	1646.005	3+	186.827	4+	E2 ^h		0.00498 7		α =0.00498 7; α (K)=0.00391 6; α (L)=0.000771 11; α (M)=0.000187 3; α (N+)=0.0001108 16 α (N)=4.97×10 ⁻⁵ 7; α (O)=1.167×10 ⁻⁵ 17;
										α (P)=2.23×10 ⁻⁶ 4; α (Q)=1.89×10 ⁻⁷ 3; α (PE)=4.71×10 ⁻⁵ 7
1469.71 <i>15</i> ^x 1480.37 <i>15</i>	0.020 <i>4</i> 0.016 <i>3</i>	1797.66	2+	328.006	1-					α(111)-τ./1ΑΙΟ /
1495.910 ^{&} 20	0.86 ^g 4	1682.754	(2+,3+,4+)	186.827	4+	(E2) ^h		0.00477 7		$\alpha = 0.00477 \ 7; \ \alpha(K) = 0.00374 \ 6; \ \alpha(L) = 0.000732 \ 11; \alpha(M) = 0.0001769 \ 25; \ \alpha(N+) = 0.0001177 \alpha(N) = 4.71 \times 10^{-5} \ 7; \ \alpha(O) = 1.107 \times 10^{-5} \ 16; \alpha(P) = 2.11 \times 10^{-6} \ 3; \ \alpha(Q) = 1.81 \times 10^{-7} \ 3; \alpha(PF) = 5.72 \times 10^{-5} \ 8$
1501.57 <i>5</i> ^x 1529.05 <i>10</i>	0.46 ^e 3 0.057 6	1688.398	2+,3+	186.827	4+					
1537.89 ^a 10	0.047 5	1724.288	2+	186.827	4+					
1548.65 ^{&} 4	0.038 4	1735.508	4+	186.827	4+					

From ENSDF

 $^{228}_{90}$ Th $_{138}$ -23

					$^{228}\mathrm{Ac}\beta^-$ decay		1987Da28 (continued)		
$\gamma(^{228}\text{Th})$ (continued)									
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#l}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [@]	δ	α^{\dagger}	Comments
1557.11 ^{&} 4	0.178 <i>13</i>	1743.87	4+	186.827	4+	(E2+M1) ^h	+1.2 ^h 2	0.0070 6	$\begin{aligned} &\alpha = 0.0070 \ 6; \ \alpha(\text{K}) = 0.0055 \ 5; \ \alpha(\text{L}) = 0.00102 \ 8; \\ &\alpha(\text{M}) = 0.000245 \ 19; \ \alpha(\text{N}+) = 0.000198 \ 15 \\ &\alpha(\text{N}) = 6.5 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 1.54 \times 10^{-5} \ 12; \\ &\alpha(\text{P}) = 2.98 \times 10^{-6} \ 23; \ \alpha(\text{Q}) = 2.75 \times 10^{-7} \ 24; \\ &\alpha(\text{IPF}) = 0.000114 \ 9 \end{aligned}$
1559.85 20	0.020 4	1617.78	4^+	57.763	2^+				
1571.52 20 1573.26 ^{&} 5	0.003778	1758.24	$2^{(+)}, 3^{(+)}$	186.827	4 ⁺ 4 ⁺	(E2) ^{<i>h</i>}		0.00438 7	$\alpha = 0.00438 \ 7; \ \alpha(K) = 0.00342 \ 5; \ \alpha(L) = 0.000660 \ 10; \alpha(M) = 0.0001592 \ 23; \ \alpha(N+) = 0.0001356 \alpha(N) = 4.24 \times 10^{-5} \ 6; \ \alpha(O) = 9.97 \times 10^{-6} \ 14; \alpha(P) = 1.91 \times 10^{-6} \ 3; \ \alpha(Q) = 1.650 \times 10^{-7} \ 24; \alpha(IPF) = 8.12 \times 10^{-5} \ 12$
1580.53 ^{&} 3	0.60 ^g 4	1638.283	2+	57.763	2+	(M1,E2)		0.007 3	$\alpha = 0.007 \ 3; \ \alpha(K) = 0.0057 \ 24; \ \alpha(L) = 0.0011 \ 4; \alpha(M) = 0.00025 \ 10; \ \alpha(N+) = 0.00022 \ 9 \alpha(N) = 7.E-5 \ 3; \ \alpha(O) = 1.6 \times 10^{-5} \ 6; \ \alpha(P) = 3.1 \times 10^{-6} \ 12; \alpha(Q) = 2.9 \times 10^{-7} \ 13; \ \alpha(IPF) = 0.00013 \ 5 Mult.: \ \alpha(K) exp = 0.012 \ 7 \ (1971He23); \ theory: \alpha(K)(M1) = 0.0087, \ \alpha(K)(E2) = 0.00343.$
1588.20 ^{&} 3	3.22 ^g 8	1646.005	3+	57.763	2+	E2 ^h		0.00431 6	$\alpha = 0.00431 \ 6; \ \alpha(K) = 0.00337 \ 5; \ \alpha(L) = 0.000647 \ 9; \alpha(M) = 0.0001561 \ 22; \ \alpha(N+) = 0.0001396 \ 2 \alpha(N) = 4.15 \times 10^{-5} \ 6; \ \alpha(O) = 9.77 \times 10^{-6} \ 14; \alpha(P) = 1.87 \times 10^{-6} \ 3; \ \alpha(Q) = 1.622 \times 10^{-7} \ 23; \alpha(IPF) = 8.62 \times 10^{-5} \ 12 Mult.: \ \alpha(K) exp = 0.0050 \ 16 \ (1971He23); \ theory: \alpha(K) = 0.00340$
1609.41 15	0.0077 15	1987.46	4+	378.178	6+				$u(\mathbf{R}) = 0.00540.$
1625.06 ^{&} 5	0.255 18	1682.754	$(2^+, 3^+, 4^+)$	57.763	2^{+}				
1630.627 ^{&} 10	1.51 ^g 4	1688.398	2+,3+	57.763	2+	(M1,E2)		0.007 3	$\begin{aligned} &\alpha = 0.007 \ 3; \ \alpha(\text{K}) = 0.0053 \ 22; \ \alpha(\text{L}) = 0.0010 \ 4; \\ &\alpha(\text{M}) = 0.00023 \ 9; \ \alpha(\text{N}+) = 0.00024 \ 9 \\ &\alpha(\text{N}) = 6.2 \times 10^{-5} \ 24; \ \alpha(\text{O}) = 1.5 \times 10^{-5} \ 6; \ \alpha(\text{P}) = 2.9 \times 10^{-6} \\ &11; \ \alpha(\text{Q}) = 2.7 \times 10^{-7} \ 12; \ \alpha(\text{IPF}) = 0.00016 \ 6 \\ &\text{Mult.: from } \alpha(\text{K}) \exp(1625\gamma + 1630\gamma) = 0.0062 \ 20 \\ &(1971\text{He}23); \text{ theory: } \alpha(\text{K})(\text{M}1) = 0.0090, \\ &\alpha(\text{K})(\text{E}2) = 0.0034. \end{aligned}$
1638.281 ^{&} 10	0.47 ^g 3	1638.283	2+	0.0	0+	(E2) ^{<i>h</i>}		0.00410 6	$\alpha = 0.00410 \ 6; \ \alpha(\text{K}) = 0.00319 \ 5; \ \alpha(\text{L}) = 0.000608 \ 9; \\ \alpha(\text{M}) = 0.0001463 \ 21; \ \alpha(\text{N}+) = 0.0001539 \ 2 \\ \alpha(\text{N}) = 3.89 \times 10^{-5} \ 6; \ \alpha(\text{O}) = 9.16 \times 10^{-6} \ 13; \\ \alpha(\text{P}) = 1.755 \times 10^{-6} \ 25; \ \alpha(\text{Q}) = 1.533 \times 10^{-7} \ 22; \\ \alpha(\text{IPF}) = 0.0001039 $
1666.523 ^{&} 13	0.178 13	1724.288	2+	57.763	2+	M1 ^h		0.00895 13	α =0.00895 <i>13</i> ; α (K)=0.00702 <i>10</i> ; α (L)=0.001269 <i>18</i> ; α (M)=0.000303 <i>5</i> ; α (N+)=0.000351 <i>5</i>

From ENSDF

 $^{228}_{90}\mathrm{Th}_{138}$ -24

					22	28 Ac β^- deca	ay <mark>1987D</mark> a	a28 (continued		
$\gamma^{(228}$ Th) (continued)										
E_{γ}^{\ddagger}	$I_{\gamma}^{\#l}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ	α^{\dagger}	Comments	
					_				$\alpha(N)=8.08\times10^{-5}$ 12; $\alpha(O)=1.91\times10^{-5}$ 3; $\alpha(P)=3.72\times10^{-6}$ 6; $\alpha(Q)=3.58\times10^{-7}$ 5; $\alpha(IPF)=0.000247$ 4	
^x 1671.64 15	0.0041 13									
1677.67 <mark>&</mark> 3	0.054 5	1735.508	4+	57.763	2^{+}					
^x 1684.01 20	0.015 5									
1686.09 ^{&} 7	0.095 8	1743.87	4+	57.763	2+	(E2) ^h		0.00391 6	$\alpha = 0.00391 \ 6; \ \alpha(K) = 0.00303 \ 5; \ \alpha(L) = 0.000573 \ 8;$ $\alpha(M) = 0.0001378 \ 20; \ \alpha(N+) = 0.0001688 \ 2$ $\alpha(N) = 3.67 \times 10^{-5} \ 6; \ \alpha(O) = 8.64 \times 10^{-6} \ 12;$ $\alpha(P) = 1.655 \times 10^{-6} \ 24; \ \alpha(Q) = 1.455 \times 10^{-7} \ 21;$ $\alpha(PF) = 0.0001217$	
1700.59 20	0.0101 23	1758.24	2^{+}	57.763	2^{+}					
1702.43 ^{&} 5	0.048 5	1760.17	$2^{(+)}, 3^{(+)}$	57.763	2^{+}					
1706.19 <i>10</i>	0.0085 10	1893.02	3+	186.827	4+	M1+E2 ^h	+0.42 ^h 4	0.00776 16	α =0.00776 <i>16</i> ; α (K)=0.00605 <i>13</i> ; α (L)=0.001097 <i>22</i> ; α (M)=0.000262 <i>6</i> ; α (N+)=0.000346 <i>7</i> α (N)=6.99×10 ⁻⁵ <i>14</i> ; α (O)=1.65×10 ⁻⁵ <i>4</i> ; α (P)=3.21×10 ⁻⁶ <i>7</i> : α (O)=3.07×10 ⁻⁷ <i>7</i> : α (IPE)=0.000256 <i>6</i>	
1713.47 20	0.0054 10	1899.97	(2 ⁺)	186.827	4+				γ not seen in ²²⁸ Pa decay. I γ <0.002 from upper limit in ²²⁸ Pa decay.	
^x 1721.4 3	0.0057 21									
1724.21 ^{&} 4	0.029 3	1724.288	2^{+}	0.0	0^+					
1738.22 25	0.018 4	1795.65	4 ⁺	57.763	2^+					
1740.4 3	0.011.3	1/9/.66	2' 2+	57.763	2' 4+					
^x 1745.28 20	0.0065 8	1920.00	5	100.027	7					
1750.54 20	0.0080 8	1937.18	$2^+, 3, 4^+$	186.827	4^{+}					
1758.11 <i>10</i>	0.035 4	1944.83	3+	186.827	4+	E2+M1 ^h	-9 ^h 1	0.00371 6	$\begin{aligned} &\alpha = 0.00371 \ 6; \ \alpha(\text{K}) = 0.00285 \ 5; \ \alpha(\text{L}) = 0.000533 \ 8; \\ &\alpha(\text{M}) = 0.0001281 \ 19; \ \alpha(\text{N}+) = 0.000195 \ 3 \\ &\alpha(\text{N}) = 3.41 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 8.03 \times 10^{-6} \ 12; \\ &\alpha(\text{P}) = 1.542 \times 10^{-6} \ 23; \ \alpha(\text{Q}) = 1.369 \times 10^{-7} \ 20; \\ &\alpha(\text{IPF}) = 0.0001515 \end{aligned}$	
1772.2 <i>3</i> ^x 1784.4 <i>3</i> ^x 1787.3 <i>5</i>	0.0018 5 0.0059 10 0.0013 5	1958.72	(2 ⁺)	186.827	4+					
1795.1 5	0.0021 8	2123.1	(2^{+})	328.006	1-					
1797.5 5	0.0021 8	1797.66	2+	0.0	0^{+}	[E2]				
1800.86 20	0.0044 8	1987.46	4^+ (2 ⁺)	186.827	4^+					
1825.22 10	0.044 4 0.0021 8	2010.20	$\binom{2^{+}}{2^{+}}$ 3 4 ⁺	186 827	4 · 4+					
1835.43 10	0.038 4	1893.02	3+	57.763	2+	E2+M1 ^{<i>h</i>}	+2.9 ^h 3	0.00382 10	$ \begin{array}{l} \alpha = 0.00382 \ 10; \ \alpha(\mathrm{K}) = 0.00291 \ 8; \ \alpha(\mathrm{L}) = 0.000536 \ 14; \\ \alpha(\mathrm{M}) = 0.000128 \ 4; \ \alpha(\mathrm{N}+) = 0.000246 \ 7 \\ \alpha(\mathrm{N}) = 3.42 \times 10^{-5} \ 9; \ \alpha(\mathrm{O}) = 8.06 \times 10^{-6} \ 21; \ \alpha(\mathrm{P}) = 1.55 \times 10^{-6} \\ 4; \ \alpha(\mathrm{Q}) = 1.41 \times 10^{-7} \ 4; \ \alpha(\mathrm{IPF}) = 0.000202 \ 6 \end{array} $	

From ENSDF

 $^{228}_{90}$ Th $_{138}$ -25

I

228 Ac β^- decay 1987Da28 (continued)													
$\gamma^{(228}$ Th) (continued)													
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#l}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	δ	$lpha^\dagger$	Comments				
1842.13 10	0.042 4	1899.97	(2+)	57.763	2+	M1+E2 ^h	-0.86 ^h 14	0.0055 4	$\alpha = 0.0055 \ 4; \ \alpha(K) = 0.00420 \ 25; \ \alpha(L) = 0.00076 \ 5; \alpha(M) = 0.000182 \ 11; \ \alpha(N+) = 0.000363 \ 21 \alpha(N) = 4.9 \times 10^{-5} \ 3; \ \alpha(O) = 1.15 \times 10^{-5} \ 7; \ \alpha(P) = 2.23 \times 10^{-6} \ 13; \alpha(O) = 2.10 \times 10^{-7} \ 13; \ \alpha(IPF) = 0.000301 \ 18$				
1850.13 20	0.0044 8	2037.00	$2^+, 3, 4^+$	186.827	4+								
1870.83 10	0.0243 23	1928.66	3+	57.763	2+	(M1+E2) ^h		0.0051 18	α =0.0051 <i>18</i> ; α (K)=0.0038 <i>14</i> ; α (L)=0.00070 <i>24</i> ; α (M)=0.00017 <i>6</i> ; α (N+)=0.00036 <i>13</i>				
									$\alpha(N)=4.4\times10^{-5} \ 15; \ \alpha(O)=1.1\times10^{-5} \ 4; \ \alpha(P)=2.0\times10^{-6} \ 7; \\ \alpha(Q)=1.9\times10^{-7} \ 8; \ \alpha(IPF)=0.00030 \ 11$				
18/9.6 3	0.0013 5	1937.18	2+,3,4+	57.763	2+	h	h						
1887.10 5	0.090 8	1944.83	3+	57.763	2+	E2+M1 ^{<i>n</i>}	-9.1 ^{<i>n</i>} 1	0.00333 5	$\alpha = 0.00333 5; \alpha(K) = 0.00251 4; \alpha(L) = 0.000462 7; \alpha(M) = 0.0001107 16; \alpha(N+) = 0.000243 4 \alpha(N) = 2.95 \times 10^{-5} 5; \alpha(O) = 6.95 \times 10^{-6} 10; \alpha(P) = 1.336 \times 10^{-6} 19; \alpha(O) = 1.201 \times 10^{-7} 17; \alpha(IPF) = 0.000205 3$				
1900.07 20	0.0028 5	1899.97	(2^{+})	0.0	0^{+}								
1907.18 20 ^x 1915.9 4 ^x 1919.5 3	0.0119 <i>10</i> 0.0008 <i>3</i> 0.0021 <i>5</i>	1906.63	(2+)	0.0	0+								
1929.78 20	0.0199 21	1987.46	4+	57.763	2+								
1936.3 <i>3</i>	0.0021 5	2123.1	(2^{+})	186.827	4+								
[*] 1944.20 20	0.0021 5	2010.20	(2^{+})	57 762	2+								
1952.55 15	0.009 5	2010.20	$\binom{2}{2^+}, 3.4^+$	57.763	$\frac{2}{2^{+}}$								
1958.4 3	0.0015 5	1958.72	(2^+)	0.0	$\tilde{0}^{+}$								
1965.24 20	0.0204 18	2022.64	2+	57.763	2+								
1971.9 3	0.0036 8	2030.39	2^+ 2^+ 2 4 ⁺	57.763	2+ 2+								
x2000.9 5	0.0018 3	2037.00	2, 3,4	57.703	Ζ.								
2029.4 5	0.0018 5	2030.39	2+	0.0	0^{+}								

[†] Additional information 1.

[‡] From 1987Da28, unless otherwise noted.

[#] From 1987Da28, unless otherwise noted. The relative I γ of 1987Da28 have been normalized to the absolute measurements of 1992Li05, 1983Sc13 and 1982Sa36 at the three γ 's with I γ >10 % (338.324 γ I γ =11.27% 19, 911.205 γ I γ =25.8% 4 and 968.987 γ I γ =15.8% 3, giving a normalization factor of 0.0258 5).

^(e) From adopted I γ and the Ice data of 1960Ar06 and 1971He23 (as noted with $\alpha(exp)$) normalized to theoretical values for: $\alpha(L)(E2)$ for 129.065 γ , $\alpha(K)(E1)$ for 209.253 γ and $\alpha(K)(E2)$ for 968.971 γ .

[&] Weighted average of measurements by 1987Da28, 1979He10. The measurements of 1979He10 have been corrected by using the calibration line Eγ from 1995HeZZ.

From ENSDF

²²⁸Ac β^- decay 1987Da28 (continued)

 γ ⁽²²⁸Th) (continued)

- ^{*a*} Energy fit poor, $E\gamma$ not included in the least squares fit to obtain E(level).
- ^b Weighted average of absolute intensity measurements of 1992Li05, 1983Sc13, 1982Sa36.
- ^c Weighted average of measurements by 1992Li05, 1987Da28, 1983Sc13, 1982Sa36.
- ^d Weighted average of measurements by 1987Da28, 1983Sc13, 1982Sa36.
- ^e Weighted average of measurements by 1987Da28, 1983Sc13.
- ^f Weighted average of measurements by 1987Da28, 1982Sa36.
- ^g Weighted average of measurements by 1992Li05, 1987Da28, 1983Sc13.
- ^h From ²²⁸Pa ε decay.
- ^{*i*} The adopted J^{π} require that this γ have an unreasonable multipolarity (M2 or E3). The placement of this transition is therefore questionable.
- $^{j} \gamma'$ s of approximately same energy and intensity are reported in both 228 Ac and 228 Pa decays. On the basis of coin with 911.2 γ , it is suggested in 228 Ac decay that the γ feeds the 2⁺ 968.97 level. In 228 Pa decay, the γ is placed feeding the 3⁻ 968.37 level. The energy of the γ (E γ =674.65 5) agrees with decay to the 968.37 level. Possibly the γ is a doublet feeding both the 968.97 and 968.37 levels. I γ (doublet)=0.101 8.
- ^k The energy of the 853-keV transition from the 1944.9 level is expected to be 853.877 *12* from E(level); the expected intensity is $I\gamma$ =0.0031 *4* from branching ratio in ²²⁸Pa decay. Therefore, the 853.17 *10* γ with $I\gamma$ =0.0119 *18* reported by 1987Da28 seems to be a doublet with part of the intensity belonging to a γ unplaced in level scheme.
- ^{*l*} Absolute intensity per 100 decays.
- ^{*m*} Multiply placed with undivided intensity.
- ⁿ Multiply placed with intensity suitably divided.
- ^o Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

From ENSDF

228 Ac β^{-} decay 1987Da28

Decay Scheme

 $^{228}_{90}{\rm Th}_{138}$

228 Ac β^- decay 1987Da28

$\frac{228}{\text{Ac}}\beta^{-} \text{ decay} \qquad 1987\text{Da28}$

$\frac{228}{\text{Ac}}\beta^{-} \text{ decay} \qquad 1987\text{Da28}$

228 Ac β^- decay 1987Da28

 $^{228}_{90} Th_{138}$

²²⁸Ac β^- decay 1987Da28

 $^{228}_{90}{
m Th}_{138}$

$\frac{228}{\text{Ac}}\beta^{-} \text{ decay} \qquad 1987\text{Da28}$

$\frac{228}{\text{Ac}}\beta^{-}\text{ decay } 1987\text{Da28}$

Decay Scheme (continued)

 $^{228}_{90}{
m Th}_{138}$

 $^{228}_{\ 90} {\rm Th}_{138}$

²²⁸ Ac β^- decay 1987 Da28 (continued)

Band(G): $K^{\pi}=2^+$ rotational band on quasiparticle state

3+ 1944.83

2⁽⁺⁾,**3**⁽⁺⁾ **1760.17**

2⁺,3⁺ 1688.398

2+ 1638.283

 $^{228}_{90}{\rm Th}_{138}$