$^{228} {\rm Ra}\,\beta^-$ decay 1995So11

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Khalifeh Abusaleem	NDS 116, 163 (2014)	31-Dec-2012					

Parent: ²²⁸Ra: E=0; $J^{\pi}=0^+$; $T_{1/2}=5.75$ y 3; $Q(\beta^-)=45.8$ 7; $\%\beta^-$ decay=100.0 ²²⁸Ra-Q(β^{-}): From 2012Wa38.

Other: 1961To10.

²²⁸Ac Levels

E(level) [‡]	$J^{\pi \dagger}$	Comments
0.0	3+	Configuration= $((\pi \ 3/2[651])(\nu \ 3/2[631])), K=3.$
6.28 <i>3</i>	1-	Configuration= $((\pi \ 3/2[532])(\nu \ 3/2[631])), K=0.$
		E(level): Based on observing M2 γ to g.s. <i>logft</i> also is consistent with the assignment.
6.670 20	1^{+}	Configuration= $((\pi 3/2[651])(\nu 3/2[631])), K=0.$
20.19 <i>3</i>	1-	Configuration= $((\pi 3/2[532])(\nu 5/2[633])), K=1.$
33.07 11	1^{+}	Configuration=((π 3/2[651])(ν 5/2[633])), K=1.

[†] All configurations are from 1995So11.

[‡] From least squares fit to $E\gamma$.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†#}	Log ft	Comments			
(12.7 7)	33.07	30	5.12 18	av $E\beta$ =3.22 23 $E\beta$ =14.0 15 (1995So11).			
(25.6 7)	20.19	20	6.20 14	av $E\beta=6.48$ 23 $E\beta=26.0$ 15 (1995So11).			
(39.1 7)	6.670	$\approx 40^{\ddagger}$	≈6.5	av $E\beta$ =9.94 25 $E\beta$ =39.0 10 (1995So11), 40 (1961To10).			
(39.5 7)	6.28	$\approx 10^{\ddagger}$	≈7.1	av E β =10.04 25			

[†] From β^- spectra of 1995So11, unless otherwise noted. [‡] $I\beta(6.28 \text{ level})+I\beta(6.67 \text{ level})=50\% 3$ (1995So11), 70% (1961To10). Division of intensity based on γ data.

[#] Absolute intensity per 100 decays.

$\gamma(^{228}\mathrm{Ac})$

I(γ +ce) normalization: From absolute ce/ β and deduced multipolarities. I γ normalization: Relative I γ normalized to absolute I(ce) through $\alpha(13.52\gamma)$.

E_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.@	$\alpha^{\dagger a}$	$I_{(\gamma+ce)}$ & d	Comments
6.28 3	6.28	1-	0.0 3+	(M2)	6.68×10 ⁶ 19	≈10	$\frac{\text{ce(M)}/(\gamma+\text{ce})=0.738 \ 15; \ \text{ce(N+)}/(\gamma+\text{ce})=0.262 \ 9}{\text{ce(N)}/(\gamma+\text{ce})=0.206 \ 8; \ \text{ce(O)}/(\gamma+\text{ce})=0.0470 \ 18; \\ \text{ce(P)}/(\gamma+\text{ce})=0.0081 \ 4; \ \text{ce(Q)}/(\gamma+\text{ce})=0.000513 \ 20$
							Mult.: Due to Coriolis mixing of $i_{13/2}$ <i>v</i> -orbitals. Data also consistent with M1+E2 with $\delta \approx 0.03$, but not consistent with pure E2 or higher multipolarities.
6.67 2	6.670	1+	0.0 3+	E2	1.56×10 ⁶ 4	≈50	$ce(M)/(\gamma+ce)=0.750 \ 11; \ ce(N+)/(\gamma+ce)=0.250 \ 7 \ ce(N)/(\gamma+ce)=0.200 \ 6; \ ce(O)/(\gamma+ce)=0.0432 \ 13;$

					228	Ra β^- decay	1995S	o11 (continued)		
	γ ⁽²²⁸ Ac) (continued)							nued)		
${\rm E_{\gamma}}^{\ddagger}$	Ι _γ # <i>c</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	δ	$\alpha^{\dagger a}$	$I_{(\gamma+ce)}$ & d	Comments
10.758.5	10 4	22.07	1+	20.10	1-	(E1(+ M2))		1.0~105.11	- 2	$ce(P)/(\gamma+ce)=0.00665\ 20;$ $ce(Q)/(\gamma+ce)=6.18\times10^{-6}$ 18 $ce(Q)/(\gamma+ce)=0.7\ 6$
12.75* 3	19 4	33.07	1.	20.19	1	(E1(+M2))		1.0×10° 11	~3	ce(M)/(γ +ce)=0.7 6; ce(N+)/(γ +ce)=0.3 4 ce(N)/(γ +ce)=0.2 3; ce(O)/(γ +ce)=0.05 7; ce(P)/(γ +ce)=0.008 12; ce(Q)/(γ +ce)=0.0005 8 Observed in both electron and γ spectra. α : from I(γ +ce) and I γ ; theory: α (E1)=6.86, α (M)=2.002105
10.50.0	100	20.10	1-	((70	1+	F 1		5.07	11	$\alpha(M2)=2.09\times10^{5},$ $\alpha(E1+M2)=1.0\times10^{5}.$
13.52 2	100	20.19	1-	6.670	1+	El		5.86	≈11	$ce(M)/(\gamma+ce)=0.653 7;ce(N+)/(\gamma+ce)=0.201 4ce(N)/(\gamma+ce)=0.165 3;ce(O)/(\gamma+ce)=0.0317 6;ce(P)/(\gamma+ce)=0.00380 8;ce(Q)/(\gamma+ce)=9.19\times10^{-5} 18$
										The only γ -ray unambiguously assigned from $\gamma\gamma$ due to large overleaping with ²²⁸ Th X-rays (1995So11). Justified by the Coriolis mixing of K ^{π} =0 ⁺ and 1 ⁺ bands.
^x 15.15 8						b			≈3	M1, M2 and M3 lines observed in the ce-spectrum only.
^x 15.5 2	10 2					(E1) ^b		4.07 16	≈1	ce(M)/(γ +ce)=0.613 <i>15</i> ; ce(N+)/(γ +ce)=0.190 8 ce(N)/(γ +ce)=0.156 7; ce(O)/(γ +ce)=0.0305 <i>15</i> ; ce(P)/(γ +ce)=0.00380 <i>17</i> ; ce(Q)/(γ +ce)=9.8×10 ⁻⁵ 4 This γ seen only in the photon spectrum may be the same as the 15.15-keV transition observed in the ce-spectrum
^x 16.2 <i>1</i> 26.4 <i>1</i>	45 5	33.07	1+	6.670	1+	(E1) M1+E2	≈0.07	3.62 7 ≈201	≈9 ≈3	ce-spectrum. ce(M)/(γ +ce)=0.75 ce(L)/(γ +ce) \approx 0.749; ce(M)/(γ +ce) \approx 0.0622 ce(N)/(γ +ce) \approx 0.0488; ce(O)/(γ +ce) \approx 0.0112; ce(P)/(γ +ce) \approx 0.00202; ce(Q)/(γ +ce) \approx 0.000156 δ : from 1995So11 with no
x30.6 1										details. From ce data one has mult=M1 giving

Continued on next page (footnotes at end of table)

228 Ra β^- decay 1995So11 (continued)

γ ⁽²²⁸Ac) (continued)

 $E_{\gamma}^{\ddagger} = E_i(\text{level})$

Comments

 $I(\gamma+ce)\approx 1$, or M1+E2 with $\delta=0.4$ giving $I(\gamma+ce)\approx 6$.

- [†] Additional information 1.
- [‡] From ce-spectrum, unless otherwise noted.
- [#] Relative I γ ; some could contain contributions from L x ray components present in this energy range.
- [@] From M- and N-subshell ce ratios and M-subshell conversion coefficients.
- & Experimental I(γ +ce) deduced from Σ Ice + I γ .
- ^{*a*} Uncertainty given is due to ΔE only.
- ^b E1 mult. For the 15.5-keV γ deduced from absence of ce-lines. If the 15.15-keV ce-lines belong to this transition, then $\alpha(\exp)\approx19$; theory: $\alpha(E1)=4.5$, $\alpha(M1)=230$, $\alpha(E2)=27200$.
- ^c For absolute intensity per 100 decays, multiply by ≈ 0.016 .
- ^d Absolute intensity per 100 decays.
- ^e Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

²²⁸Ra β^- decay 1995So11

²²⁸₈₉Ac₁₃₉

4