Adopted Levels, Gammas

History										
Type	Author	Citation	Literature Cutoff Date							
Full Evaluation	Khalifeh Abusaleem	NDS 116, 163 (2014)	31-Dec-2012							

 $Q(\beta^-)=2124\ 3$; $S(n)=5026.0\ 25$; $S(p)=5572.0\ 24$; $Q(\alpha)=4676\ 13$ 2012Wa38 $Q(\beta^-)=2124\ 3$; $S(n)=5026\ 3$; $S(p)=5572\ 2$; $Q(\alpha)=4810\ 50$ 2003Au03.

Calculations, compilations, systematics:

 α -decay half life: 2012Po01.

Level structure in odd-odd actinides: 1994So16. Octupole deformation in odd-odd nuclei: 1988Sh01. Spontaneous emission of heavy ions: 1986Po06. Discussion of level configurations: 1995So11.

Allowed beta transitions in heavy nuclei: 2009So02, 2006Xu10.

1969Lu12 assign a 4.27 MeV α with $\%\alpha=5.5\times10^{-6}$ 22 to this nucleus. However, such α decay gives an α HF=3.9×10⁻⁴, an extremely unreasonable value. It appears that the α has been misassigned.

2006Xu10: Observed β^- delayed fission of ²²⁸Ac. ²²⁸Ac source was chemically prepared from Thorium solution, then exposed to mica foils (α-detector) and HPGe (γ-detector) for 720 days. 17 α-events were observed. These were interpreted from ²²⁸Ac fission based on analysis of β^- decay energy and fission systematics. Also, several γ-rays were observed and interpreted from the β^- decay of ²²⁸Ac. These γ-rays are presented in figure 2 of 2006Xu10. No γ-uncertainty, intensity, or level energies are given. Probability of β^- delayed fission (N_{βDF}/N_β) was found to be 5×10^{-12} 2.

²²⁸Ac Levels

Cross Reference (XREF) Flags

A 228 Ra β^- decay

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments		
0	3 ⁺	6.15 h 2	A	$\%\beta^{-}=100$		
				J^{π} : J from $\beta \gamma(\theta)$ and $\beta(CP \gamma)(\theta)$ (1967Bh01); π from log f^{t} =9.74 (log $f^{tu}t$ =10.7) in β^{-} decay to 1 ⁻ level in ²²⁸ Th.		
				Configuration= $((\pi \ 3/2[651])(\nu \ 3/2[631]))$, K=3.		
				T _{1/2} : from 1985Sk02. Other: 6.13 h (1931Cu01).		
6.28 3	1-		A	J^{π} : log $ft \approx 7.1$ from 0^+ ; ce data consistent with multipolarity(6.28 γ)=M2, not consistent with E2, E3, or M3.		
				Configuration= $((\pi \ 3/2[532])(\nu \ 3/2[631]))$, K=0.		
6.670 20	1+		Α	J^{π} : log $ft \approx 6.3$ from 0^+ ; E2 γ to 3^+ g.s.		
				Configuration= $((\pi \ 3/2[651])(\nu \ 3/2[631]))$, K=0.		
20.19 <i>3</i>	1-		Α	J^{π} : log $ft=6.20$ from 0^+ ; E1 γ to 1^+ level.		
				Configuration= $((\pi \ 3/2[532])(\nu \ 5/2[633]))$, K=1.		
33.07 11	1+		A	J^{π} : log ft =5.12 from 0 ⁺ ; M1+E2 γ to 1 ⁺ level. Configuration=((π 3/2[651])(ν 5/2[633])), K=1.		

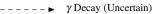
Adopted Levels, Gammas (continued)

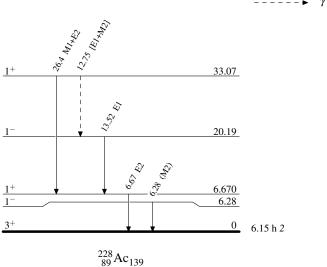
$$\gamma$$
(228Ac)

 γ data are from $^{228}{\rm Ra}~\beta^-$ decay.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	$I_{(\gamma+ce)}^{\dagger}$
6.28	1-	6.28 3	0	3+	(M2)	6.68×10 ⁶ 19	
6.670	1+	6.67 2	0	3 ⁺	E2	$1.56 \times 10^6 4$	
20.19	1-	13.52 2	6.670	1+	E1	5.86 9	
33.07	1+	12.75 [#] 5	20.19	1-	[E1+M2]		≈100
		26.4 <i>1</i>	6.670	1+	M1+E2		≈100

[†] Relative $I(\gamma+ce)$ from level.


 ‡ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.


Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

