²²⁷Ac β⁻ decay (21.772 y) 1959No41,1995Li04,1997Mu08

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Ictp-2014 Workshop Group	NDS 132, 257 (2016)	15-Jan-2016					

Parent: ²²⁷Ac: E=0.0; $J^{\pi}=3/2^-$; $T_{1/2}=21.772$ y 3; $Q(\beta^-)=44.8$ 8; % β^- decay=98.6200 36

1955Be20: measured β^- spectrum using 4π proportional counter.

1959No41: measured β^- spectrum, Ece, Ice using scintillation counter with a thin CsI(Tl) crystal for β 's and a magnetic spectrograph and scintillation counter with stilbene crystal for conversion electrons.

1995Li04: measured E γ , I γ using intrinsic Ge detector with Be window and Ece, Ice, β^- spectrum, $\beta\gamma$ coincidences using Si(Li) detector placed inside a magnetic lens.

1997Mu08: ²²⁷Ac activity from decay of ²²⁷Fr and ²²⁷Ra produced at the ISOLDE facility in CERN. Measured Ece, Ice ce- α coincidences using an iron-free magnetic spectrometer and silicon detector; deduced mult and δ for 24.5-keV transition.

²²⁷Th Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$
0.0^{\ddagger}	$(1/2^+)$	18.68 d 9
9.3 [‡]	$(5/2^+)$	
24.5	$(3/2^+)$	
37.9	$(3/2^{-})$	

[†] From the Adopted Levels.

[‡] Band(A): $K^{\pi} = 1/2^+$ parity doublet rotational band.

β^- radiations

E(decay)	E(level)	Ιβ ^{-‡#}	Log ft	Comments
(6.9 8)	37.9	0.3	6.9	av Eβ=1.73 20
				$I\beta^-$: from $\beta\gamma$ coincidence (1995Li04).
(20.3 [†] 8)	24.5	≈ 10	≈6.8	av Eβ=5.11 21
(35.5 * 8)	9.3	≈35	≈7.0	av Eβ=8.98 21
(44.8 [†] 8)	0.0	≈54	≈7.1	av Eβ=11.37 <i>21</i>

[†] E β =45.5 keV 10 includes the β^- groups that populate the g.s., 9.3-, and 24.5-keV levels (1955Be20).

[‡] Deduced from ce data of 1959No41, except where noted.

[#] Absolute intensity per 100 decays.

$$\gamma(^{227}\text{Th})$$

E_{γ}^{\dagger}	I_{γ}^{c}	E _i (level)	J_i^π	$E_f J_f^{\pi}$	Mult. [‡]	α b	Comments
9.3 1	0.00011 ^a	9.3	(5/2+)	0.0 (1/2 ⁺)	(E2)	3.26×10 ⁵ 19	$\begin{aligned} &\alpha(M) = 2.44 \times 10^5 \ 14; \ \alpha(N) = 6.5 \times 10^4 \ 4; \\ &\alpha(O) = 1.44 \times 10^4 \ 9; \ \alpha(P) = 2.37 \times 10^3 \ 14; \\ &\alpha(Q) = 2.85 \ 15 \end{aligned}$ Mult.: from ce(M2):ce(M3):ce(N):ce(O)exp= 1425:1545:720:200 (1959No41); ce ratios are consistent with E2 multipolarity, however, an M1 admixture cannot be ruled out.
15.2 <i>1</i>	0.00063 ^{&}	24.5	$(3/2^+)$	9.3 (5/2+)	(M1)	238 6	α (M)=177 5; α (N)=47.2 <i>12</i> ; α (O)=11.2 3; α (P)=2.17 6; α (Q)=0.208 5

			227 Ac β^-	decay (21.772	2 y) 195	9No41,199	5Li04,1997M	u08 (continued)
$\gamma^{(227}$ Th) (continued)								
E_{γ}^{\dagger}	I_{γ}^{c}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	$\alpha^{\boldsymbol{b}}$	Comments
								Mult.: from ce(M1):ce(M3):ce(N1):exp= 400:40:130 (1959No41).
24.5 2	0.028 ^{&}	24.5	(3/2+)	0.0 (1/2+)	M1+E2	0.097 5	326 15	$\begin{aligned} &\alpha(L)=244 \ 11; \ \alpha(M)=61 \ 3; \ \alpha(N)=16.4 \ 8; \\ &\alpha(O)=3.80 \ 17; \ \alpha(P)=0.70 \ 3; \\ &\alpha(Q)=0.0501 \ 15 \\ &\delta: \ from \ ce(M2)/ce(M1)exp=0.39 \ 4, \\ &ce(M3)/ce(M1)exp=0.24 \ 3 \ (1997Mu08). \\ &Mult.: \ from \ ce(M1)+ce(M2):ce(M3): \\ &ce(N)exp=50:8:15 \ (1959No41). \end{aligned}$
28.6 [#] 5	0.042 [@]	37.9	(3/2 ⁻)	9.3 (5/2+)	E1 [#]		3.23 16	α (L)=2.41 <i>12</i> ; α (M)=0.61 <i>3</i> ; α (N)=0.159 8; α (O)=0.0340 <i>17</i> ; α (P)=0.00516 <i>24</i> α (Q)=0.000181 <i>7</i>
37.9 [#] 5	0.049 [@]	37.9	(3/2 ⁻)	0.0 (1/2 ⁺)	E1 [#]		1.54 6	$\begin{array}{l} \alpha(\text{L}) = 1.15 \ 5; \ \alpha(\text{M}) = 0.288 \ I2; \\ \alpha(\text{N}) = 0.075 \ 3; \ \alpha(\text{O}) = 0.0163 \ 7; \\ \alpha(\text{P}) = 0.00260 \ I0 \\ \alpha(\text{Q}) = 0.000104 \ 4 \end{array}$

^{\dagger} From 1959No41, except where noted.

[‡] From ce ratios in 1959No41, except where noted.

[#] From 1995Li04.

^(a) From $I(\gamma+ce)(28.6\gamma) + I(\gamma+ce)(37.9\gamma)=0.3\%$, and $I\gamma(37.9\gamma)/I\gamma(28.6\gamma)=1.17$ 22 in ²²⁷Pa ε decay. [&] From $I(\gamma+ce)(24.5\gamma) + I(\gamma+ce)(15.2\gamma)=10\%$, and $I\gamma(24.5\gamma)/I\gamma(15.2\gamma)=45.5$ in ²³¹U α decay.

^{*a*} From $I(\gamma+ce)(9.3\gamma)=35\%$ and $\alpha=326000$.

^b From BrIcc v2.3 (29-Mar-2013) 2008Ki07, "Frozen Orbitals" appr.

^c Absolute intensity per 100 decays.

227 Ac β^- decay (21.772 y) 1959No41,1995Li04,1997Mu08

