25.768^{*a*} 3

83.4^{‡b} 24

90.0343^c 17

64.077^{*a*} 10

 $5/2^{+}$

 $7/2^{+}$

 $9/2^{+}$

 $3/2^{-}$

Adopted Levels, Gammas

				His	story				
	-	Туре		Author	Citation	Literature Cutoff Date			
]	Full Evaluation	Ictp-20	14 Workshop Group	NDS 132, 257 (2016)) 15-Jan-2016			
$Q(\beta^{-})=1328.4$ S(2n)=10957.5	23; $S(n) = 5$ 29, $S(2p)$	4561.4 <i>3</i> ; S(p)=)=13933 <i>11</i> (201	7650 <i>12</i> ; 12Wa38).	Q(<i>a</i>)=4365 8 201	2Wa38				
²²⁷ Ra evaluato	ed by F.G.	Kondev and S.	Pascu.						
				²²⁷ Ra	Levels				
				Cross Reference	ce (XREF) Flags				
				A 227 Fr β^{-} B 226 Ra(n, γ C 226 Ra(d,p D 226 Ra(pol	decay (2.47 min)) E=thermal) 1 t,d)				
E(level) [†]	Jπ@	T _{1/2} &	XREF		Com	aments			
0.0 ^{<i>a</i>}	3/2+	42.2 min 5	ABCD	$%β^-=100$ μ=-0.4038 24; Q=- Evaluated rms charg J ^π : from Collinear fr π=+ form $μ$. T _{1/2} : from 284 $γ$ (t) z value: 41.2 min 2 configuration: v 3/2 μ=-0.41, for 3/2 ⁻ and an octupole of (1984Le04). Q(th For additional the 1996Aa01 and 20 μ: Collinear fast-bea and -0.391 8 (19) Q: Collinear fast-bea (1988AH02,1987) 2013StZZ evaluat	+1.53 6 (2013StZZ) ge radius=5.728 fm 30 ('ast-beam laser spectroso and 330 γ (t) following ² ? using β^- decay countin [631] Nilsson orbital as +,3/2[631] (including a leformation ε_3 =0.07), a leory)=1.40 is also cons- coretical interpretation s 104Ad41. am laser spectroscopy (87We03). am laser spectroscopy. WE03,1983AH03), re-ct ted as +1.53 6.	(2013An02). copy (1988Ah02,1983Ah03, 1987We03 ²⁷ Ra β^- decay in 1971Lo15. Other ng (1953Bu63). signment. Theoretical value of Coriolis interaction with other orbitals grees with experimental value sistent with this interpretation (1988Le1 ee 1983Ra28, 1984Le04, 1988Le13, 1988Ah02). Others: -0.41 (1983Ah03) Values are: +1.50 <i>15</i> alculated as +1.58 <i>11</i> (1989Ne03).			
1.733 ^b 9	(5/2)+		ABCD	J^{π} : 100.1 γ E1 from J^{π} =1/2 ⁻ states in configuration: ν 5/2	$5/2^-$; absence of γ rays 227 Ra. [633] Nilsson orbital as	s that feed this level from the known			

²²⁹Th. The positive sign of the analyzing power in the (pol t,d) reaction is consistent with this assignment. J^{π} : 64.267 γ E1 from 3/2⁻; band assignment. J^{π} : 37.9 γ E1 from 5/2⁻; band assignment. ABCD AB J^{π} : (d,p) cross section and positive sign for the (pol t,d) analyzing power are consistent with 9/2⁺,5/2[633]. Strongest transition observed in both (d,p) and (pol CD

t,d) reactions. J^{π} : 90.0 γ E1 to 3/2⁺, 64.3 γ E1 to 5/2⁺. Population in ²²⁶Ra(n, γ) E=thermal by a 254 ps 9 AB primary transition. T_{1/2}: from β -BaF₂(64 γ + 90 γ)(Δ t). Other: 262 ps 50, earlier analysis in

1994MaZO. configuration: v 3/2[761] Nilsson orbital assignment. Level is not populated in

either in (d,p) or (pol t,d), which is consistent with the proposed configuration.

Continued on next page (footnotes at end of table)

²²⁷Ra Levels (continued)

E(level) [†]	J ^π @	$T_{1/2}^{\&}$	XREF	Comments
101.8942 ^c 18	5/2-	236 ps 30	AB	J^{π} : 101.894 γ E1 to 3/2 ⁺ , 37.9 γ E1 to 7/2 ⁺ ; band member.
120.711 ^{<i>d</i>} 4	1/2+	≤47 ps	ABCD	J ^π : 120.709γ M1(+E2) to 3/2 ⁺ , 555.15 E1 from 1/2 ⁻ Analyzing power of≈0 in (pol t,d) suggests J=1/2. Strong population in (d,p) is consistent with 1/2 ⁺ ,1/2[631]. configuration: γ 1/2[631] Nilsson orbital assignment.
138.6 ^{‡c} 24	(11/2 ⁻)		CD	J^{π} : assignment is based on expected (d,p) and (pol t,d) cross sections for $11/2^{-}$, $3/2[761]$.
153.275 12	(1/2,3/2)+		AB	J^{π} : 153.553 γ to 3/2 ⁺ , 321.763 γ M1(+E2) from 3/2 ⁺ ; direct feeding in ²²⁷ Fr β^{-} decay ($J^{\pi}=1/2^{+}$).
161.051 ^d 5	3/2+	≤39 ps	ABCD	J^{π} : 514.8 γ E1 from 1/2 ⁻ ; band assignment . Spectroscopic factor in (d,p), and negative sign for the analyzing power in (pol t,d) are consistent with $3/2^+$,1/2[631].
176.973 ^d 5	(5/2)+	≤58 ps	ABCD	J^{π} : 107.306 γ E1 from 3/2 ⁻ ; band assignment. Spectroscopic factor in (d,p) and probable positive sign for the analyzing power in (pol t,d) are consistent with 5/2 ⁺ ,1/2[631].
186.3 ^{‡a} 24	$(11/2^+)$		CD	XREF: D(185). J^{π} : consistent with negative sign for the analyzing power in (pol t,d).
$228.0^{\ddagger c} 24$	(15/2) ⁻		CD	J^{π} : assignment is consistent with (d,p) cross-section for $15/2^{-}, 3/2[761]$ and with a probable positive sign for the (pol t,d) analyzing power. L=7 in (pol t,d).
267.3 ^{‡d} 24	(7/2 ⁺)		CD	J^{π} : assignment is tentative and based on probable negative sign for the (pol t,d) analyzing power. Experimental (d,p) spectroscopic factor is about ten times larger than the theoretical value for $7/2^+$, $1/2[631]$.
284.280 ^e 5	3/2-	≤29 ps	AB	J^{π} : 163.563 γ E1 to 1/2 ⁺ , 182.394 γ M1+E2 to 5/2 ⁻ . Experimental B(M1)(194 γ)/B(M1)(182 γ)=2.1 <i>3</i> compares with a theoretical value of 1.5 for J,K=3/2,1/2 (Alaga rule). Strong decays to $J^{\pi}=1/2^+$, 3/2 ⁺ , and 5/2 ⁺ members of the 1/2[631] band suggest an octupole character. The experimental negative decoupling parameter of the band is likely due to the coupling with an octupole deformation (1981V003,1988Le13).
296.576 ^e 4	1/2-	≤41 ps	AB	J^{π} : 372.2γ M1+E0 from $1/2^{-}$. Strong decay to the $J^{\pi}=1/2^{+}$ and $3/2^{+}$ members of the $1/2[631]$ rotational band suggests that the level belongs to a K=1/2 rotational band coupled to an octupole deformation.
299.4 ^{‡d} 24	(9/2+)		CD	J^{π} : spectroscopic factor in (d,p) is in fair agreement with theoretical value for $9/2^+, 1/2[631]$. Positive sign for the analyzing power in (pol t,d) is consistent with this assignment.
$337.6^{\ddagger} 24$			CD C	
384.355 8	1/2+,3/2+	≤21 ps	ABC	J ^{π} : 384.348 γ M1 to 3/2 ⁺ . Populated by primary transition in ²²⁶ Ra(n, γ) E=thermal.
406 [#] 3			С	
438.795 9	$(3/2)^+$		ABC	J^{π} : 413.029 γ M1(+E2) to 5/2 ⁺ ; direct feeding in ²²⁷ Fr β^- decay ($J^{\pi}=1/2^+$).
471.567 ⁿ 7	3/2-	≤6 ps	AB	J^{π} : 381.556 γ M1 to 3/2 ⁻ , 369.669 γ M1 to 5/2 ⁻ , 204.30 γ M1(+E2) from 1/2 ⁻ . configuration: Possible ν 1/2[770] Nilsson orbital assignment. Large experimental decoupling constant is consistent with 3/2 ⁻ , 1/2[770]. Strong mixing with 1/2[501] may explain the intense γ -ray transitions from the 1/2 ⁻ , 1/2[501] state at 675 keV. The (d,p) population may originate also from this mixing (1981Vo03).
472 ^{#a} 3 475.033 14	$(13/2^+)$ $3/2^+$		C AB	J^{π} : 178.47 γ E1 to 1/2 ⁻ , 449.263 γ M1 to 5/2 ⁺ .
498" <i>3</i> 523.851 <i>9</i>	(3/2)-	≤20 ps	C ABC	XREF: C(526). I^{π} : 403 19 γ F1 to 1/2 ⁺ 498 4 γ to 5/2 ⁺
598.51 4	(3/2 ⁺)		AB	J^{π} : 534.335 γ to 7/2 ⁺ ; direct feeding in ²²⁷ Fr β^{-} decay ($J^{\pi}=1/2^{+}$).

Continued on next page (footnotes at end of table)

²²⁷Ra Levels (continued)

E(level) [†]	Jπ @	T _{1/2} &	XREF	Comments
675.863 ^f 10	$1/2^{-}$	≤10 ps	ABC	XREF: C(677).
				J^{π} : 379.15 γ M1+E0 to 1/2 ⁻ ;573.84 γ (E2) to 5/2 ⁻ .
721 650 15	$(2/2)^{+}$		ADC	configuration: $v [1/2[501]]$ Nilsson assignment. $\overline{W}_{1,2}$ 247 251. M1(1,E2) to $1/2^{\frac{1}{2}}$ 2/2 ⁺ 620 755. (E1) to $5/2^{-1}$ direct fooding in 227 Er
/31.030 13	(3/2)		ABC	β^{-} decay ($\beta^{\pi}=1/2^{+}$).
738.11 ^J 11	(5/2 ⁻)		В	J^{π} : 299.37 γ to (3/2) ⁺ , 648.11 γ to 3/2 ⁻ , 711.58 γ to 5/2 ⁺ ; absence of direct feeding in ²²⁷ Fr β^- decay (J^{π} =1/2 ⁺); band structure.
755.6 ^{‡g} 24	(3/2 ⁻)		CD	J^{π} : spectroscopic factor in (d,p) and positive sign of the analyzing power in (pol t,d) are consistent with $3/2^{-}$, $1/2$ [761].
806.6 ^{‡g} 24	$(7/2^{-})$		CD	J ^{π} : spectroscopic factor in (d,p) and positive sign of the analyzing power in (pol t,d) are consistent with 7/2 ⁻ ,1/2[761].
858.0 [‡] 24			CD	
875 [#] 3			С	
906.4 [‡] 24			CD	
926.0 [‡] 24			CD	
948.3 [‡] 24			CD	
969.3 [‡] 24			CD	
1000.6 [‡] 24			CD	
1017.0 [‡] 24			CD	
1056.0 [‡] 24			CD	
1094.9 3	1/2,3/2		A CD	XREF: C(1099)D(1101). J ^{π} : 810.4 γ to 3/2 ⁻ , 1005.0 γ to 5/2 ⁻ ; direct feeding in ²²⁷ Fr β ⁻ decay (J ^{π} =1/2 ⁺).
1127.1 [‡] 24			CD	XREF: C(1126).
1136 [#] 3			CD	XREF: C(1136).
1152 [#] 3			С	
1168.3 [‡] 24			CD	
1202 [#] 3			с	
1230 [#] 3			С	
1250 [#] 3			с	
1287 [#] 3			C	
$1307.0^{\ddagger} 24$			CD	
1318.84 17	1/2,3/2		A	J^{π} : 846.8 γ to 3/2 ⁻ , 1217.0 γ to 5/2 ⁻ ; direct feeding in ²²⁷ Fr β^- decay ($J^{\pi}=1/2^+$).
1331 [#] 3			С	
1391 [#] 3			С	
1432.22 21	1/2,3/2		A C	XREF: C(1427). J ^{π} : 1147.4 γ to 3/2 ⁻ , 1432.4 γ to 3/2 ⁺ ; direct feeding in ²²⁷ Fr β ⁻ decay (J ^{π} =1/2 ⁺).
1444.1 5	1/2,3/2		AC	J^{π} : 1147.4 γ to 1/2 ⁻ , 1354.2 γ to 3/2 ⁻ ; direct feeding in ²²⁷ Fr β^- decay ($J^{\pi}=1/2^+$).
1455.2 <i>3</i>			Α	J^{π} : 983.5 γ to 3/2 ⁻ , 1455.3 γ to 3/2 ⁺ ; direct feeding in ²²⁷ Fr β^- decay ($J^{\pi}=1/2^+$).
1468.14 16	1/2,3/2		AC	J^{π} : 1347.4 γ to 1/2 ⁺ , 1378.1 γ to 3/2 ⁻ ; direct feeding in ²²⁷ Fr β^{-} decay ($J^{\pi}=1/2^{+}$).
1474.84 21			Α	J^{π} : 1178.2 γ to 1/2 ⁻ , 1384.9 γ to 3/2 ⁻ ; direct feeding in ²² Fr β^{-} decay ($J^{\pi}=1/2^{+}$).
1491 [#] 3			C	
1516" 3			C	
1545" 3			C	
1581 [#] 3			C	
1751 [#] 3			C	
1765 [#] 3			C	
1792 [#] 3			С	
1814" 3			C	

Continued on next page (footnotes at end of table)

²²⁷Ra Levels (continued)

E(level) [†]	Jπ@	XREF	Comments
1832 [#] 3		С	
1857 [#] 3		С	
1884 [#] 3		С	
1916 [#] 3		С	
1957 <mark>#</mark> 3		С	
1972 [#] 3		С	
2064 [#] 3		С	
2083 [#] 3		С	
2105 [#] 3		С	
2124 [#] 3		С	
2160 [#] 3		С	
2181 [#] 3		С	
2228 [#] 3		С	
2271 [#] 3		С	
2291 [#] 3		С	
2317 [#] 3		С	
2340 [#] 3	1/0+	C	
(4301.4 3)	1/2 '	В	E(level): S(n) value from 2012Wa38.

 J^{π} : s-wave neutron capture state.

[†] From a least-squares fit to $E\gamma$, unless otherwise stated. [‡] Weighted average from ²²⁶Ra(d,p) and ²²⁶Ra(pol t,d).

From ²²⁶Ra(d,p).

[@] based on deduced γ -ray transition multipolarities, band assignments and decay patterns. Nilsson state assignments are based on the comparison of experimental (d,p) and (pol t,d) cross-sections with values calculated using the DWBA approximation and Nilsson's model, on the sign of analyzing powers in (pol t,d), and on the energy systematics of Nilsson orbitals in other neighboring odd-A actinides. Specific additional arguments are given with individual levels.

[&] From $\beta\gamma$ (t) in ²²⁷Fr β^- decay (1996Aa01), unless otherwise specified.

^a Band(A): 3/2[631] rotational band.

- ^b Band(B): 5/2[633] rotational band.
- ^c Band(C): 3/2[761] rotational band.
- ^d Band(D): 1/2[631] rotational band.
- ^{*e*} Band(E): $1/2[631] \otimes 0^{-}$ (octupole vibration).
- ^f Band(F): 1/2[501] rotational band.
- ^g Band(G): Possible 1/2[761] rotational band.

^h Band(H): Possible 1/2[770] rotational band.

$\gamma(^{227}\text{Ra})$

See 1982Ba56 for precise measurements of Ra K x ray energies in 226 Ra(n, γ).

S

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult.@	α &	Comments
64.077 90.0343	7/2 ⁺ 3/2 ⁻	64.085 <i>10</i> 64.267 <i>2</i>	100 37 [‡] 4	0.0 25.768	3/2 ⁺ 5/2 ⁺	E1	0.358	$\alpha(L)=0.271 4; \ \alpha(M)=0.0659 \ 10$ $\alpha(N)=0.01704 \ 24; \ \alpha(O)=0.00365 \ 6; \ \alpha(P)=0.000546 \ 8; \ \alpha(Q)=2.36\times10^{-5} \ 4$ B(E1)(W.u.)=0.00060 9 Mult.: from $\alpha(L1)\exp+\alpha(L2)\exp\leq0.20$ and $\alpha(L3)\exp\leq0.10$ (1987Bo04). Other value: $\alpha(L)\exp + \alpha(M)\exp<2.6$, from γ -ray intensity balance in
		(88.301 [#] 9)	≤3.3 [‡]	1.733	(5/2)+	[E1]	0.1536	²²⁶ Ra(n, γ) E=thermal (1981Vo03). α (L)=0.1163 <i>17</i> ; α (M)=0.0281 <i>4</i> α (N)=0.00729 <i>11</i> ; α (O)=0.001583 <i>23</i> ; α (P)=0.000245 <i>4</i> ; α (Q)=1.173×10 ⁻⁵ <i>17</i>
		90.035 2	100 [‡] <i>10</i>	0.0	3/2+	E1	0.1458	B(E1)(W.u.)=1.0×10 ⁻⁵ +11-10 α (L)=0.1105 16; α (M)=0.0267 4 α (N)=0.00693 10; α (O)=0.001504 21; α (P)=0.000233 4; α (Q)=1.123×10 ⁻⁵ 16 B(E1)(W.u.)=0.00059 8 Mult.: from (α (L1)exp + α (L2)exp)≤0.09, α (L3)exp≤0.03, and α (M)exp=0.026 5 (1987Bo04). Other: (α (L)exp + α (M)exp)≤0.9, from γ -ray intensity balance in ²²⁶ Ba(n, γ) E=thermal (1981Vo03).
101.8942	5/2-	(11.859 [#] 25)	≤0.12 [‡]	90.0343	3/2-			
		37.9 [‡] 1	18 [‡] 4	64.077	7/2+	E1	1.466 23	$\alpha(L)=1.105 \ I8; \ \alpha(M)=0.273 \ 5$ $\alpha(N)=0.0702 \ I1; \ \alpha(O)=0.01462 \ 23; \ \alpha(P)=0.00203 \ 4; \ \alpha(Q)=7.20\times10^{-5} \ I1$ B(E1)(W.u.)=0.0010 3 Mult : from $\alpha(M)\exp\{1.5 \ (1987B004)$.
		76.1 [‡] <i>1</i>	4.2 [‡] 7	25.768	5/2+	[E1]	0.228	$\alpha(L)=0.1727 \ 25; \ \alpha(M)=0.0419 \ 6$ $\alpha(N)=0.01084 \ 16; \ \alpha(O)=0.00234 \ 4; \ \alpha(P)=0.000357 \ 6; \ \alpha(Q)=1.629\times10^{-5} \ 24$ B(E1)(W.u.)=3.0×10^{-5} \ 8 Multi (J.1) (J.2) (J.
		100.1 [‡] 2	76 [‡] 16	1.733	(5/2)+	E1	0.1101 <i>17</i>	Mult.: $\alpha(L1)\exp+\alpha(L2)\exp\leq 15$; $\alpha(L3)\exp\leq 4.8$ (1987B604). $\alpha(L)=0.0834$ 13; $\alpha(M)=0.0201$ 3 $\alpha(N)=0.00523$ 8; $\alpha(O)=0.001139$ 17; $\alpha(P)=0.000178$ 3; $\alpha(Q)=8.87\times10^{-6}$ 13 B(E1)(W.u.)=0.00024 7 Mult: from $\alpha(L)\exp(0.08$ (1087Bc04)
		101.894 2	100 [‡] 16	0.0	3/2+	E1	0.1051	α(L)=0.0796

					Ad	lopted Levels	s, Gamn	nas (continu	ued)
						γ (²²⁷ R	(cont	inued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [@]	$\delta^{@}$	α &	Comments
120.711	1/2+	120.709 8	100	0.0	3/2+	M1(+E2)	<0.3	8.94 24	$\begin{aligned} &\alpha(K)=7.0 \ 3; \ \alpha(L)=1.43 \ 7; \ \alpha(M)=0.347 \ 20 \\ &\alpha(N)=0.092 \ 6; \ \alpha(O)=0.0207 \ 11; \ \alpha(P)=0.00356 \ 14; \\ &\alpha(Q)=0.000260 \ 11 \\ &B(M1)(W.u.)>0.024? \end{aligned}$
153.275	(1/2,3/2)+	151.553 25 153 272 15	100 [‡] <i>13</i> 88 [‡] <i>13</i>	1.733 0.0	$(5/2)^+$ $3/2^+$				I _{γ} : 69 8 in ²²⁶ Ra(n, γ) E=thermal.
161.051	3/2+	$(40.340^{\#} 6)$	≤5 [‡]	120.711	$1/2^+$	[M1+E2]		44.2	α (L)=33.5 5; α (M)=8.02 12 α (N)=2.12 3; α (O)=0.483 7; α (P)=0.0842 12; α (O)=0.00663 10
		135.280 8	100 [‡] 29	25.768	5/2+	[M1+E2]		6.61	$\alpha(K)=5.31 \ 8; \ \alpha(L)=0.988 \ 14; \ \alpha(M)=0.236 \ 4 \\ \alpha(N)=0.0623 \ 9; \ \alpha(O)=0.01421 \ 20; \ \alpha(P)=0.00248 \ 4; \\ \alpha(Q)=0.000194 \ 3 $
		159.37 [‡] 5	31 [‡] 3	1.733	(5/2)+	[M1+E2]		4.15	α (K)=3.33 5; α (L)=0.619 9; α (M)=0.1478 21 α (N)=0.0390 6; α (O)=0.00890 13; α (P)=0.001551 22; α (Q)=0.0001216 17
		161.052 <i>13</i>	60 [‡] 6	0.0	3/2+	M1,E2		4.03	$\alpha(K)=3.245; \alpha(L)=0.6009; \alpha(M)=0.143520$ $\alpha(N)=0.03786; \alpha(O)=0.0086312; \alpha(P)=0.00150521;$ $\alpha(Q)=0.000118017$ Mult: from $\alpha(K)\exp\{45$ and $\alpha(L)\exp\{0.65(1987B_004)\}$
176.973	$(5/2)^+$	$(15.922^{\#} 7)$ $(56.262^{\#} 6)$	$\leq 1.8^{\ddagger}$ $\leq 1.8^{\ddagger}$	161.051 120.711	$3/2^+$ $1/2^+$				
		113.03 5	18 [‡] 7	64.077	7/2+	[M1+E2]		11.01	$\alpha(K)=8.82\ 13;\ \alpha(L)=1.655\ 24;\ \alpha(M)=0.396\ 6$ $\alpha(N)=0.1044\ 15;\ \alpha(O)=0.0238\ 4;\ \alpha(P)=0.00415\ 6;$ $\alpha(Q)=0.000326\ 5$
		151.177 <i>21</i>	63 13	25.768	5/2+	[M1,E2]		4.82	$\alpha(K) = 3.87 6; \alpha(L) = 0.719 10; \alpha(M) = 0.1718 24$ $\alpha(N) = 0.0453 7; \alpha(O) = 0.01034 15; \alpha(P) = 0.00180 3;$
		175.228 14	100 13	1.733	(5/2)+	M1,E2		3.17	$\alpha(Q)=0.0001415 20$ $\alpha(K)=2.55 4; \ \alpha(L)=0.472 7; \ \alpha(M)=0.1129 16$ $\alpha(N)=0.0298 5; \ \alpha(O)=0.00679 10; \ \alpha(P)=0.001184 17;$ $\alpha(Q)=9.28\times10^{-5} 13$ Mult.: $\alpha(K)\exp\leq 5.6, \ \alpha(L)\exp\leq 0.4$ and $\alpha(M)\exp\leq 0.13$ (1987Bo04)
284.280	3/2-	107.306 4	38 [‡] 4	176.973	(5/2)+	E1		0.401	$\alpha(K)=0.309 5; \alpha(L)=0.0694 10; \alpha(M)=0.01674 24 \alpha(N)=0.00435 6; \alpha(O)=0.000950 14; \alpha(P)=0.0001494 21; \alpha(Q)=7.59\times10^{-6} 11 B(E1)(W.u.)>0.00067 Mult: from \alpha(L)\exp<0.35 (1987Bo04).$
		123.17 [‡] 5	8.6 [‡] 10	161.051	3/2+	[E1]		0.290	$\begin{aligned} &\alpha(\mathbf{K}) = 0.226 \ 4; \ \alpha(\mathbf{L}) = 0.0483 \ 7; \ \alpha(\mathbf{M}) = 0.01163 \ 17 \\ &\alpha(\mathbf{N}) = 0.00303 \ 5; \ \alpha(\mathbf{O}) = 0.000664 \ 10; \ \alpha(\mathbf{P}) = 0.0001055 \ 15; \\ &\alpha(\mathbf{Q}) = 5.57 \times 10^{-6} \ 8 \\ &\mathbf{B}(\mathbf{E}1)(\mathbf{W}.\mathbf{u}.) > 0.00010 \end{aligned}$

I

	Adopted Levels, Gammas (continued)												
						$\gamma(22)$	⁷ Ra) (cor	ntinued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.@	$\delta^{@}$	α &	Comments				
284.280	3/2-	131.0 [‡] <i>1</i>	7.1 [‡] <i>10</i>	153.275	(1/2,3/2)+	[E1]		0.250	$\begin{aligned} &\alpha(\mathbf{K}) = 0.196 \ 3; \ \alpha(\mathbf{L}) = 0.0411 \ 6; \ \alpha(\mathbf{M}) = 0.00989 \ 14 \\ &\alpha(\mathbf{N}) = 0.00258 \ 4; \ \alpha(\mathbf{O}) = 0.000566 \ 8; \ \alpha(\mathbf{P}) = 9.03 \times 10^{-5} \ 13; \\ &\alpha(\mathbf{Q}) = 4.85 \times 10^{-6} \ 7 \\ &\mathbf{B}(\mathbf{E1})(\mathbf{W}.\mathbf{u}.) > 6.9 \times 10^{-5} \end{aligned}$				
		163.563 7	100 [‡] <i>10</i>	120.711	1/2+	E1		0.1462	$\alpha(K)=0.1156\ 17;\ \alpha(L)=0.0232\ 4;\ \alpha(M)=0.00556\ 8$ $\alpha(N)=0.001449\ 21;\ \alpha(O)=0.000320\ 5;\ \alpha(P)=5.18\times10^{-5}\ 8;$ $\alpha(Q)=2.94\times10^{-6}\ 5$ B(E1)(W.u.)>0.00050 Mult.: from $\alpha(K)\exp\leq0.5$ and $\alpha(L)\exp\leq0.04$ (1987Bo04).				
		182.394 15	17.2 [‡] 20	101.8942	5/2-	M1+E2	0.6 3	2.3 4	$\alpha(K)=1.7 \ 4; \ \alpha(L)=0.433 \ 10; \ \alpha(M)=0.107 \ 5$ $\alpha(N)=0.0283 \ 13; \ \alpha(O)=0.00633 \ 21; \ \alpha(P)=0.001054 \ 15;$ $\alpha(Q)=6.3\times10^{-5} \ 14$ B(M1)(W.u.)>0.0036; B(E2)(W.u.)>4.3 Mult.: from $\alpha(K)$ exp=1.8 4 and $\alpha(L)$ exp=0.52 10 (1987Bo04).				
		194.255 <i>10</i>	9.6 [‡] 10	90.0343	3/2-	M1,E2		2.37	$\alpha(K)=1.91 \ 3; \ \alpha(L)=0.353 \ 5; \ \alpha(M)=0.0843 \ 12$ $\alpha(N)=0.0222 \ 4; \ \alpha(O)=0.00507 \ 8; \ \alpha(P)=0.000884 \ 13;$ $\alpha(Q)=6.93 \times 10^{-5} \ 10$ I _{γ} : 13.4 24 in ²²⁶ Ra(n, γ) E=thermal. Mult.: $\alpha(K)\exp \le 3.3 \ \alpha(L)\exp \le 0.7 \ (1987Bo04).$				
		284.314 <i>30</i>	9.6 [‡] 20	0.0	3/2+	(E1)		0.0397	$\begin{aligned} \alpha(K) = 0.0320 \ 5; \ \alpha(L) = 0.00588 \ 9; \ \alpha(M) = 0.001402 \ 20 \\ \alpha(N) = 0.000367 \ 6; \ \alpha(O) = 8.19 \times 10^{-5} \ 12; \ \alpha(P) = 1.364 \times 10^{-5} \ 19; \\ \alpha(Q) = 8.74 \times 10^{-7} \ 13 \\ B(E1)(W.u.) > 9.1 \times 10^{-6} \\ I_{\gamma}: \ 15.9 \ 24 \ in \ ^{226}Ra(n,\gamma) \ E = thermal. \\ Mult.: \ \alpha(K) exp \le 0.5 \ (1987B004). \end{aligned}$				
296.576	1/2-	(12.296 [#] 6)	≤0.19 [‡]	284.280	3/2-								
		135.525 5	100 [‡] 38	161.051	3/2+	(E1)		0.230	$\begin{aligned} &\alpha(\text{K}) = 0.181 \ 3; \ \alpha(\text{L}) = 0.0377 \ 6; \ \alpha(\text{M}) = 0.00905 \ 13 \\ &\alpha(\text{N}) = 0.00236 \ 4; \ \alpha(\text{O}) = 0.000518 \ 8; \ \alpha(\text{P}) = 8.29 \times 10^{-5} \ 12; \\ &\alpha(\text{Q}) = 4.49 \times 10^{-6} \ 7 \\ &\text{B}(\text{E1})(\text{W.u.}) > 0.00045 \\ &\text{I}_{\gamma}: \ 71 \ 9 \ \text{in} \ ^{226}\text{Ra}(n,\gamma) \ \text{E=thermal.} \\ &\text{Mult.: from } \alpha(\text{L}) \exp(135.5\gamma + 135.3\gamma) = 0.3 \ 1 \ \text{either} \ 135.5\gamma \ \text{or} \\ &135.3\gamma \ \text{must be E1. Decay scheme requires E1 multipolarity for} \\ &135.5\gamma \ (1987\text{Bo04}). \end{aligned}$				
		175.867 4	100 [‡] 23	120.711	1/2+	(E1)		0.1227	$\begin{split} &\alpha(\mathrm{K}){=}0.0974 \ 14; \ \alpha(\mathrm{L}){=}0.0192 \ 3; \ \alpha(\mathrm{M}){=}0.00461 \ 7 \\ &\alpha(\mathrm{N}){=}0.001203 \ 17; \ \alpha(\mathrm{O}){=}0.000266 \ 4; \ \alpha(\mathrm{P}){=}4.33{\times}10^{-5} \ 6; \\ &\alpha(\mathrm{Q}){=}2.50{\times}10^{-6} \ 4 \\ &\mathrm{B}(\mathrm{E1})(\mathrm{W.u.}){>}0.00021 \\ &\mathrm{Mult.: \ from } \ \alpha(\mathrm{K})\mathrm{exp}{\leq}2.6, \ \alpha(\mathrm{L})\mathrm{exp}{\leq}0.18, \ \mathrm{and } \ \alpha(\mathrm{M})\mathrm{exp}{\leq}0.06 \\ &(1987\mathrm{Bo04}). \end{split}$				

 \neg

 $^{227}_{88}$ Ra $_{139}$ -7

L

					Ad	lopted Level	s, Gamma	s (continue	<u>d)</u>
						γ (²²⁷ F	Ra) (contin	ued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [@]	$\delta^{@}$	α &	Comments
296.576	1/2-	206.539 5	52 [‡] 5	90.0343	3/2-	[M1+E2]		2.00	$\alpha(K)=1.607\ 23;\ \alpha(L)=0.297\ 5;\ \alpha(M)=0.0709\ 10$ $\alpha(N)=0.0187\ 3;\ \alpha(O)=0.00427\ 6;\ \alpha(P)=0.000744\ 11;$ $\alpha(Q)=5.83\times10^{-5}\ 9$ L: Other: 28 6 in ²²⁶ Pa(n c) E-thermal
		296.7 [‡] 1	3.1 [‡] <i>15</i>	0.0	3/2+	[E1]		0.0361	$\alpha(K)=0.0291 \ 4; \ \alpha(L)=0.00532 \ 8; \ \alpha(M)=0.001266 \ 18 \ \alpha(N)=0.000331 \ 5; \ \alpha(O)=7.41\times10^{-5} \ 11; \ \alpha(P)=1.235\times10^{-5} \ 18; \ \alpha(Q)=7.98\times10^{-7} \ 12 \ P(E)(W_{er}) \ge 1.2\times10^{-6}$
384.355	1/2+,3/2+	263.7 [‡] 1	2.6 [‡] 9	120.711	1/2+	[M1,E2]		1.012	B(E1)(W.u.)>1.5×10 ⁻² α (K)=0.814 12; α (L)=0.1498 21; α (M)=0.0358 5 α (N)=0.00943 14; α (O)=0.00215 3; α (P)=0.000375 6; α (Q)=2.94×10 ⁻⁵ 5 L: other: 7.8, 26 in ²²⁶ Pa(n a) E=thermal
		384.348 8	100 [‡] 8	0.0	3/2+	M1+E2	0.5 3	0.30 6	α(K)=0.24 5; α(L)=0.047 6; α(M)=0.0114 13 α(N)=0.0030 4; α(O)=0.00068 8; α(P)=0.000117 15; $α(Q)=8.6×10^{-6} 17$ B(M1)(W.u.)>0.0079; B(E2)(W.u.)>0.22 Mult.: from α(K)exp=0.24 4 and α(L)exp≤0.08 (1987Bo04).
438.795	$(3/2)^+$	348.803 25	26 [‡] 3	90.0343	3/2-				I_{γ} : other: 35 5 in ²²⁶ Ra(n, γ) E=thermal.
		413.029 11	100 [‡] 8	25.768	5/2+	M1(+E2)	<0.4	0.280 17	α (K)=0.225 <i>15</i> ; α (L)=0.0418 <i>18</i> ; α (M)=0.0100 <i>4</i> α (N)=0.00264 <i>11</i> ; α (O)=0.00060 <i>3</i> ; α (P)=0.000105 <i>5</i> ; α (Q)=8.1×10 ⁻⁶ <i>5</i> Mult: from α (K)exp=0.29 5 (1987Bo04)
		437.071 28	33 [‡] 5	1.733	(5/2)+	(M1,E2)		0.255	$\alpha(K)=0.205 \ 3; \ \alpha(L)=0.0373 \ 6; \ \alpha(M)=0.00891 \ 13$ $\alpha(N)=0.00235 \ 4; \ \alpha(O)=0.000536 \ 8; \ \alpha(P)=9.34\times10^{-5} \ 13;$ $\alpha(Q)=7.33\times10^{-6} \ 11$ Mult.: from $\alpha(K)\exp(437.1\gamma + 438.8\gamma)=0.21 \ 5 \ (1987Bo04).$
		438.768 <i>18</i>	49 [‡] 8	0.0	3/2+	(M1,E2)		0.252	$\alpha(K)=0.203 \ 3; \ \alpha(L)=0.0370 \ 6; \ \alpha(M)=0.00881 \ 13 \\ \alpha(N)=0.00232 \ 4; \ \alpha(O)=0.000530 \ 8; \ \alpha(P)=9.24\times10^{-5} \ 13; \\ \alpha(Q)=7.25\times10^{-6} \ 11 \\ I_{\gamma}: \text{ other: } 60 \ 8 \text{ in } {}^{226}\text{Ra}(n,\gamma) \text{ E=thermal.} $
471.567	3/2-	187.274 <i>35</i>	2.3 [‡] 8	284.280	3/2-	[M1,E2]		2.63	Mult: from $\alpha(\mathbf{K})\exp(458.8\gamma + 457.1\gamma)=0.213$ (1987B004). $\alpha(\mathbf{K})=2.123; \ \alpha(\mathbf{L})=0.3916; \ \alpha(\mathbf{M})=0.093514$ $\alpha(\mathbf{N})=0.02474; \ \alpha(\mathbf{O})=0.005638; \ \alpha(\mathbf{P})=0.00098114;$ $\alpha(\mathbf{Q})=7.69\times10^{-5}11$ Ly: other: 14.3 in ²²⁶ Ba(n γ) E=thermal
		294.52 11	7.5 [‡] 10	176.973	(5/2)+	(E1)		0.0367	$\alpha(K)=0.0295 \ 5; \ \alpha(L)=0.00541 \ 8; \ \alpha(M)=0.001289 \ 18$ $\alpha(N)=0.000337 \ 5; \ \alpha(O)=7.54\times10^{-5} \ 11; \ \alpha(P)=1.257\times10^{-5} \ 18; \ \alpha(Q)=8.11\times10^{-7} \ 12 \ B(E1)(W.u.)>3.5\times10^{-5} \ Mult.: E1 \text{ or } E2 \ from \ \alpha(K)exp\leq0.06 \ (1987Bo04). \ Decay$

 ∞

					-	Adopted Lev	vels, Gam	mas (contin	ued)
						γ ⁽²²	²⁷ Ra) (cor	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [@]	$\delta^{@}$	α &	Comments
									scheme requires E1.
		+	+ .						I_{γ} : other: 13 3 in ²²⁶ Ra(n, γ) E=thermal.
471.567	3/2-	350.85* 5	6.3+ 5	120.711	1/2+	[E1]		0.0249	$\alpha(K)=0.0201 \ 3; \ \alpha(L)=0.00360 \ 5; \ \alpha(M)=0.000856 \ 12 \\ \alpha(N)=0.000224 \ 4; \ \alpha(O)=5.03\times10^{-5} \ 7; \ \alpha(P)=8.44\times10^{-6} \ 12; \\ \alpha(Q)=5.62\times10^{-7} \ 8 \\ P(D)=1000000000000000000000000000000000000$
		260 660 8	100	101 2042	5/2-	$M1(\pm E2)$	-0.2	0.204.0	$B(E1)(W.u.) > 1.7 \times 10^{-5}$
		309.009 8	100+ 0	101.8942	5/2	MI(+E2)	<0.2	0.394 9	$\alpha(K)=0.5177; \alpha(L)=0.03471; \alpha(M)=0.0139424$ $\alpha(N)=0.003677; \alpha(O)=0.00083815; \alpha(P)=0.0001463;$ $\alpha(Q)=1.138\times10^{-5}25$ B(M1)(W.u.)>0.027? Mult., δ : from $\alpha(K)$ exp=0.342 and $\alpha(L)$ exp=0.0566 (1987Bo04)
		381.556 <i>15</i>	63 [‡] 5	90.0343	3/2-	M1(+E2)	<0.22	0.361 9	$\alpha(K)=0.290 \ 8; \ \alpha(L)=0.0534 \ 10; \ \alpha(M)=0.01275 \ 24 \\ \alpha(N)=0.00336 \ 7; \ \alpha(O)=0.000767 \ 15; \ \alpha(P)=0.000134 \ 3; \\ \alpha(Q)=1.04\times10^{-5} \ 3 \\ B(M1)(W.u.)>0.016? \\ Mult.,\delta: \ from \ \alpha(K)exp=0.36 \ 5 \ and \ \alpha(L)exp=0.067 \ 10 \\ (1987Bo04). \end{cases}$
		445.76 [‡] 10	3.3 [‡] 8	25.768	5/2+	[E1]		0.01492	$\alpha(K)=0.01214 \ 17; \ \alpha(L)=0.00211 \ 3; \ \alpha(M)=0.000501 \ 7 \\ \alpha(N)=0.0001313 \ 19; \ \alpha(O)=2.95\times10^{-5} \ 5; \ \alpha(P)=5.00\times10^{-6} \ 7; \\ \alpha(Q)=3.46\times10^{-7} \ 5 \\ B(E1)(W.u.)>4.4\times10^{-6}$
		469.8 [‡] 3	3.3 [‡] 8	1.733	(5/2)+	[E1]		0.01339	$\alpha(K)=0.01091 \ 16; \ \alpha(L)=0.00189 \ 3; \ \alpha(M)=0.000447 \ 7 \\ \alpha(N)=0.0001171 \ 17; \ \alpha(O)=2.64\times10^{-5} \ 4; \ \alpha(P)=4.47\times10^{-6} \ 7; \\ \alpha(Q)=3.12\times10^{-7} \ 5 \\ B(E1)(W.u.)>3.8\times10^{-6}$
475.033	3/2+	178.47 [‡] <i>10</i>	45 [‡] 7	296.576	1/2-	E1		0.1185	$\alpha(K)=0.0940 \ 14; \ \alpha(L)=0.0185 \ 3; \ \alpha(M)=0.00444 \ 7$ $\alpha(N)=0.001159 \ 17; \ \alpha(O)=0.000257 \ 4; \ \alpha(P)=4.17\times10^{-5} \ 6; \ \alpha(Q)=2.42\times10^{-6} \ 4$ Multi-from (L) vm (O 28 (1087Pa04))
		321.763 25	19 [‡] 3	153.275	(1/2,3/2)+	M1(+E2)	<0.6	0.52 7	α(K) = 0.42
		373.122 61	15 [‡] 3	101.8942	5/2-				-
		411.140 80	24 [‡] 7	64.077	7/2+				
		449.263 29	74 [‡] 7	25.768	5/2+	M1(+E2)	< 0.5	0.218 19	α (K)=0.175 <i>17</i> ; α (L)=0.0326 <i>21</i> ; α (M)=0.0078 <i>5</i> α (N)=0.00206 <i>13</i> ; α (O)=0.00047 <i>3</i> ; α (P)=8.1×10 ⁻⁵ <i>6</i> ;

L

	Adopted Levels, Gammas (continued)											
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α &	Comments			
475.033	3/2+	473 330 64	27‡ 7	1 723	(5/2)+				$\alpha(Q)=6.2\times10^{-6} 6$ Mult., δ : from $\alpha(K)\exp=0.21 4$ (1987Bo04).			
475.055	5/2	475.016 23	100 [‡] 10	0.0	(3/2) 3/2 ⁺	(M1,E2)		0.203	$\alpha(K)=0.1642\ 23;\ \alpha(L)=0.0298\ 5;\ \alpha(M)=0.00711\ 10$ $\alpha(N)=0.00187\ 3;\ \alpha(O)=0.000427\ 6;\ \alpha(P)=7.45\times10^{-5}\ 11;$ $\alpha(Q)=5.85\times10^{-6}\ 9$ Mult : from $\alpha(K)\exp\approx0.15\ (1987Be04).$			
523.851	(3/2)-	139.65 [‡] 10	1.4 [‡] 3	384.355	1/2+,3/2+	[E1]		0.214	$\alpha(K)=0.1683\ 24;\ \alpha(L)=0.0348\ 5;\ \alpha(M)=0.00837\ 12 \\ \alpha(N)=0.00218\ 3;\ \alpha(O)=0.000480\ 7;\ \alpha(P)=7.69\times10^{-5}\ 11; \\ \alpha(Q)=4.20\times10^{-6}\ 6$			
		362.86 [‡] 5	4.4 [‡] 3	161.051	3/2+	(E1)		0.0231	$\alpha(K)=0.0187 \ 3; \ \alpha(L)=0.00334 \ 5; \ \alpha(M)=0.000793 \ 12$ $\alpha(N)=0.000208 \ 3; \ \alpha(O)=4.66\times10^{-5} \ 7; \ \alpha(P)=7.83\times10^{-6} \ 11;$ $\alpha(Q)=5.24\times10^{-7} \ 8$ B(E1)(W.u.)>5.5×10^{-6} Mult.: E1 or E2 from $\alpha(K)\exp\leq0.07$ (1987Bo04). Decay scheme requires E1.			
		403.19 [‡] <i>10</i>	6.6 [‡] 5	120.711	1/2+	E1		0.0184	$\alpha(K)=0.01495\ 21;\ \alpha(L)=0.00263\ 4;\ \alpha(M)=0.000625\ 9$ $\alpha(N)=0.0001637\ 23;\ \alpha(O)=3.68\times10^{-5}\ 6;\ \alpha(P)=6.21\times10^{-6}\ 9;$ $\alpha(Q)=4.23\times10^{-7}\ 6$ B(E1)(W.u.)>6.0×10^{-6} Mult.; from $\alpha(K)\exp<0.02$ (1987B004).			
		422.0 ^{‡<i>a</i>} 2	1.4 [‡] 3	101.8942	5/2-	[M1+E2]		0.280	$\alpha(K)=0.226\ 4;\ \alpha(L)=0.0411\ 6;\ \alpha(M)=0.00980\ 14$ $\alpha(N)=0.00258\ 4;\ \alpha(O)=0.000589\ 9;\ \alpha(P)=0.0001028\ 15;$ $\alpha(O)=8.06\times10^{-6}\ 12$			
		433.824 9	100 [‡] 6	90.0343	3/2-	M1(+E2)	<0.4	0.246 15	$\alpha(K)=0.197 \ I3; \ \alpha(L)=0.0366 \ I7; \ \alpha(M)=0.0087 \ 4$ $\alpha(N)=0.00231 \ I0; \ \alpha(O)=0.000525 \ 23; \ \alpha(P)=9.1\times10^{-5} \ 5;$ $\alpha(Q)=7.0\times10^{-6} \ 5$ B(M1)(W.u.)>0.0076? Mult.: from $\alpha(K)\exp=0.22 \ 2, \ \alpha(L)\exp=0.037 \ 6$ and $\alpha(M)\exp=0.012 \ 3 \ (1987Bo04)$			
		498.4 [‡] <i>3</i>	1.4 [‡] 3	25.768	5/2+	[E1]		0.01187	$\alpha(K)=0.00968 \ 14; \ \alpha(L)=0.001665 \ 24; \ \alpha(M)=0.000394 \ 6$ $\alpha(N)=0.0001032 \ 15; \ \alpha(O)=2.33\times10^{-5} \ 4; \ \alpha(P)=3.95\times10^{-6} \ 6; \ \alpha(Q)=2.79\times10^{-7} \ 4$ $B(E1)(W.u.)>6.8\times10^{-7}$			
		523.75 [‡] 10	2.3 [‡] 3	0.0	3/2+	[E1]		0.01074	$\alpha(K)=0.00877 \ 13; \ \alpha(L)=0.001500 \ 21; \ \alpha(M)=0.000355 \ 5 \\ \alpha(N)=9.30\times10^{-5} \ 13; \ \alpha(O)=2.10\times10^{-5} \ 3; \ \alpha(P)=3.57\times10^{-6} \ 5; \\ \alpha(Q)=2.53\times10^{-7} \ 4 \\ B(E1)(W.u.)>9.6\times10^{-7}$			
598.51	$(3/2^+)$	159.742 <i>41</i>	60 [‡] 27	438.795	$(3/2)^+$							

${}^{227}_{88}$ Ra $_{139}$ -10

From ENSDF

 $^{227}_{88}$ Ra $_{139}$ -10

					Ado	pted Levels,	Gamm	as (continue	<u>d)</u>
						γ (²²⁷ Ra	a) (contin	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [@]	$\delta^{@}$	α &	Comments
598.51	(3/2+)	534.335 88 572.71 <i>17</i> 596.76 <i>21</i> 598.43 <i>18</i>	$ \begin{array}{r} 100^{\ddagger} 27 \\ 80^{\ddagger} 20 \\ 60^{\ddagger} 13 \\ 60^{\ddagger} 13 \end{array} $	64.077 25.768 1.733 0.0	$7/2^{+}$ $5/2^{+}$ $(5/2)^{+}$ $3/2^{+}$				
675.863	1/2-	200.85 [‡] 5	2.0 [‡] 2	475.033	3/2+	[E1]		0.0893	α (K)=0.0712 <i>10</i> ; α (L)=0.01376 <i>20</i> ; α (M)=0.00329 <i>5</i> α (N)=0.000860 <i>12</i> ; α (O)=0.000191 <i>3</i> ; α (P)=3.12×10 ⁻⁵ <i>5</i> ; α (Q)=1.86×10 ⁻⁶ <i>3</i> B(E1)(W,u,)>2.6×10 ⁻⁵
		204.30 [‡] 1	9.9 [‡] 8	471.567	3/2-	M1(+E2)	≤0.7	1.8 3	α(K)=1.41 25; α(L)=0.303 6; α(M)=0.0737 12 α(N)=0.0195 4; α(O)=0.00439 7; α(P)=0.000747 23; α(Q)=5.1×10-5 9 B(M1)(W.u.)>0.0087? Mult.: from α(K)exp=1.5 3 (coincidence measurement), α(L)exp=0.34 4 and α(M)exp=0.076 1 (1987Bo04). Other value: α(K)exp=1.5 3 (γ-K x ray coin) (1981Vo03).
		237.2 [‡] 2	0.19 [‡] 5	438.795	(3/2)+	[E1]		0.0603	$\alpha(K)=0.0483\ 7;\ \alpha(L)=0.00911\ 13;\ \alpha(M)=0.00218\ 3$ $\alpha(N)=0.000569\ 8;\ \alpha(O)=0.0001266\ 18;\ \alpha(P)=2.09\times10^{-5}\ 3;$ $\alpha(Q)=1.292\times10^{-6}\ 19$ B(E1)(W,u,)>1.5×10^{-6}
		291.55 [‡] 5	2.49 [‡] 19	384.355	1/2+,3/2+	(E1)		0.0375	$ α(K)=0.0302 5; α(L)=0.00554 8; α(M)=0.001320 19 $ $ α(N)=0.000345 5; α(O)=7.72×10^{-5} 11; α(P)=1.286×10^{-5} 18; $ $ α(Q)=8.28×10^{-7} 12 $ B(E1)(W.u.)>1.0×10 ⁻⁵ Mult.: E1 or E2 from α(K)exp≤0.18 (1987Bo04). Decay scheme requires E1. α(K)exp=0.54 24, a less reliable value measured by γ-K x ray coin, suggests M1 multipolarity (1981Vo03).
		379.15 [‡] 10	0.32 [‡] 5	296.576	1/2-	M1+E0		3.0 10	Mult.: from <i>α</i> (K)exp=2.4 8 (1987Bo04). <i>α</i> : From EKC=2.4 8 (1987BO04) and CC/KC=1.24 3 from BRICC.
		391.57 [‡] 2	8.8 [‡] 6	284.280	3/2-	M1(+E2)	≤0.3	0.331 <i>13</i>	$\alpha(K)=0.266 \ 11; \ \alpha(L)=0.0492 \ 14; \ \alpha(M)=0.0118 \ 3$ $\alpha(N)=0.00310 \ 8; \ \alpha(O)=0.000707 \ 19; \ \alpha(P)=0.000123 \ 4;$ $\alpha(Q)=9.5\times10^{-6} \ 4$ B(M1)(W.u.)>0.0017? Mult. δ : from $\alpha(K)=p=0.29 \ 3$ and $\alpha(L)=p=0.08 \ (1987Be04)$
		514.8 [‡] 2	6.4 [‡] <i>11</i>	161.051	3/2+	E1		0.01112	$\alpha(K)=0.00907 \ 13; \ \alpha(L)=0.001555 \ 22; \ \alpha(M)=0.000368 \ 6$ $\alpha(N)=9.64\times10^{-5} \ 14; \ \alpha(O)=2.17\times10^{-5} \ 3; \ \alpha(P)=3.70\times10^{-6} \ 6; \ \alpha(Q)=2.62\times10^{-7} \ 4$ $B(E1)(W.u.)>4.9\times10^{-6}$ Mult: from $\alpha(K)\exp<0.01 \ (1987Bo04)$
		555.15 [‡] 10	10.1 [‡] 7	120.711	1/2+	E1		0.00957	$\alpha(K)=0.00782 \ 11; \ \alpha(L)=0.001330 \ 19; \ \alpha(M)=0.000314 \ 5 \\ \alpha(N)=8.24\times10^{-5} \ 12; \ \alpha(O)=1.86\times10^{-5} \ 3; \ \alpha(P)=3.17\times10^{-6} \ 5;$

н

					Ad	opted Levels,	Gamma	as (continue	ed)
						γ (²²⁷ Ra	ı) (contir	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	$\delta^{@}$	α &	Comments
									$\frac{\alpha(Q)=2.27\times10^{-7} \ 4}{B(E1)(W.u.)>6.1\times10^{-6}}$ Mult.: from $\alpha(K)\exp(0.007)$ (1987Bo04).
		573.84 [‡] 10	1.55 [‡] 11	101.8942	5/2-	(E2)		0.0282	α (K)=0.0193 3; α (L)=0.00659 10; α (M)=0.001674 24 α (N)=0.000442 7; α (O)=9.75×10 ⁻⁵ 14; α (P)=1.571×10 ⁻⁵ 22; α (Q)=6.96×10 ⁻⁷ 10 B(E2)(W.u.)>0.098
									Mult.: E1 or E2 from α (K)exp \leq 0.025 (1987Bo04). Decay scheme requires E2.
		585.804 <i>49</i>	100 [‡] 5	90.0343	3/2-	M1(+E2)	≤0.4	0.110 7	α (K)=0.089 6; α (L)=0.0162 8; α (M)=0.00387 18 α (N)=0.00102 5; α (O)=0.000232 11; α (P)=4.05×10 ⁻⁵ 20; α (Q)=3.15×10 ⁻⁶ 19 B(M1)(W.u.)>0.0053?

	Adopted Levels, Gammas (continued)								
		$\gamma(^{227}\text{Ra})$ (continued)						ed)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [@]	$\delta^{@}$	α &	Comments
675.863	1/2-	(675.863 ^{‡#} 10)	≤1.39 [‡]	0.0	3/2+	[E1]		0.00654	Mult., δ : from α (K)exp=0.095 10, α (L)exp=0.018 2, α (M)exp=0.0046 8 and α (N)exp=0.0011 5 (1987Bo04). α (K)=0.00536 8; α (L)=0.000894 13; α (M)=0.000211 3 α (N)=5.53×10 ⁻⁵ 8; α (O)=1.250×10 ⁻⁵ 18; α (P)=2.14×10 ⁻⁶ 3; α (Q)=1.571×10 ⁻⁷ 22 B(E1)(W.u.)>2.2×10 ⁻⁷
731.650	$(3/2)^+$	207.852 20	31 [‡] 8	523.851	$(3/2)^{-}$				
		347.251 18	100 [‡] 8	384.355	1/2+,3/2+	M1(+E2)	≤0.4	0.459 17	$\alpha(K)=0.369 \ 15; \ \alpha(L)=0.0685 \ 18; \ \alpha(M)=0.0164 \ 4 \\ \alpha(N)=0.00432 \ 11; \ \alpha(O)=0.000985 \ 25; \ \alpha(P)=0.000171 \ 5; \\ \alpha(Q)=1.32\times10^{-5} \ 6 \\ Mult.: \ from \ \alpha(K)exp=0.46 \ 8 \ (1987Bo04).$
		434.92 13	35 [‡] 12	296.576	$1/2^{-}$				
		629.755 73	54 [‡] 8	101.8942	5/2-	(E1)		0.00748	α (K)=0.00613 9; α (L)=0.001029 15; α (M)=0.000243 4 α (N)=6.37×10 ⁻⁵ 9; α (O)=1.439×10 ⁻⁵ 21; α (P)=2.46×10 ⁻⁶ 4; α (Q)=1.79×10 ⁻⁷ 3 Mult.: E1 or E2 from α (K)exp≤0.04 (1987Bo04). Decay scheme requires E1.
		641.77 11	35 [‡] 8	90.0343	$3/2^{-}$				*
738.11	$(5/2^{-})$	299.37 11	71 14	438.795	$(3/2)^+$				
		648.11 55 711 58 42	43 14	90.0343	$3/2^{-}$				
1004.0	1/2 3/2	810 4 5	$100\ 29$	23.700	3/2-				
1094.9	1/2,3/2	993 0 [‡] 5	$100 \div 10$	101 80/2	5/2 5/2-				
		1005 0 \$ 5	100° 10 45 [‡] 10	00.03/3	3/2-				
1318 84	1/2 3/2	795 3 [‡] 5	60^{\ddagger} 13	523 851	$(3/2)^{-}$				
1510.01	1/2,5/2	846.8 [‡] 5	87 [‡] 13	471.567	$(3/2)^{-}$				
		$1217.0^{\ddagger}.5$	100^{\ddagger} 13	101.8942	5/2 ⁻				
1432.22	1/2.3/2	908.5 [‡] 5	23 [‡] 7	523.851	$(3/2)^{-}$				
	1 7-1	993.0 [‡] 5	65 [‡] 7	438.795	$(3/2)^+$				
		1048.4 [‡] 5	39 [‡] 7	384.355	$1/2^+, 3/2^+$				
		1147.4 [‡] 5	19 [‡] 7	284.280	3/2-				
		1342.4 [‡] 5	100 [‡] 10	90.0343	3/2-				
		1432.3 [‡] 5	23 [‡] 3	0.0	3/2+				
1444.1	1/2,3/2	1147.4 [‡] 5	100 [‡] 33	296.576	$1/2^{-}$				

 $^{227}_{88}$ Ra $_{139}$ -13

From ENSDF

 $^{227}_{88}$ Ra $_{139}$ -13

88
Ra
13
9
4

γ (²²⁷Ra) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π
1444.1	1/2,3/2	1354.3 [‡] 8	67 [‡] 17	90.0343	3/2-	1468.14	1/2,3/2	1468.1 [‡] 5	52 [‡] 6	0.0	3/2+
1455.2		983.5 [‡] 5	20 [‡] 4	471.567	3/2-	1474.84		743.4 [‡] 5	33 [‡] 8	731.650	$(3/2)^+$
		1365.1 [‡] 5	48 [‡] 8	90.0343	3/2-			1178.2 [‡] 5	38 [‡] 8	296.576	$1/2^{-}$
		1455.3 [‡] 5	100 [‡] 12	0.0	3/2+			1190.3 [‡] 5	33 [‡] 8	284.280	3/2-
1468.14	1/2,3/2	149.3 [‡] 1	28 [‡] 3	1318.84	1/2,3/2			1313.7 [‡] 5	46 [‡] 8	161.051	$3/2^{+}$
		736.9 [‡] 5	25 [‡] 3	731.650	$(3/2)^+$			1384.9 [‡] 5	100 [‡] 13	90.0343	3/2-
		944.6 [‡] 5	15 [‡] 5	523.851	$(3/2)^{-}$			1474.9 [‡] 5	17 [‡] 4	0.0	$3/2^{+}$
		993.0 [‡] 5	30 [‡] 3	475.033	3/2+	(4561.4)	$1/2^{+}$	3885.6 4	56 5	675.863	$1/2^{-}$
		996.1 [‡] 5	11 [‡] 3	471.567	3/2-			4178.0 4	36 5	384.355	$1/2^+, 3/2^+$
		1307.1 [‡] 5	84 [‡] 9	161.051	3/2+			4277.2 4	64 5	284.280	3/2-
		1347.4 [‡] 5	100 [‡] <i>10</i>	120.711	$1/2^{+}$			4399.5 5	20 2	161.051	$3/2^{+}$
		1378.1 [‡] 5	73 [‡] 8	90.0343	3/2-			4471.3 <i>3</i>	100 7	90.0343	3/2-

[†] From ²²⁶Ra(n, γ) E=thermal, unless otherwise stated. [‡] From ²²⁷Fr β^- decay (1981Vo03). [#] From level energy differences. [@] From measured conversion coefficients in ²²⁷Fr β^- decay, unless otherwise stated.

[&] From BrIcc v2.3a (30-Jun-2013) 2008Ki07, "Frozen Orbitals" appr. δ (E2/M1)=1.0 was assumed when not given.

^{*a*} Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme Intensities: Relative photon branching from each level

 $^{227}_{88}$ Ra₁₃₉

16

²²⁷₈₈Ra₁₃₉-16

 $^{227}_{88}$ Ra $_{139}$ -16

From ENSDF

 $^{227}_{88}$ Ra $_{139}$ -17

 $^{227}_{88}$ Ra $_{139}$ -17

From ENSDF

Adopted Levels, Gammas

Band(G): Possible 1/2[761] rotational band

(7/2⁻) 806.6

(3/2⁻) 755.6

Band(H): Possible 1/2[770] rotational band

3/2- 471.567

²²⁷₈₈Ra₁₃₉