226**Ra(pol t,d)** 1981Vo03

History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Ictp-2014 Workshop Group	NDS 132, 257 (2016)	15-Jan-2016

Target: ²²⁶Ra, 40 μg/cm² thick. Projectile: polarized tritons, E=17 MeV from the LANL FN tandem Van de Graaff accelerator. Measured scattered deuterons at eleven angles between θ=24° and 73°. Detector: Q3D type magnetic spectrometer in conjunction with a 1 min long helical-cathode, position-sensitive proportional counter, FWHM≈12 keV. Deduced: level energies and analyzing powers. Angular distributions do not distinguish between different values of transferred angular momentum.

Measured Q(t,d)=-1697 keV 40 calibrated using Q(t,d)=-1471.0 keV 3 for the 232 Th(t,d) 233 Th reaction and the known excitation energies for levels below 1 MeV in 233 Th.

²²⁷Ra Levels

E(level)	J ^π †	Comments
0.0 ^a	$(3/2^+)^{\ddagger @}$	E(level), J^{π} : doublet includes g.s. $(3/2^+, 3/2[631])$ and the 1.7-keV level $(5/2^+, 5/2[633])$.
25 ^{&} 3	$(5/2^+)^{\ddagger @}$	E(level), J^{π} : possible doublet including the 25-keV level (5/2+,3/2[631]) and the yet unobserved 7/2+,5/2[633] level, calculated at 39 keV in 1981Vo03.
84 ^a 3	9/2+‡	
119 ^c 3	$(1/2^+)^{\ddagger @}$	J^{π} : measured vanishing analyzing power is typical of L=0 transitions.
138 ^b 3	$(11/2^{-})^{\ddagger @}$	
162 ^c 3	3/2+#	
175° 3	$(5/2^+)^{\ddagger @}$	
185 <mark>&</mark> 3	$(11/2^+)^{\#@}$	
228^{b} 3	$(15/2^{-})^{\ddagger @}$	
266 ^c 3	$(7/2^+)^{\#@}$	
300 ^c 3 337 3	9/2+‡	
755^{d} 3	3/2-‡	
806^{d} 3	7/2-‡	
858 <i>3</i>	#@	
907 3		
926 <i>3</i>	ш	
947 3	#	
968 <i>3</i> 998 <i>3</i>		
1017 3	#	
1056 <i>3</i>	#	
1099 <i>3</i>		
1129 <i>3</i>	‡	
1167 <i>3</i>	‡	
1307 <i>3</i>	‡@	

 $^{^{\}dagger}$ From rotational structure, energy and transition strength systematics of Nilsson orbitals in neighboring nuclei, and from measured analyzing powers. J^{π} values in parentheses correspond to analyzing powers without definite signs. See also Adopted Levels for additional details.

[‡] Positive analyzing power (J=L+1/2).

^{*} Negative analyzing power (J=L-1/2).

[®] Sign of analyzing power is uncertain.

[&]amp; Band(A): 3/2[631] rotational band.

²²⁶Ra(pol t,d) 1981Vo03 (continued)

²²⁷Ra Levels (continued)

^a Band(B): 5/2[633] rotational band.
^b Band(C): 3/2[761] rotational band.
^c Band(D): 1/2[631] rotational band.
^d Band(E): Possible 1/2[761] rotational band.

226Ra(pol t,d) 1981Vo03

Band(E): Possible 1/2[761] rotational band

7/2- 806

3/2 755

Band(D): 1/2[631] rotational band

9/2+ 300

(7/2+) 266

Band(C): 3/2[761] rotational band

(15/2⁻) 228

Band(A): 3/2[631] rotational band

(11/2⁺) 185

(5/2⁺) 175

3/2⁺ 162

(11/2⁻) 138

(1/2⁺) 119

Band(B): 5/2[633] rotational band

9/2⁺ 84

(5/2+) 25

 $(3/2^+)$ 0.0 $(3/2^+)$ 0.0

 $^{227}_{\ \, 88}{\rm Ra}_{139}$