227 Ra β^- decay (42.2 min) 1971Lo15

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Ictp-2014 Workshop Group	NDS 132, 257 (2016)	15-Jan-2016

²²⁷Ac Levels

Parent: ²²⁷Ra: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=42.2 \text{ min } 5$; $Q(\beta^-)=1328.4 \ 23$; $\%\beta^-$ decay=100.0

 227 Ra-J^{π},T_{1/2}: From 227 Ra Adopted Levels.

²²⁷Ra-Q(β^{-}): From 2012Wa38.

1971Lo15: measured $T_{1/2}$, E β , I β , E γ , I γ , $\gamma\gamma$ -coin; deduced Q value, log ft values, levels, J, π . Sources were produced in neutron irradiation of 226 Ra and of about 30 μ Ci strength were used.

Others:

1953Bu63: measured E β , E γ . Three γ rays were reported.

1982Ba56: precise measurements of ²²⁷Ac KL₃ x-ray energy a Dumond-type curved crystal spectrometer. Value=90.895 keV 12.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	E(level) [†]	$J^{\pi \ddagger}$
0.0	3/2-	21.772 y 3	428.39? 18	
27.372 19	$3/2^{+}$	38.3 ns 3	435.37 8	1/2+
29.95 4	5/2-		501.27 8	$(1/2^{-}, 3/2, 5/2^{-})$
46.40 4	$5/2^{+}$		514.37 9	$(3/2, 5/2)^+$
74.29 9	$7/2^{-}$		537.01 11	$(3/2^+)$
84.61 8	$7/2^{+}$		562.81 14	$(3/2^+, 5/2^+)$
273.13 5	$(5/2)^{-}$		639.09 15	$1/2^{+}$
304.73 7	$(5/2^+)$		698.59 15	$(3/2)^+$
330.09 5	$3/2^{-}$		790.11 <i>17</i>	$(1/2^{-}, 3/2, 5/2)$
354.59 15	$1/2^{-}$		863.64 22	(1/2,3/2,5/2)
425.75 8	$5/2^{+}$		874.69 18	$(1/2^+, 3/2, 5/2)$

[†] Deduced by evaluators from a least-squares fit to γ -ray energies, reduced $\chi^2 = 1.1$. [‡] From Adopted Levels. See also Adopted Levels for band structures, Nilsson assignments and parity doublet bands.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†#}	Log <i>ft</i> ‡	Comments
(453.7 23)	874.69	0.13	7.4	av Eβ=131.78 75
(464.8 23)	863.64	0.22	7.2	av $E\beta = 135.40$ 78
(538.3 23)	790.11	0.25	7.4	av E β =159.63 77
				$E\beta = 550 \text{ keV } 80, I\beta(\text{rel}) = 10.5, \text{ semi.}$
(629.8 23)	698.59	0.34	7.4	av $E\beta = 190.66 \ 80$
(689.3 23)	639.09	1.3	7.0	av E β =211.26 81
(765.6 23)	562.81	1.9	7.0	av $E\beta = 238.15 \ 82$
				$E\beta = 745 \text{ keV } 50, I\beta(\text{rel}) = 20 \ 10, \text{ semi.}$
(791.4 23)	537.01	0.38	7.7	av E β =247.36 83
(814.0 23)	514.37	2.4	7.0	av E β =255.49 83
(827.1 23)	501.27	1.5	7.2	av E β =260.21 83
(893.0 23)	435.37	2.9	7.0	av E β =284.15 85
(900.0 23)	428.39?	0.15	8.3	av E β =286.70 85
(902.7 23)	425.75	0.79	7.6	av E β =287.67 85
(973.8 23)	354.59	1.0	7.6	av Eβ=313.87 86
(998.3 23)	330.09	19.0	6.4	av E β =322.98 86
(1023.7 23)	304.73	4.0	7.1	av Eβ=332.44 86
				$E\beta = 1026 \text{ keV } 20, I\beta(\text{rel}) = 45 5, \text{ semi.}$
(1055.3 23)	273.13	2.0	7.5	av E β =344.29 87
(1254.1 [@] 23)	74.29	<9	$>7.7^{1u}$	av E β =406.61 83

Continued on next page (footnotes at end of table)

227 Ra β^- decay (42.2 min) 1971Lo15 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger \#}$	$\log ft^{\ddagger}$	Comments
(1282.0 <i>23</i>) (1301.0 <i>23</i>)	46.40 27.372	25.2 37.2	6.7 6.5	av $E\beta = 430.92 \ 90$ av $E\beta = 438.30 \ 90$
				$E\beta = 1300 \text{ keV } 15$, $I\beta$ (rel)=100, semi.

[†] The β^- feedings to the individual levels were deduced by the evaluators from γ -ray transition intensity balances. Such feedings should be considered approximate because the uncertainties in the γ -ray intensities are unknown.

[‡] Values considered approximate because the uncertainties in the γ s
[‡] Values considered as approximate since β feedings are approximate.
[#] Absolute intensity per 100 decays.
[@] Existence of this branch is questionable.

$\gamma(^{227}\text{Ac})$

I γ normalization: 1971Lo15 presented γ -ray intensities on an absolute scale, but the normalization method was not given. The normalization shown here assumes no β^- feeding to the g.s. and thus $\Sigma I(\gamma + ce)$ (γ rays to g.s.)=100%. The corresponding absolute γ -ray intensities are $\approx 15\%$ lower than those reported by 1971Lo15.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{\&}$	Comments
16.5 <i>1</i> 19.6	0.26 0.32	46.40 46.40	5/2 ⁺ 5/2 ⁺	29.95 27.372	5/2 ⁻ 3/2 ⁺	[E1] [M1]		8.58 <i>12</i> 112.8	E _γ ,I _γ : from Adopted Gammas. α (L)=2.34 4; α (M)=82.5 12; α (N)=21.9 3; α (O)=5.09 8; α (P)=0.942 14; α (Q)=0.0840 12 L L from Adopted Common
24.9 [°] 1	≈0.038	354.59	1/2-	330.09	3/2-	[M1]		203 4	$\alpha(L)=153$ 3; $\alpha(M)=37.0$ 7 $\alpha(N)=9.81$ 18; $\alpha(O)=2.28$ 5; $\alpha(P)=0.422$ 8; $\alpha(Q)=0.0376$ 7
27 37 2	174	27 372	3/2+	0.0	3/2-	F1(+M2)	<0.0020	454	I_{γ} : from Adopted Gammas. $I_{\gamma} \approx 0.3$ (1971Lo15).
29.95 4	0.036	29.95	5/2-	0.0	3/2-	M1+E2	0.22 3	$2.7 \times 10^2 5$	$\begin{array}{l} \alpha(\text{L}){=}2.0{\times}10^2 \ 4; \ \alpha(\text{M}){=}52 \ 9 \\ \alpha(\text{N}){=}13.8 \ 23; \ \alpha(\text{O}){=}3.1 \ 5; \ \alpha(\text{P}){=}0.52 \ 8; \ \alpha(\text{Q}){=}0.0213 \\ 4 \end{array}$
(38.2 [#])	< 0.02	84.61	7/2+	46.40	5/2+	M1+E2	0.19 9	92 38	α (L)=69 28; α (M)=17.4 76 α (N)=4.6 20; α (O)=1.04 44; α (P)=0.180 67; α (Q)=0.0104 3
(44.2 [#])	<0.27	74.29	7/2-	29.95	5/2-	[M1]		37.3	α (L)=28.2 4; α (M)=6.77 10 α (N)=1.80 3; α (O)=0.418 6; α (P)=0.0774 11; α (O)=0.00689 10
46.38 4	0.19	46.40	5/2+	0.0	3/2-	(E1)		0.878	$\alpha(L)=0.662 \ 10; \ \alpha(M)=0.1631 \ 24$ $\alpha(N)=0.0423 \ 6; \ \alpha(O)=0.00912 \ 13; \ \alpha(P)=0.001415 \ 20;$ $\alpha(O)=5.88 \times 10^{-5} \ 9$
54.6 ^c	<0.01	84.61	7/2+	29.95	5/2-	[E1]		0.569	$\begin{array}{l} \alpha(\mathbf{L}) = 0.429 \ 6; \ \alpha(\mathbf{M}) = 0.1052 \ 15 \\ \alpha(\mathbf{N}) = 0.0273 \ 4; \ \alpha(\mathbf{O}) = 0.00594 \ 9; \ \alpha(\mathbf{P}) = 0.000940 \ 14; \\ \alpha(\mathbf{Q}) = 4.17 \times 10^{-5} \ 6 \end{array}$
57.1 ^{b@ 1}	<0.004 ^b	84.61	7/2+	27.372	3/2+	(E2)		149.1 25	$\alpha(L)=109.4 \ 18; \ \alpha(M)=29.8 \ 5$ $\alpha(N)=7.93 \ 13; \ \alpha(O)=1.72 \ 3; \ \alpha(P)=0.268 \ 5;$ $\alpha(Q)=0.000693 \ 11$ I _y : from Adopted Gammas.
57.1 ^{b@} 1	0.024 ^b	330.09	3/2-	273.13	(5/2)-	[M1+E2]		83 66	E_{γ} : placement from the 330 level is considered as guestionable since not confirmed in ²³¹ Pa α decay.
74.2 2	0.016	74.29	7/2-	0.0	3/2-	[E2]		42.4 8	α (L)=31.1 6; α (M)=8.49 <i>17</i> α (N)=2.26 5; α (O)=0.491 <i>10</i> ; α (P)=0.0766 <i>15</i> ; α (Q)=0.000233 5 I _Y : from I(γ +ce)=0.7 and α (E2)=42.4.
146.9 [°] 5	< 0.3	501.27	$(1/2^{-}, 3/2, 5/2^{-})$	354.59	$\frac{1}{2^{-}}$	[M1+F2]		150	
190.7 4	0.05	213.13	(J/Δ)	14.29	1/2			1.5 9	

ω

²²⁷₈₉Ac₁₃₈-3

T						²²⁷ Ra β⁻	decay (42.2	min) 1971L	.015 (contin	ued)
							$\gamma(^{227})$	Ac) (continued)		
	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger a}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
	209.6 2 *218.10.10	0.11	514.37	$(3/2, 5/2)^+$	304.73	$(5/2^+)$				
	219.19 <i>10</i> 219.90 <i>15</i> 226.6 <i>1</i>	0.21 0.21 0.03	304.73 273.13	(5/2 ⁺) (5/2) ⁻	84.61 46.40	7/2 ⁺ 5/2 ⁺	[M1+E2] [E1]		1.1 7 0.0688	α (K)=0.0548 8; α (L)=0.01057 15; α (M)=0.00253 4 α (N)=0.000666 10; α (O)=0.0001511 22; α (P)=2.65×10 ⁻⁵ 4: α (O)=1.81×10 ⁻⁶ 3
	228.00 <i>10</i> 232.20 <i>10</i> ^x 242 1 2	0.42 0.30 0.03	501.27 537.01	$(1/2^-, 3/2, 5/2^-)$ $(3/2^+)$	273.13 304.73	$(5/2)^-$ $(5/2^+)$	[M1+E2]		0.97 61	$\tau, u(q) = 1.01 \times 10^{-5}$
	243.15 10	0.54	273.13	(5/2)-	29.95	5/2-	M1+E2	1.1 3	0.80 17	$\alpha(K)=0.56\ 16;\ \alpha(L)=0.176\ 10;\ \alpha(M)=0.0445\ 16$ $\alpha(N)=0.0118\ 5;\ \alpha(O)=0.00268\ 12;\ \alpha(P)=0.00046\ 3;$ $\alpha(O)=2\ 60\times10^{-5}\ 70$
	245.9 1	0.03	273.13	(5/2) ⁻	27.372	3/2+	[E1]		0.0569	$\alpha(Q) = 2.60 \times 10^{-76}$ $\alpha(K) = 0.0455 \ 7; \ \alpha(L) = 0.00865 \ 13; \ \alpha(M) = 0.00207 \ 3$ $\alpha(N) = 0.000545 \ 8; \ \alpha(Q) = 0.0001239 \ 18; \ \alpha(P) = 2.18 \times 10^{-5}$
	255.76 10	0.20	330.09	3/2-	74.29	7/2-	E2		0.265	3; $\alpha(Q)=1.51/\times 10^{-6}$ 22 $\alpha(K)=0.0993$ 14; $\alpha(L)=0.1219$ 18; $\alpha(M)=0.0328$ 5 $\alpha(N)=0.00872$ 13; $\alpha(O)=0.00192$ 3; $\alpha(P)=0.000311$ 5; $\alpha(Q)=5.37\times 10^{-6}$ 8
	258.30 <i>10</i>	2.0	304.73	(5/2 ⁺)	46.40	5/2+	[M1+E2]		0.7 5	$u(Q) = 3.37 \times 10^{-0.00}$
	273.15 10	0.03 0.96	273.13	(5/2) ⁻	0.0	3/2-	M1+E2	0.7 3	0.74 15	$\alpha(K)=0.57 \ 14; \ \alpha(L)=0.131 \ 11; \ \alpha(M)=0.0323 \ 21 \ \alpha(N)=0.0086 \ 6; \ \alpha(O)=0.00197 \ 15; \ \alpha(P)=0.00035 \ 4; \ \alpha(O)=2.6\times10^{-5} \ 6$
	277.39 10	2.9	304.73	(5/2+)	27.372	3/2+	[M1+E2]		0.6 4	$u(Q) = 2.0 \times 10^{-0}$
	283.68 10	3.4	330.09	3/2-	46.40	5/2+	E1		0.0410	$\alpha(K)=0.0329 5; \alpha(L)=0.00614 9; \alpha(M)=0.001468 21$ $\alpha(N)=0.000386 6; \alpha(O)=8.81\times10^{-5} 13;$ $\alpha(P)=1.551\times10^{-5} 22; \alpha(O)=1.117\times10^{-6} 16$
	300.09 10	5.1	330.09	3/2-	29.95	5/2-	M1+E2	-0.12 7	0.764 17	$\alpha(\mathbf{K}) = 0.501 \times 10^{-22}, \ \alpha(\mathbf{Q}) = 0.111 \times 10^{-10} = 0.0274 \ 5$ $\alpha(\mathbf{K}) = 0.00728 \ 12; \ \alpha(\mathbf{Q}) = 0.00169 \ 3; \ \alpha(\mathbf{P}) = 0.000313 \ 6;$ $\alpha(\mathbf{Q}) = 2.75 \times 10^{-5} \ 7$
	302.68 10	4.8	330.09	3/2-	27.372	3/2+	E1		0.0355	$\alpha(\mathbf{K}) = 0.0285 \ 4; \ \alpha(\mathbf{L}) = 0.00527 \ 8; \ \alpha(\mathbf{M}) = 0.001260 \ 18$ $\alpha(\mathbf{N}) = 0.000331 \ 5; \ \alpha(\mathbf{O}) = 7.56 \times 10^{-5} \ 11;$ $\alpha(\mathbf{N}) = 1.244 \times 10^{-5} \ 10; \ \alpha(\mathbf{O}) = 7.56 \times 10^{-5} \ 11;$
	327.2 2	0.30	354.59	1/2-	27.372	3/2+	(E1)		0.0298	$\alpha(r) = 1.344 \times 10^{-19}; \ \alpha(Q) = 9.74 \times 10^{-174}$ $\alpha(K) = 0.0240 \ 4; \ \alpha(L) = 0.00440 \ 7; \ \alpha(M) = 0.001050 \ 15$ $\alpha(N) = 0.000276 \ 4; \ \alpha(Q) = 6.31 \times 10^{-5} \ 9; \ \alpha(P) = 1.125 \times 10^{-5}$ $16: \ \alpha(Q) = 8.28 \times 10^{-7} \ 12$
	330.08 10	3.0	330.09	3/2-	0.0	3/2-	M1+E2	+0.36 7	0.540 21	$\alpha(K)=0.430 \ 19; \ \alpha(L)=0.0836 \ 22; \ \alpha(M)=0.0202 \ 5$ $\alpha(N)=0.00535 \ 13; \ \alpha(O)=0.00124 \ 3; \ \alpha(P)=0.000228 \ 6;$ $\alpha(O)=1.93\times10^{-5} \ 8$
	341.1 <i>I</i> 354.6 2	0.22 0.75	425.75 354.59	5/2 ⁺ 1/2 ⁻	84.61 0.0	7/2 ⁺ 3/2 ⁻	[M1+E2] M1+E2	2.8 +14-6	0.33 22 0.142 24	$E_{\gamma}: \text{ this } \gamma \text{ is not confirmed in } {}^{231}\text{Pa} \ \alpha \text{ decay.} \\ \alpha(\text{K})=0.090 \ 21; \ \alpha(\text{L})=0.0391 \ 24; \ \alpha(\text{M})=0.0101 \ 5 \\ \alpha(\text{N})=0.00269 \ 14; \ \alpha(\text{O})=0.00060 \ 4; \ \alpha(\text{P})=0.000102 \ 7; \\ \alpha(\text{Q})=4.2\times10^{-6} \ 9 $

4

 $^{227}_{89}\mathrm{Ac}_{138}\text{--}4$

L

²²⁷₈₉Ac₁₃₈-4

	227 Ra β^- decay (42.2 min)						1971Lo15 ((continued)		
$\gamma(^{227}\text{Ac})$ (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger a}$	E _i (level)	J_i^π	\mathbf{E}_{f}	J_f^π	Mult. [‡]	δ^{\ddagger}	α &	Comments	
379.4 1	0.47	425.75	5/2+	46.40	5/2+	M1(+E2)	0.5 6	0.34 12	$\alpha(K)=0.270 \ 99; \ \alpha(L)=0.054 \ 12; \ \alpha(M)=0.013 \ 3 \\ \alpha(N)=0.0034 \ 7; \ \alpha(O)=0.00080 \ 17; \ \alpha(P)=0.00015 \ 4; \\ \alpha(O)=1.21\times10^{-5} \ 44$	
390.4 [°] 6	0.078	435.37	1/2+	46.40	5/2+				E_{γ} : $\Delta E=0.06$ keV given by 1971Lo15 is too low to be realistic and is probably a typographical error.	
398.4 <mark>b</mark> 4	0.089 <mark>b</mark>	425.75	5/2+	27.372	$3/2^{+}$				I_{γ} : from ²³¹ Pa α decay relative to I(379.4 γ).	
398.4 ^{bc} 4	0.09 ^b	428.39?		29.95	5/2-				I_{γ} : from experimental I γ (398 γ doublet) minus I γ (398.4 γ) from 425 level.	
407.97 10	2.4	435.37	1/2+	27.372	3/2+	M1		0.334	$\alpha(K) = 0.269 4; \alpha(L) = 0.0496 7; \alpha(M) = 0.01186 17$ $\alpha(N) = 0.00314 5; \alpha(O) = 0.000731 11; \alpha(P) = 0.0001353 19;$ $\alpha(O) = 1.199 \times 10^{-5} 17$	
428.4 [°] 2	0.093	428.39?		0.0	$3/2^{-}$					
435.4 1	0.25	435.37	$1/2^{+}$	0.0	$3/2^{-}$					
468.5 5	0.27	514.37	$(3/2,5/2)^+$	46.40	$5/2^+$					
471.3 5	0.27	501.27	$(1/2^-, 3/2, 5/2^-)$	29.95	$5/2^{-}$					
478.4 4	0.09	562.81	$(3/2^+, 5/2^+)$	84.61	$7/2^{+}$					
486.98 10	2.5	514.37	$(3/2, 5/2)^+$	27.372	$3/2^{+}$					
490.5 5	0.15	537.01	$(3/2^+)$	46.40	$5/2^{+}$					
501.4 <i>1</i>	1.05	501.27	$(1/2^-, 3/2, 5/2^-)$	0.0	$3/2^{-}$					
510.0 2		537.01	$(3/2^+)$	27.372	$3/2^{+}$					
516.2 2	1.5	562.81	$(3/2^+, 5/2^+)$	46.40	$5/2^{+}$					
535.6 2	0.66	562.81	$(3/2^+, 5/2^+)$	27.372	$3/2^{+}$					
*543.1 1	0.27	(a o			a / c					
611.4 2	1.3	639.09	1/2+	27.372	$3/2^+$					
639.4 2	0.24	639.09	$1/2^{+}$	0.0	$3/2^{-}$					
652.2 2	0.24	698.59	$(3/2)^+$	46.40	$5/2^{+}$					
0/1.2 2	0.10	098.59	$(3/2)^{+}$	21.372	3/2					
/60.5 2	0.15	700.11	(1/2, 3/2, 5/2)	29.95	5/2 2/2-					
109.0 2	0.10	/90.11	(1/2, 3/2, 3/2) (1/2 + 3/2, 5/2)	0.0	3/2 5/2+					
020.9 J 836 A 2	0.05	0/4.09 863 61	$(1/2^{+}, 3/2, 3/2)$	40.40	$\frac{3}{2}$					
030.4 J 846 7 3	<0.10	874 60	(1/2,3/2,3/2) (1/2+3/2,5/2)	21.312	$\frac{3}{2}$					
863 5 3	0.00	863.64	(1/2, 3/2, 3/2) (1/2, 3/2, 5/2)	0.0	3/2-					
874.7 3	0.10	874.69	$(1/2^+, 3/2, 5/2)$	0.0	$3/2^{-}$					
	0.07	071102	(12,012,012)	0.0	5/2					

[†] From 1971Lo15.
[‡] From Adopted Gammas.
[#] γ ray not observed. Ιγ is an upper limit.
[@] Doublet.

S

²²⁷₈₉Ac₁₃₈-5

From ENSDF

²²⁷Ra β^- decay (42.2 min) 1971Lo15 (continued)

 $\gamma(^{227}Ac)$ (continued)

- [&] From BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr.
- ^a For absolute intensity per 100 decays, multiply by 0.81.
 ^b Multiply placed with intensity suitably divided.
- ^c Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

6

