$^{226}\mathrm{Fr}\,\beta^-$ decay

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Y. A. Akovali	NDS 77,433 (1996)	1-Feb-1996						

²²⁶Ra Levels

Parent: ²²⁶Fr: E=0.0; $J^{\pi}=1^-$; $T_{1/2}=49$ s *1*; $Q(\beta^-)=3671$ 91; $\%\beta^-$ decay=100.0

1993MeZW deduced $Q(\beta^{-})=3.7\pm0.1$ MeV from β - γ coincidence data. See also 1987VeZV. Other measurement: $E(\beta^{-})max=4050$ 590 from singles β^{-} spectrum (1975We23).

E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}	E(level)	\mathbf{J}^{π}
0.0	0^{+}	1122.4 3	(2^{+})	1767.1 10	0,1,2	1982.7 10	0+,1
67.67 <i>1</i>	2+	1156.2 <i>1</i>	2+	1778.4 10	0,1,2	2006.7 15	0,1,2
211.54 2	4+	1238.9 5	(2)	1786.1 10	$1^{-},2^{+}$	2015.2 15	0,1,2
253.73 1	1-	1390.0 <i>1</i>	2^{+}	1865.0 10	$1,2^{+}$	2056.8 5	$1,2^{+}$
321.54 6	3-	1422.5 10	0,1,2	1882.3 7	0,1,2	2086.1 10	$1,2^{+}$
446.3 2	5-	1437.8 7	1-,2	1888.4 15	0,1,2	2182.3 15	0,1,2
824.6 1	0^{+}	1587.3 5	$1,2^{+}$	1897.4 10	$1^{-},2^{+}$	2189.4 10	2+
873.7 1	2+	1621.3 5	$1^{-},2^{+}$	1907.8 <i>10</i>	$1,2^{+}$	2269.7 10	$1,2^{+}$
1048.8 <i>1</i>	1-	1723.4 <i>3</i>	2+	1945.6 10	$1,2^{+}$		
1070.5 2	(2^{-})	1738.5 10	$1,2^{+}$	1951.0 <i>10</i>	$1^{-},2^{+}$		
1077.2 2	1-,2	1756.2 10	$1,2^{+}$	1970.8 5	$1^{-},2^{+}$		

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
$(1.40 \times 10^3 \ 9)$	2269.7	0.26 4	7.0 2	av E β =462 32
$(1.48 \times 10^3 \ 9)$	2189.4	0.22 5	7.2 2	av E β =494 32
$(1.49 \times 10^3 \ 9)$	2182.3	0.11 3	7.5 2	av E β =497 32
$(1.58 \times 10^3 \ 9)$	2086.1	0.23 5	7.3 2	av E β =535 32
$(1.61 \times 10^3 \ 9)$	2056.8	0.36 5	7.1 2	av E β =547 33
$(1.66 \times 10^3 \ 9)$	2015.2	0.14 3	7.5 2	av E β =564 33
$(1.66 \times 10^3 \ 9)$	2006.7	0.23 9	7.3 2	av E β =567 33
$(1.69 \times 10^3 \ 9)$	1982.7	0.28 4	7.3 2	av E β =577 33
$(1.70 \times 10^3 \ 9)$	1970.8	1.6 2	6.5 1	av $E\beta = 581 \ 33$
$(1.72 \times 10^3 \ 9)$	1951.0	0.66 10	6.9 2	av E β =589 33
$(1.73 \times 10^3 \ 9)$	1945.6	0.48 8	7.1 2	av E β =592 33
$(1.76 \times 10^3 \ 9)$	1907.8	0.28 4	7.3 1	av E β =607 33
$(1.77 \times 10^3 \ 9)$	1897.4	0.26 5	7.4 2	av E <i>β</i> =611 <i>33</i>
$(1.78 \times 10^3 \ 9)$	1888.4	0.11 3	7.8 2	av E β =615 33
$(1.79 \times 10^3 \ 9)$	1882.3	0.15 3	7.6 2	av Eβ=617 <i>33</i>
$(1.81 \times 10^3 \ 9)$	1865.0	0.64 9	7.0 1	av E β =624 33
$(1.88 \times 10^3 \ 9)$	1786.1	0.65 12	7.1 2	av E β =656 33
$(1.89 \times 10^3 \ 9)$	1778.4	0.51 9	7.2 2	av E β =659 33
$(1.90 \times 10^3 \ 9)$	1767.1	0.46 8	7.2 2	av E β =664 33
$(1.91 \times 10^3 \ 9)$	1756.2	1.3 3	6.8 2	av E β =669 33
$(1.93 \times 10^3 \ 9)$	1738.5	0.86 12	7.0 1	av E β =676 33
$(1.95 \times 10^3 \ 9)$	1723.4	1.01 15	6.9 <i>1</i>	av E β =682 33
$(2.05 \times 10^3 \ 9)$	1621.3	0.51 8	7.3 1	av E β =724 33
$(2.08 \times 10^3 \ 9)$	1587.3	0.21 5	7.7 2	av E β =738 33
$(2.23 \times 10^3 \ 9)$	1437.8	0.10 5	8.2 3	av E β =799 <i>34</i>
$(2.25 \times 10^3 \ 9)$	1422.5	0.15 3	8.0 2	av E β =806 34
$(2.28 \times 10^3 \ 9)$	1390.0	3.9 5	6.6 1	av Eβ=819 <i>34</i>
2				E(decay): 1975We23 obtained E(β^{-})=2170 890 from (1322 γ)(β^{-}) data.
$(2.43 \times 10^3 \ 9)$	1238.9	0.20 4	8.0 2	av Eβ=882 <i>34</i>
				Continued on next page (footnotes at end of table)

$^{226}{\rm Fr}\,\beta^-$ decay (continued)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
$(2.51 \times 10^3 \ 9)$	1156.2	2.2 3	7.0 1	av E β =917 34
$(2.55 \times 10^3 \ 9)$	1122.4	0.07 4	8.6 <i>3</i>	av E β =931 34
$(2.59 \times 10^3 \ 9)$	1077.2	2.0 3	7.1 <i>1</i>	av E β =950 34
$(2.60 \times 10^3 \ 9)$	1070.5	1.4 2	7.3 1	av E β =952 34
$(2.62 \times 10^3 \ 9)$	1048.8	2.5 4	7.0 1	av E β =962 60
$(2.80 \times 10^3 \ 9)$	873.7	0.62 10	7.8 1	av E β =1035 34
$(2.85 \times 10^3 \ 9)$	824.6	0.15 9	8.4 <i>3</i>	av E β =1056 34
$(3.35 \times 10^{3\#} 9)$	321.54	1.0 10	>7.6	av E β =1268 34
$(3.42 \times 10^3 \ 9)$	253.73	34 5	6.4 1	av E β =1297 34
				E(decay): 1975We23 measured E(β^{-})=3580 390 by (186 γ)(β^{-}) and E(β^{-})=3510
				330 by $(254\gamma)(\beta^{-})$ coincidences.
$(3.60 \times 10^3 \ 9)$	67.67	12 5	6.9 2	av E β =1376 43
$(3.67 \times 10^3 \ 9)$	0.0	27 10	6.6 2	av E β =1405 34

[†] From intensity balance at each level, except for the β - to g.s. The intensity of the β^- to g.s. was calculated by assuming that the Alaga rule holds for β^- transitions to the 0⁺, 2⁺ levels of the g.s. band.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

 $\gamma(^{226}\mathrm{Ra})$

I γ normalization: Obtained by requiring Σ Ti(γ 's to g.s.)=100%–I β (to g.s.)= 73% 10, assuming that I β (to g.s.)=27% 10 is correct. $\gamma\gamma$: 1980KuZL.

βy: 1975We23, 1987VeZV.

The decay scheme is presented as constructed by 1981Ku02.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α ^b	Comments
67.672 [@] 2	4.3 4	67.67	2+	0.0	0+	E2	61.9	α (L)=45.2; α (M)=12.2; α (N+)=4.40
(67.81 ^{&} 20)		321.54	3-	253.73	1-			
110.00 5	2.1 2	321.54	3-	211.54	4+	[E1]	0.388	α (K)=0.301; α (L)=0.0658; α (M)=0.0158; α (N+)=0.0054
(124.8 & 2)	0.004 2	446.3	5-	321.54	3-	[E2]	3.81	I _{γ} : from the branching measured in (HI,xn γ).
143.872 [@] 4	3.4 3	211.54	4+	67.67	2+	E2	2.11	α (K)=0.280; α (L)=1.34; α (M)=0.363; α (N+)=0.132
186.053 [@] 4	100 5	253.73	1-	67.67	2+	E1	0.108	α (K)=0.086; α (L)=0.0169; α (M)=0.00402; α (N+)=0.00139
234.7 1	0.12 4	446.3	5-	211.54	4+	[E1]	0.0623	
253.729 [@] 10	137 9	253.73	1-	0.0	0^{+}	E1	0.0520	α (K)=0.0417; α (L)=0.00779; α (M)=0.00186; α (N+)=0.00064
254.1 2	15 5	321.54	3-	67.67	2+	[E1]	0.0519	α (K)=0.0416; α (L)=0.00777; α (M)=0.00185; α (N+)=0.00064
								Transition was observed in $\gamma\gamma$ coincidence; intensity was deduced from $\gamma\gamma$ data.
444.50 5	0.79 4	1882.3	0,1,2	1437.8	1-,2	[D,E2]	0.14 12	$\alpha(\text{E1})=0.0151, \ \alpha(\text{E2})=0.0523, \ \alpha(\text{M1})=0.257.$
516.30 5	1.4 1	1390.0	2+	873.7	2+	[D,E2]	0.092 81	$\alpha(E1)=0.0112, \ \alpha(E2)=0.0362, \ \alpha(M1)=0.173.$

Continued on next page (footnotes at end of table)

$^{226}{\rm Fr}\,\beta^-$ decay (continued)

γ (²²⁶Ra) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.#	α b	Comments
552.2 1	2.9 2	873.7	2+	321.54 3-	[E1]	0.00975	$\alpha(K) = \overline{0.00795; \alpha(L) = 0.00136}$
565.4 <i>1</i>	1.1 <i>1</i>	1390.0	2+	824.6 0+	[E2]	0.0294	
570.9 <i>1</i>	4.0 3	824.6	0^{+}	253.73 1-	[E1]	0.00912	$\alpha(K)=0.00744; \ \alpha(L)=0.00127$
620.0 1	3.2 3	873.7	2+	253.73 1-	[E1]	0.00776	$\alpha(K)=0.00633; \ \alpha(L)=0.00107$
646.2 3	0.42 8	1723.4	2+	$1077.2 1^{-},2$	[D,E2]	0.051 44	$\alpha(\text{E1})=0.00716, \ \alpha(\text{E2})=0.0219, \ \alpha(\text{M1})=0.0951.$
755.8 2	1.0 1	1077.2	1-,2	321.54 3	[D,E2]	0.034 29	$\alpha(E1)=0.00533, \ \alpha(E2)=0.0158, \ \alpha(M1)=0.0630.$
/95.1 /	2.3 2	1048.8	(2^{-})	253.73 I 252.72 I ⁻		0.0552	$\alpha(\mathbf{K}) = 0.0445; \ \alpha(\mathbf{L}) = 0.00801$
823 5 3	1.1 1	1070.5	(2) 1-2	253.75 1	[M1]	0.0314 0.027.23	$\alpha(\mathbf{K})=0.0415; \ \alpha(\mathbf{L})=0.00740$ $\alpha(\mathbf{E}1)=0.00455; \ \alpha(\mathbf{E}2)=0.0133; \ \alpha(\mathbf{M}1)=0.0503$
823.5 5	282	1156.2	2^{+}	255.75 1 321 54 3 ⁻	[D, L2]	0.027 25	a(E1)=0.00455, a(E2)=0.0155, a(M1)=0.0505.
848 3 5	0.55.8	1970.8	$\frac{2}{1-2^+}$	1122.4 (2 ⁺)			
902.6.3	0.80 6	1156.2	2+,2	253.73 1			
910.9 2	1.0 2	1122.4	(2^+)	211.54 4+			
917.3 5	0.41 8	1238.9	(2)	321.54 3-			
944.6 <i>3</i>	5.0 5	1156.2	2+	211.54 4+			
980.6 5	7.3 7	1048.8	1-	67.67 2+			
991.4 8	0.43 6	1865.0	$1,2^{+}$	873.7 2+			
1002.2 5	7.5 7	1070.5	(2^{-})	67.67 2+			
1009.0 5	10.5 10	1077.2	1-,2	67.67 2+			
*1041.9 5	1.1 2	1040.0	1-	0.0 0+			
1048.1 5	5.80	1048.8	1 1 2+	$0.0 0^{+}$			
1085.0 8	0.3310	1907.8	$^{1,2}_{2^+}$	$67.67.2^+$			
1109 7 10	0.36.8	1982 7	0^{+} 1	873 7 2+			
1117.0 10	0.80 20	1437.8	$1^{-}.2$	$321.54 3^{-1}$			
1155.8 5	3.0 3	1156.2	2+,-	$0.0 0^+$			
1168.8 10	0.95 14	1422.5	0,1,2	253.73 1-			
1171.7 10	0.82 12	1238.9	(2)	67.67 2+			
1183.5 8	0.69 7	1437.8	1-,2	253.73 1-			
1231.9 5	0.93 9	2056.8	1,2+	824.6 0+			
1299.6 5	1.5 2	1621.3	$1^-, 2^+$	$321.54 \ 3^{-}$			
1322.5 5	13.4 12	1590.0	2' 1.2+	$0/.0/2^{-1}$			
1355.0 5	1.1 2 0.50 20	1387.5	$^{1,2}_{2^+}$	235.75 1 824.6 0 ⁺			
1368 3 10	0.80 20	1621.3	$\frac{2}{1-2^+}$	$253.73 1^{-1}$			
1390 7 10	777	1390.0	$2^{+},2^{+}$	$0.0 0^+$			
x1413.3 15	0.42 8	10,010	-	0.0 0			
1465.2 15	1.4 3	1786.1	$1^{-},2^{+}$	321.54 3-			
1471.1 <i>10</i>	3.2 5	1723.4	2+	253.73 1-			
1486.2 <i>15</i>	0.55 8	1738.5	1,2+	253.73 1-			
1503.2 10	1.8 2	1756.2	1,2+	253.73 1-			
1513.4 10	2.8 3	1767.1	0,1,2	253.73 1-			
1524.7 10	3.1 4	17/8.4	0,1,2	253.73 1			
1554.4.10	2.2.4	1/80.1	$1, 2^+$ $1-2^+$	255.75 1			
1576.0.10	0.57 8	1021.5	$1^{-},2^{+}$	321543^{-}			
1570.0 10	0.09 20	1587.3	$1^{1}, 2^{+}$	$0.0 0^+$			
1610.7 10	1.9 2	1865.0	1.2^+	253.73 1-			
1620.9 15	0.44 6	1621.3	$1^{-}.2^{+}$	$0.0 0^+$			
1628.2 15	0.41 6	1951.0	1-,2+	321.54 3-			
1634.7 <i>15</i>	0.66 10	1888.4	0,1,2	253.73 1-			
1648.9 15	0.66 9	1970.8	$1^{-},2^{+}$	321.54 3-			
1655.0 <i>10</i>	1.7 2	1723.4	2+	67.67 2+			
1670.4 <i>10</i>	1.6 2	1738.5	$1,2^{+}$	67.67 2+			
[^] 1680.4 <i>15</i>	0.44 9	1007 4	1- 0+	211 54 4+			
1085.2 15	0.39 8	1897.4	1,2	211.54 4'			

Continued on next page (footnotes at end of table)

$^{226}{\rm Fr}\,\beta^-$ decay (continued)

γ (²²⁶Ra) (continued)

${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
1692.6 10	2.6 3	1945.6	$1,2^{+}$	253.73 1-	^x 1939.3 15	0.78 11				
1697.3 10	1.4 2	1951.0	$1^{-},2^{+}$	253.73 1-	1944.0 <i>15</i>	0.37 10	1945.6	$1,2^{+}$	0.0	0^{+}
1716.8 10	3.2 3	1970.8	$1^{-},2^{+}$	253.73 1-	1951.1 <i>15</i>	0.53 10	1951.0	$1^{-},2^{+}$	0.0	0^{+}
1722.1 15	0.83 12	1723.4	2+	$0.0 0^+$	1971.1 <i>10</i>	1.3 2	1970.8	$1^{-},2^{+}$	0.0	0^{+}
1728.4 10	1.0 1	1982.7	$0^{+}, 1$	253.73 1-	1990.3 10	0.89 9	2056.8	$1,2^{+}$	67.67	2^{+}
1738.3 10	3.1 3	1738.5	$1,2^{+}$	$0.0 0^+$	x2002.3 10	0.41 5				
1753.0 <i>15</i>	1.4 5	2006.7	0,1,2	253.73 1-	2014.4 15	0.51 10	2269.7	$1,2^{+}$	253.73	1-
1755.4 10	6.3 9	1756.2	$1,2^{+}$	$0.0 0^+$	2017.6 10	1.2 2	2086.1	$1,2^{+}$	67.67	2^{+}
1761.5 15	0.83 12	2015.2	0,1,2	253.73 1-	2056.9 15	0.40 6	2056.8	$1,2^{+}$	0.0	0^{+}
1785.2 <i>15</i>	0.38 8	1786.1	$1^{-},2^{+}$	$0.0 0^+$	^x 2067.2 15	0.17 4				
1797.2 15	0.49 7	1865.0	$1,2^{+}$	67.67 2+	^x 2077.3 15	0.29 4				
1839.6 <i>10</i>	0.84 8	1907.8	$1,2^{+}$	67.67 2+	2087.8 15	0.21 5	2086.1	$1,2^{+}$	0.0	0^{+}
1865.5 10	1.1 1	1865.0	$1,2^{+}$	$0.0 0^+$	^x 2095.7 15	0.37 6				
1883.9 <i>10</i>	1.7 2	1951.0	$1^{-},2^{+}$	67.67 2+	2120.9 10	0.67 9	2189.4	2^{+}	67.67	2^{+}
1897.8 <i>15</i>	0.50 10	1897.4	$1^{-},2^{+}$	$0.0 0^+$	^x 2132.7 15	0.29 4				
1903.4 <i>10</i>	4.1 4	1970.8	$1^{-},2^{+}$	67.67 2+	^x 2143.4 10	0.48 5				
1907.4 15	0.37 7	1907.8	$1,2^{+}$	$0.0 0^+$	2190.9 15	0.21 3	2189.4	2^{+}	0.0	0^{+}
1914.8 <i>15</i>	0.38 6	1982.7	$0^+, 1$	67.67 2+	2202.2 10	0.85 9	2269.7	1,2+	67.67	2+
^x 1925.6 <i>10</i>	1.6 2				^x 2223.0 10	0.22 3				
1928.6 <i>15</i>	0.65 13	2182.3	0,1,2	253.73 1-	2272.0 20	0.23 7	2269.7	$1,2^{+}$	0.0	0^{+}

[†] From 1981Ku02, 1980KuZL. Other measurement: 1975We23. [‡] Listed by 1980KuZL.

[#] From ce work in ²³⁰Th α decay and ²²⁶Ac ε decay. [@] Measured by 1977Ku25 in ²³⁰Th α decay. [&] Not observed in ²²⁶Fr β^- decay; the energy is from the adopted gammas.

^{*a*} For absolute intensity per 100 decays, multiply by 0.163 25.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*x*} γ ray not placed in level scheme.

226 Fr β^- decay

$\underline{\frac{Decay\ Scheme}{I_{(\gamma+ce)}\ per\ 100\ parent\ decays}}$ Intensities: $\overline{I_{(\gamma+ce)}\ per\ 100\ parent\ decays}$

 $^{226}_{88} Ra_{138}$

5

$^{226}\mathrm{Fr}\,\beta^-$ decay

Decay Scheme (continued)

²²⁶₈₈Ra₁₃₈

6

226 Fr β^- decay

Decay Scheme (continued)

