Adopted Levels, Gammas

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. K. Jain (a), R. Raut (b), J. K. Tuli	NDS 110,1409 (2009)	1-Dec-2008

 $Q(\beta^{-}) = -2.03 \times 10^{3} 8$; S(n) = 5755 12; S(p) = 5213 7; $Q(\alpha) = 6921.4 22$ 2012Wa38

Note: Current evaluation has used the following Q record -2.0×10^3 7 5757 12 5213 6 6921.4 21 2003Au03.

Theoretical calculations in 2007Mi30, 2002Ts01, 1995De13, 1993De18, 1991Cw01, 1989Cw03.

Detailed spectroscopic studies on ²²⁵Th was carried out using the reaction ²²⁶Ra(α ,5n) at a beam energy of 50 MeV. The measurements could establish the level structure of the nucleus upto an excitation energy of 2494 keV and spin 39/2 \hbar . Parity doublets were observed and classified according to simplex (s) quantum number. The results were compared with theoretical calculations in interpreting the nuclear shape. However, the relative excitation of the s=+i band with respect to the ground state could not be established experimentally (1990Hu04).

The level observed at 102 keV in the α -decay, not observed in 1990Hu04. Interpretations in 1988Le13.

²²⁵Th Levels

For given s, π =- has greater effective moment of inertia than π =+. For given π , s=-i has larger effective moment of inertia than s=+i, for rotation frequencies <0.18 Mev. For each s, effective moment of inertia converge at a common value.

Cross Reference (XREF) Flags

A 229 U α decay

B ²²⁶Ra(α ,5n γ)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0#	(3/2+)	8.75 min 4	AB	$\%\alpha \approx 90$; $\%\varepsilon \approx 10$ J ^{π} : Assumed to be same as that of the ground state of 223Ra, measured in 1983Ah03 and 1986Sh02. Assignment supported by measurements in 1989Ac01 and theoretical calculations in 1989Cw03, 1985Na07, 1984Le04, 1982Le19.
68.4 [#]	$(7/2^+)$		AB	
187.0 [#]	$(11/2^+)$		AB	
325.6 [@]	$(13/2^{-})$		В	
370.2 [#]	$(15/2^+)$		В	
519.7 [@]	$(17/2^{-})$		В	
614.3 [#]	$(19/2^+)$		В	
768.7 [@]	$(21/2^{-})$		В	
910.7 [#]	$(23/2^+)$		В	
1072.2 [@]	$(25/2^{-})$		В	
1251.3 [#]	$(27/2^+)$		В	
1426.3 [@]	$(29/2^{-})$		В	
1631.8 [#]	$(31/2^+)$		В	
1824.5 [@]	$(33/2^{-})$		В	
2047.2? [#]	$(35/2^+)$		В	
2259.1? [@]	$(37/2^{-})$		В	
2494.4? [#]	$(39/2^+)$		В	
x&	(5/2+)		AB	E(level): Adjustment of energies of $(5/2^+)$ and $(9/2^+)$ states under the constraint that the difference between their energies must remain constant (103 keV) yielded x=31 keV.
x+103.5 ^{&}	(9/2+)		AB	E(level): Adjustment of energies of $(5/2^+)$ and $(9/2^+)$ states under the constraint that

Adopted Levels, Gammas (continued)

²²⁵Th Levels (continued)

Comments

the difference between their energies must remain constant (103 keV) yielded $E(9/2^+)=135$ keV.

E(level) [†]	$J^{\pi \ddagger}$	XREF
222.00	(11/2-)	_
x+222.84	$(11/2^{-})$	В
x+271.1	$(13/2^+)$	В
x+401.6 ^a	$(15/2^{-})$	В
x+498.1	$(17/2^+)$	В
x+636.5 ^a	$(19/2^{-})$	В
x+775.6 <mark>&</mark>	$(21/2^+)$	В
x+925.2 ^a	$(23/2^{-})$	В
x+1096 ^{&}	$(25/2^+)$	В
x+1259.3 ^a	$(27/2^{-})$	В
x+1454.2? ^{&}	$(29/2^+)$	В
x+1626.3? ^a	$(31/2^{-})$	В
x+1839.1? ^{&}	$(33/2^+)$	В
x+2020.1? ^a	$(35/2^{-})$	В

[†] From 1990Hu04.

 \ddagger From 1990Hu04. Deduced under the assumption of stretched transition.

р. $d(\Lambda)$ ⊥ band

^{<i>a</i>} Band(^{<i>a</i>} Band(^{<i>a</i>} Band((A): $s=-1$, (B): $s=-i$, (C): $s=+i$, (D): $s=+i$, (C): (C): $s=+i$, (C): (C): (C): (C): (C): (C): (C): (C):	$\pi = +$ band. $\pi = -$ band. $\pi = +$ band. $\pi = -$ band.						
						γ ⁽²²	²⁵ Th)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [#]	Comments
68.4	(7/2 ⁺)	68.4	100@	0.0	(3/2 ⁺)	[E2]	68.0	E_{γ} : From the level scheme of 1990Hu04. Not listed in the table.
187.0	$(11/2^+)$	118.6	$100^{@}$	68.4	$(7/2^+)$	E2	5.36 8	(L1+L2)/L3=1.8 2
325.6	(13/2 ⁻)	138.6 ^{&} 2	100	187.0	(11/2 ⁺)	E1	0.226 4	ce(L1)+ce(L2)≈0.03 I _{γ} : I γ (103 gate)=39 4, I γ (118 gate)=47 5.
370.2	(15/2 ⁺)	44.9 2 183.2 2		325.6 187.0	(13/2 ⁻) (11/2 ⁺)	E2	0.914 14	I_{γ} : $I\gamma(103 \text{ gate})=3.0 6$, $I\gamma(118 \text{ gate})=10 2$. (L1+L2)/L3=2.3 2
519.7	(17/2 ⁻)	149.4 2		370.2	(15/2+)	E1	0.189 3	I_{γ} : $I_{\gamma}(103 \text{ gate})=6.4$ 7 $I_{\gamma}(118 \text{ gate})=21$. ce(L1)+ce(L2)≈0.03 I_{γ} : $I_{\gamma}(103 \text{ gate})=18$ 2, $I_{\gamma}(118 \text{ gate})=38$ 4.
614.3	(19/2+)	194.1 ^{&} 2 94.8 2		325.6 519.7	(13/2 ⁻) (17/2 ⁻)	E1	0.1351 <i>21</i>	I_{γ} : $I_{\gamma}(103 \text{ gate})=2.1$ 7, $I_{\gamma}(118 \text{ gate})=3.3$ 12. ce(L1)+ce(L2)<0.15
		244.1 2		370.2	(15/2+)	E2	0.327 5	r_{γ} . $r_{\gamma}(103 \text{ gate}) = 11.772, r_{\gamma}(118 \text{ gate}) = 24.4.$ (L1+L2)/L3=2.2.6 L · L(102 acts) = 2.6.4. L(118 acts) = 14.0.14
768.7	$(21/2^{-})$	154.2 2		614.3	(19/2+)	E1	0.175 3	r_{γ} . $r_{\gamma}(103 \text{ gate})=3.04$, $r_{\gamma}(118 \text{ gate})=14.074$. ce(L1)+ce(L2)<0.06 L.: $r_{\gamma}(103 \text{ gate})=9.0.9$ $r_{\gamma}(118 \text{ gate})=26.3$
		249.0 2		519.7	$(17/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 3.6 4$, $I_{\gamma}(118 \text{ gate}) = 5.9 6$.
910.7	$(23/2^+)$	141.8 2		768.7	(21/2 ⁻)	E1	0.214 3	ce(L1)+ce(L2)<0.06 I _y : Iy(103 gate)=5.0 5. Iy(118 gate)=14.9 15.
		296.4 2		614.3	$(19/2^+)$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = \approx 2$, $I_{\gamma}(118 \text{ gate}) = 6.1 \ 12$.
1072.2	(25/2 ⁻)	161.9 2		910.7	(23/2+)	E1	0.1558 23	ce(L1)+ce(L2)<0.06 I _y : Iy(103 gate)=3.8 5, Iy(118 gate)=12.3 12.
		303.5 2		768.7	$(21/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 5.3 \ 8, I_{\gamma}(118 \text{ gate}) = 8.9 \ 9.$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

γ ⁽²²⁵Th) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Iγ	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α #	Comments
1251.3	(27/2 ⁺)	178.8 ^{&} 2 340.6 5		1072.2 910.7	$(25/2^{-})$ $(23/2^{+})$			I_{γ} : I γ (103 gate)=2.9 4, I γ (118 gate)=7.0 7. I $_{\nu}$: I γ (103 gate)=0.9 3, I γ (118 gate)=4.7 7.
1426.3	(29/2 ⁻)	174.9 2 354.1 2		1251.3 1072.2	$(27/2^+)$ $(25/2^-)$			I_{γ} : $I_{\gamma}(103 \text{ gate})=4.4 \ 8$, $I_{\gamma}(118 \text{ gate})=5.9 \ 6$. I_{γ} : $I_{\gamma}(103 \text{ gate})=1.4 \ 5$, $I_{\gamma}(118 \text{ gate})=4.7 \ 5$.
1631.8	$(31/2^+)$	205.4 2		1426.3	(29/2 ⁻)			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 5.2 7$, $I_{\gamma}(118 \text{ gate}) = 4.7$ 10.
1824.5	(33/2-)	380.5 5 193.1 ^a 2		1251.3 1631.8	(27/2 ⁺) (31/2 ⁺)			I_{γ} : Iγ(103 gate)=0.5 <i>3</i> , Iγ(118 gate)=2.4 <i>4</i> . I_{γ} : Iγ(103 gate)=8.4 <i>13</i> , Iγ(118 gate)=8.1 <i>12</i> .
2047.2?	(35/2+)	398.2 5 222.7 ^a 5 415.4 ^a 5		1426.3 1824.5 1631.8	(29/2 ⁻) (33/2 ⁻) (31/2 ⁺)			I _γ : I _γ (103 gate)=1.1 3, I _γ (118 gate)=2.4 4. I _γ : I _γ (103 gate)=0.8 4, I _γ (118 gate)=2.9 6. I _γ : I _γ (103 gate)=1.6 4, I _γ (118 gate)=1.2 3.
2259.1?	(37/2 ⁻)	211.6 ^{&a} 2 434.6 ^a 5		2047.2? 1824.5	(35/2 ⁺) (33/2 ⁻)			I_{γ} : Iγ(103 gate)=2.7 3, Iγ(118 gate)=2.5 3. I _γ : Iγ(103 gate)=1.0 3, Iγ(118 gate)=1.4 3.
2494.4?	(39/2+)	234.9 ^{&a} 2 447.2 ^a 5		2259.1? 2047.2?	(37/2 ⁻) (35/2 ⁺)			I_{γ} : Iγ(103 gate)=3.9 4, Iγ(118 gate)=2.4 4. I _γ : Iγ(103 gate)=0.7 2, Iγ(118 gate)=1.2 3.
x+103.5	$(9/2^+)$	103.5	100 [@]	х	$(5/2^+)$	E2	9.60 14	(L1+L2)/L3=1.7 2
x+222.8	(11/2 ⁻)	119.3 2	100 [@]	x+103.5	$(9/2^+)$	E1	0.323 5	ce(L1)+ce(L2)<0.15 L: $L_{2}(103 \text{ gate})=30.3$
x+271.1	$(13/2^+)$	48.1 2		x+222.8	$(11/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 16 3.$
		167.6 2		x+103.5	$(9/2^+)$	E2	1.288 19	(L1+L2)/L3=1.9 3
								I_{γ} : $I_{\gamma}(103 \text{ gate}) = 13 I.$
x+401.6	(15/2 ⁻)	131.1 2		x+271.1	(13/2+)	E1	0.258 4	ce(L1)+ce(L2) \approx 0.03 I _{γ} : I γ (103 gate)=28 3, I γ (118 gate)=9.5 10.
		178.8 ^{&a} 2		x+222.8	$(11/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate})=2.9 4$, $I_{\gamma}(118 \text{ gate})=7.0 7$.
x+498.1	$(17/2^+)$	95.9 2		x+401.6	(15/2-)	E1	0.1311 20	ce(L1)+ce(L2)<0.15 L: $I_{\nu}(103 \text{ gate})=27.3 I_{\nu}(118 \text{ gate})=8.3$
		227.0 2		x+271.1	(13/2+)	E2	0.419 6	$(L_1+L_2)/L_3=2.4.6$ $I_\gamma: I_\gamma(103 \text{ gate})=11.2, I_\gamma(118 \text{ gate})=3.4$ $I_1.$
x+636.5	(19/2-)	138.6 <mark>&</mark> 2		x+498.1	(17/2 ⁺)	E1	0.226 4	$ce(L1)+ce(L2)\approx 0.03$ I _v : I _v (103 gate)=39 4. I _v (118 gate)=47 5.
		234.9 <mark>&</mark> 2		x+401.6	$(15/2^{-})$			$I_{\rm ac}$: $I_{\rm V}(103 \text{ gate})=3.9.4$. $I_{\rm V}(118 \text{ gate})=2.4.4$.
x+775.6	$(21/2^+)$	138.6 ^{&} 2		x+636.5	(19/2 ⁻)	E1	0.226 4	ce(L1)+ce(L2)≈0.03
	(22/2=)	277.5 2		x+498.1	$(17/2^+)$			I_{γ} : $I_{\gamma}(103 \text{ gate})=39 \ 4$, $I_{\gamma}(118 \text{ gate})=47 \ 5$. I_{γ} : $I_{\gamma}(103 \text{ gate})=7.1 \ 7$, $I_{\gamma}(118 \text{ gate})=2.5 \ 5$.
x+925.2	(23/2)	149.8 288.7 <i>5</i>		x+775.6 x+636.5	$(21/2^{-})$ $(19/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate})=5.2 5$, $I_{\gamma}(118 \text{ gate})=0.8 4$.

Adopted Levels, Gammas (continued)

γ (²²⁵Th) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Comments
x+1096	$(25/2^+)$	170.3 2	x+925.2	$(23/2^{-})$	I_{γ} : $I_{\gamma}(103 \text{ gate}) = 8.5 9$, $I_{\gamma}(118 \text{ gate}) = 7.8 8$.
		320.4 2	x+775.6	$(21/2^+)$	I_{γ} : $I_{\gamma}(103 \text{ gate}) = 4.2 6$, $I_{\gamma}(118 \text{ gate}) = 2.1 3$.
x+1259.3	$(27/2^{-})$	163.9 2	x+1096	$(25/2^+)$	I_{γ} : I γ (103 gate)=1.9 4, I γ (118 gate)=2.3 3.
		334.1 2	x+925.2	$(23/2^{-})$	I_{γ} : $I_{\gamma}(103 \text{ gate})=3.5 4$, $I_{\gamma}(118 \text{ gate})=1.2 3$.
x+1454.2?	$(29/2^+)$	194.1 ^{&a} 2	x+1259.3	$(27/2^{-})$	I_{γ} : $I_{\gamma}(103 \text{ gate})=2.1$ 7, $I_{\gamma}(118 \text{ gate})=3.3$ 12.
		358.2 ^a 5	x+1096	$(25/2^+)$	I_{γ} : I γ (103 gate)=1.8 9, I γ (118 gate)=1.1 4.
x+1626.3?	$(31/2^{-})$	173.2 ^a 2	x+1454.2?	$(29/2^+)$	I_{γ} : $I_{\gamma}(103 \text{ gate}) = 7.5 \ 10, \ I_{\gamma}(118 \text{ gate}) = 6.7 \ 7.$
		367.0 ^{<i>a</i>} 2	x+1259.3	$(27/2^{-})$	I_{γ} : $I_{\gamma}(103 \text{ gate})=3.8 4$, $I_{\gamma}(118 \text{ gate})=2.8 3$.
x+1839.1?	$(33/2^+)$	211.6 <mark>&a</mark> 2	x+1626.3?	$(31/2^{-})$	I_{γ} : $I_{\gamma}(103 \text{ gate}) = 2.7 3$, $I_{\gamma}(118 \text{ gate}) = 2.5 3$.
		384.9 ^a 5	x+1454.2?	$(29/2^+)$	I_{γ} : $I_{\gamma}(103 \text{ gate}) = 1.2 3$, $I_{\gamma}(118 \text{ gate}) = 0.9 3$.
x+2020.1?	$(35/2^{-})$	393.8 ^a 5	x+1626.3?	(31/2 ⁻)	I'_{γ} : $I\gamma(103 \text{ gate})=1.3 3$, $I\gamma(118 \text{ gate})=0.6 3$.

[†] Uncertainty in γ -energies is 0.2 keV for strong lines and upto 0.5 keV for weak lines. Lines with intensities around 1.0 has been th Calculated using brice, assuming stretched transitions, according to 1990Hu04.

[@] Set 100 (β. Singh).

[&] Multiply placed.

^{*a*} Placement of transition in the level scheme is uncertain.

	Adopted Levels, Gammas	Legend
	<u>Level Scheme</u> Intensities: Relative $I_{(\gamma+ce)}$	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$
5/2 ⁻)		<u>x+2020.1_</u>
3/2 ⁺)		<u>x+1839.1</u> _
1/2 ⁻)		<u>x+1626.3</u>
$\frac{\partial(2^+)}{\partial x^{-1}} - \frac{1}{2} - $		<u>x+1454.2</u>
7/2 [−]) ↓ ↓ ☆ ☆	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	x+1259.3
5/2+)		x+1096
\$/2⁻)		x+925.2
1/2+)		x+775.6
9/2-)	· · · · · · · · · · · · · · · · · · ·	x+636.5
7/2+)		x+498.1
5/2-)	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	\$ <u>x+401.6</u>
3/2+)	↓ ↓ [©]	₹ <u>₹</u> <u>₹</u> <u>₹</u> <u>₹</u> <u>x+271.1</u>
1/2-)	¥	x+222.8
2+)		x+103.5
2+)		<u> </u>
9/2+)		2494.4
7/2-)		2259.1
5/2+)		I ▼ 2047 2
2')		0.0

 $^{225}_{90}{\rm Th}_{135}$

 $^{225}_{90}{\rm Th}_{135}$

Adopted Levels, Gammas

 $^{225}_{90}{
m Th}_{135}$