$^{229}\mathrm{U}~lpha~\mathrm{decay}$

History

Type Author Citation Literature Cutoff Date
Full Evaluation A. K. Jain (a), R. Raut (b), J. K. Tuli NDS 110, 1409 (2009)

1-Dec-2008

Parent: 229 U: E=0.0; J^{π} =(3/2+); $T_{1/2}$ =58 min 3; $Q(\alpha)$ =6475 3; $\%\alpha$ decay \approx 20.0

No gammas were observed by 1961Ru06 in singles and $\alpha\gamma$ -coincidence spectra (<2% of α decays) belonging to ²²⁹U α decay. However, Th L x rays were observed, and their intensity was measured as 13% of α decays. These data indicate, as concluded by 1961Ru06, that the levels populated by the 6332- and 6297-keV α 's are deexcited by M1,E2 transitions, not by E1.

²²⁵Th Levels

E(level)	J^{π}
0.0	$(3/2^+)$
28 5	$(5/2^+)$
64 5	$(7/2^+)$
102 5	$(9/2^+)$
139 5	
178 5	

α radiations

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\ddagger @}$	HF#
6185 <i>3</i>	178	1.0 5	≈17
6223 <i>3</i>	139	3 1	≈8.6
6260 <i>3</i>	102	1.0 5	≈38
6297 <i>3</i>	64	11 <i>I</i>	≈5.1
6332 <i>3</i>	28	20 2	≈4.1
6360 <i>6</i>	0.0	64 6	≈1.7

Comments

Ia: uncertainty was recommended by 1979Ry03.

The 6360-keV α was not seen in coincidence with gammas, indicating that it feeds either the g.s. or a low-energy level deexcited by γ' s with E γ less than the Th L-electron binding energy.

[†] Measurements of 1961Ru06. Original energies have been increased by 5 keV due to calibration, as recommended by 1979Ry03.

 $^{^{\}ddagger}$ α intensity per 100 α decays, measured by 1961Ru06.

[#] $r_0(^{225}\text{Th})=1.53$ is used in calculations.

[@] For absolute intensity per 100 decays, multiply by ≈ 0.20 .