²²⁶Ra(α,5nγ) **1990Hu04**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	A. K. Jain (a), R. Raut (b), J. K. Tuli	NDS 110,1409 (2009)	1-Dec-2008					

 E_{α} =50 MeV.

Measured E_{γ} , I_{γ} , $I_{\gamma}(\theta)$, E_{e^-} , I_{e^-} , $\gamma\gamma$, e^-n , e^-e^- , $e^-\gamma$. 225Th deduced levels, J, π , rotational bands, dipole moments. Theoretical calculations.

The level observed at 102 keV in the α -decay, not observed in the present work. Interpretations in 1988Le13.

²²⁵Th Levels

For given s, $\pi = -$ has greater effective moment of inertia than $\pi = +$. For given π , s=-i has larger effective moment of inertia than s=+i, for rotation frequencies <0.18 Mev. For each s, effective moment of inertia converge at a common value.

E(level)	J ^{π &}	Comments
0.0^{\dagger}	$(3/2^+)$	
68.4 [†]	$(7/2^+)$	
187.0 [†]	$(11/2^+)$	
325.6 [‡]	$(13/2^{-})$	
370.2 [†]	$(15/2^+)$	
519.7 [‡]	$(17/2^{-})$	
614.3	$(19/2^+)$	
768.7 [‡]	$(21/2^{-})$	
910.7 [†]	$(23/2^+)$	
1072.2 [‡]	$(25/2^{-})$	
1251.3	$(27/2^+)$	
1426.3	$(29/2^{-})$	
1631.8	$(31/2^+)$	
1824.5 [‡]	$(33/2^{-})$	
2047.2?	$(35/2^+)$	
2259.1? [‡]	$(37/2^{-})$	
2494.4?	$(39/2^+)$	
x#	$(5/2^+)$	E(level): Adjustment of energies of $(5/2^+)$ and $(9/2^+)$ states under the constraint that the difference between their energies must remain constant (103 keV) yielded x=31 keV.
x+103.5 [#]	(9/2+)	E(level): Adjustment of energies of $(5/2^+)$ and $(9/2^+)$ states under the constraint that the difference between their energies must remain constant (103 keV) yielded E(9/2 ⁺)=135 keV.
x+222.8 [@]	$(11/2^{-})$	
x+271.1 [#]	$(13/2^+)$	
x+401.6 [@]	$(15/2^{-})$	
x+498.1 [#]	$(17/2^+)$	
x+636.5 [@]	$(19/2^{-})$	
x+775.6#	$(21/2^+)$	
x+925.2 [@]	$(23/2^{-})$	
x+1096#	$(25/2^+)$	

²²⁶Ra(α ,5n γ) 1990Hu04 (continued)

²²⁵Th Levels (continued)

 $\gamma(^{225}\text{Th})$

E(level)	J ^π &
x+1259.3 [@]	(27/2 ⁻)
x+1454.2? [#]	$(29/2^+)$
x+1626.3? [@]	$(31/2^{-})$
x+1839.1? [#]	$(33/2^+)$
x+2020.1? [@]	$(35/2^{-})$

[†] Band(A): s=-i, $\pi=+$ band. [‡] Band(B): s=-i, $\pi=-$ band.

[#] Band(D): s=-i, π=- band.
[#] Band(D): s=+i, π=+ band.
[@] Band(D): s=+i, π=- band.
[&] Spin assignments deduced assuming stretched transitions.

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	α #	Comments
44.9 2	370.2	$(15/2^+)$	325.6	$(13/2^{-})$			I_{γ} : I γ (103 gate)=3.0 6, I γ (118 gate)=10 2.
48.1 2	x+271.1	$(13/2^+)$	x+222.8	$(11/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 16 3.$
68.4	68.4	$(7/2^+)$	0.0	$(3/2^+)$			E_{γ} : From the level scheme of 1990Hu04. Not
							listed in the table.
94.8 2	614.3	$(19/2^+)$	519.7	$(17/2^{-})$	E1	0.1351 21	ce(L1)+ce(L2)<0.15
							I_{γ} : $I_{\gamma}(103 \text{ gate})=11.7 \ 12, I_{\gamma}(118 \text{ gate})=24 \ 4.$
95.9 2	x+498.1	$(17/2^+)$	x+401.6	$(15/2^{-})$	E1	0.1311 20	ce(L1)+ce(L2)<0.15
							I_{γ} : $I_{\gamma}(103 \text{ gate})=27 3$, $I_{\gamma}(118 \text{ gate})=8 3$.
103.5	x+103.5	$(9/2^{+})$	Х	$(5/2^+)$	E2	9.60 14	(L1+L2)/L3=1.72
118.6	187.0	$(11/2^+)$	68.4	$(7/2^+)$	E2	5.36 8	(L1+L2)/L3=1.82
119.3 2	x+222.8	$(11/2^{-})$	x+103.5	$(9/2^+)$	E1	0.323 5	ce(L1)+ce(L2)<0.15
							I_{γ} : $I_{\gamma}(103 \text{ gate}) = 30 3.$
131.1 2	x+401.6	$(15/2^{-})$	x+271.1	$(13/2^+)$	E1	0.258 4	$ce(L1)+ce(L2)\approx 0.03$
-							I_{γ} : $I_{\gamma}(103 \text{ gate})=28 3$, $I_{\gamma}(118 \text{ gate})=9.5 10$.
138.6 [@] 2	x+636.5	$(19/2^{-})$	x+498.1	$(17/2^+)$	E1	0.226 4	$ce(L1)+ce(L2)\approx 0.03$
							I_{γ} : $I_{\gamma}(103 \text{ gate})=39 4$, $I_{\gamma}(118 \text{ gate})=47 5$.
$138.6^{\textcircled{0}}{2}$	x+775.6	$(21/2^+)$	x+636.5	$(19/2^{-})$	E1	0.226 4	$ce(L1)+ce(L2)\approx 0.03$
		(/-)		(I_{γ} : $I_{\gamma}(103 \text{ gate})=39.4$. $I_{\gamma}(118 \text{ gate})=47.5$.
$138.6^{@}2$	325.6	$(13/2^{-})$	187.0	$(11/2^+)$	F1	0 226 4	$ce(I_1)+ce(I_2)\approx 0.03$
150.0 2	525.0	(15/2)	107.0	(11/2)		0.220 4	$L : I_{2}(103 \text{ gate}) = 30 \text{ A } I_{2}(118 \text{ gate}) = 47.5$
141 8 2	910.7	$(23/2^{+})$	768 7	$(21/2^{-})$	F1	0 214 3	r_{γ} . $r_{\gamma}(105 \text{ gale}) = 59.7$, $r_{\gamma}(116 \text{ gale}) = 47.5$.
111.0 2	210.7	(23/2)	/00./	(21/2)	L1	0.211.5	$L : I_{\nu}(103 \text{ gate}) = 5.0.5 I_{\nu}(118 \text{ gate}) = 14.9.15$
149 4 2	519.7	$(17/2^{-})$	370.2	$(15/2^+)$	F1	0 189 3	$ce(I_1) + ce(I_2) \sim 0.03$
177.7 2	517.7	(17/2)	570.2	(15/2)	LI	0.107 5	$L : I_{\nu}(103 \text{ gate}) = 18.2 I_{\nu}(118 \text{ gate}) = 38.4$
149.8	x+925.2	$(23/2^{-})$	x+775.6	$(21/2^+)$			17. 17(105 gute) 10 2, 17(110 gute) 50 %
154.2.2	768.7	$(23/2^{-})$ $(21/2^{-})$	614.3	$(19/2^+)$	E1	0.175.3	ce(L1)+ce(L2)<0.06
10 112 2	,	(===)	01 110	(1)/=)	21	01170 0	I_{ν} : $I_{\nu}(103 \text{ gate})=9.0 9. I_{\nu}(118 \text{ gate})=26.3.$
161.9.2	1072.2	$(25/2^{-})$	910.7	$(23/2^{+})$	E1	0.1558 23	ce(L1)+ce(L2)<0.06
10117 2	10/212	()	,1011	()	21	011000 20	L_{ν} : $I_{\nu}(103 \text{ gate}) = 3.8.5$. $I_{\nu}(118 \text{ gate}) = 12.3.12$
163 9 2	x+1259 3	$(27/2^{-})$	x+1096	$(25/2^+)$			L_{ν} : $I_{\nu}(103 \text{ gate}) = 1.9.4 I_{\nu}(118 \text{ gate}) = 2.3.3$
167.6.2	x+271.1	$(13/2^+)$	x+103.5	$(9/2^+)$	E2	1.288.79	$(L_1+L_2)/L_3=1.9.3$
		(10,-)		(-)-)			I_{ν} : $I_{\nu}(103 \text{ gate}) = 13 I$.
170.3 2	x+1096	$(25/2^+)$	x+925.2	$(23/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 8.5.9$, $I_{\gamma}(118 \text{ gate}) = 7.8.8$.
173 2 2 2	x±1626.32	$(31/2^{-1})$	$x \pm 1/15/1.22$	$(20/2^+)$			$I : I_{2}(103 \text{ gate}) = 7.5 I_{0} I_{2}(118 \text{ gate}) = 6.7.7$
17/02	1/26 3	(31/2) $(20/2^{-})$	1251 2	$(27/2^+)$			1γ . $1\gamma(103 \text{ gate}) = 7.3 10, 1\gamma(110 \text{ gate}) = 0.7 7.$ $1 \cdot 1\gamma(103 \text{ gate}) = 4.4.8 1\gamma(118 \text{ gate}) = 5.0.6$
1/7.7 4	1420.3	(29/2)	1251.5	(21/2)			1γ . $1\gamma(105 \text{ gale}) = 4.4 \text{ o}, 1\gamma(110 \text{ gale}) = 5.9 \text{ o}.$

Continued on next page (footnotes at end of table)

$\frac{226}{\mathrm{Ra}(\alpha,5\mathrm{n}\gamma)}$ 1990Hu04 (continued)									
γ ⁽²²⁵ Th) (continued)									
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	α [#]	Comments		
178.8 ^{@&} 2	x+401.6	$(15/2^{-})$	x+222.8	$(11/2^{-})$			I_{γ} : I γ (103 gate)=2.9 4, I γ (118 gate)=7.0 7.		
178.8 [@] 2	1251.3	$(27/2^+)$	1072.2	$(25/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate})=2.9 4$, $I_{\gamma}(118 \text{ gate})=7.0 7$.		
183.2 2	370.2	$(15/2^+)$	187.0	$(11/2^+)$	E2	0.914 14	(L1+L2)/L3=2.3.2 L : $I_{22}(103 \text{ gata})=6.4.7 I_{22}(118 \text{ gata})=21$		
193 1 & 2	1824 5	$(33/2^{-})$	1631.8	$(31/2^+)$			I_{γ} . $I_{\gamma}(103 \text{ gate})=0.47$ $I_{\gamma}(118 \text{ gate})=21$. I · $I_{\gamma}(103 \text{ gate})=8.4$ I_{γ} $I_{\gamma}(118 \text{ gate})=8.1$ I_{γ}		
$193.1 \ 2$ $104.1 \ 0 \ 2$	$x \pm 1454.22$	$(33/2^{+})$ $(20/2^{+})$	$x \pm 1250.3$	$(31/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 2.1.7$; $I_{\gamma}(110 \text{ gate}) = 3.3.12$ I : $I_{\gamma}(103 \text{ gate}) = 2.1.7$; $I_{\gamma}(118 \text{ gate}) = 3.3.12$		
194.1 2	510.7	$(29/2^{-})$	325.6	(27/2) $(13/2^{-})$			I_{γ} . $I_{\gamma}(103 \text{ gate}) = 2.1.7$, $I_{\gamma}(110 \text{ gate}) = 3.3.12$. $I_{\gamma}: I_{\gamma}(103 \text{ gate}) = 2.1.7$, $I_{\gamma}(118 \text{ gate}) = 3.3.12$.		
205.4.2	1631.8	(17/2) $(31/2^+)$	1426.3	$(13/2^{-})$ $(29/2^{-})$			I_{γ} . $I_{\gamma}(103 \text{ gate}) = 2.1.7$, $I_{\gamma}(118 \text{ gate}) = 3.5.12$. L.: $I_{\gamma}(103 \text{ gate}) = 5.2.7$, $I_{\gamma}(118 \text{ gate}) = 4.7.10$.		
211.6 ^{@&} 2	x+1839.1?	$(33/2^+)$	x + 1626 3?	$(31/2^{-})$			L_{ν} : $I_{\nu}(103 \text{ gate}) = 2.7.3 I_{\nu}(118 \text{ gate}) = 2.5.3$		
211.6 ^{@&} 2	2259.1?	$(37/2^{-})$	2047.2?	$(35/2^+)$			L_{1} : L_{1} (103 gate)=2.7 3, L_{1} (118 gate)=2.5 3.		
222.7 <mark>&</mark> 5	2047 22	$(35/2^+)$	1824 5	$(33/2^{-})$			L_{1} : L_{1} (103 gate)=0.8.4 L_{2} (118 gate)=2.9.6		
227.0 2	x+498.1	$(17/2^+)$	x+271.1	$(13/2^+)$	E2	0.419 6	(L1+L2)/L3=2.4.6		
							I_{γ} : $I_{\gamma}(103 \text{ gate})=11 2$, $I_{\gamma}(118 \text{ gate})=3.4 11$.		
234.9 [@] 2	x+636.5	$(19/2^{-})$	x+401.6	$(15/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate})=3.9 4$, $I_{\gamma}(118 \text{ gate})=2.4 4$.		
234.9 [@] 2	2494.4?	$(39/2^+)$	2259.1?	$(37/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate})=3.9 4$, $I_{\gamma}(118 \text{ gate})=2.4 4$.		
244.1 2	614.3	$(19/2^+)$	370.2	$(15/2^+)$	E2	0.327 5	(L1+L2)/L3=2.2 6		
240.0.2	7697	$(21/2^{-})$	510 7	$(17/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 3.6 4$, $I_{\gamma}(118 \text{ gate}) = 14.0 14$.		
249.0 2	/08./ v 1775.6	(21/2) $(21/2^+)$	519.7 x ± 408.1	$(17/2^+)$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 3.04$, $I_{\gamma}(118 \text{ gate}) = 5.90$. L : $I_{\gamma}(103 \text{ gate}) = 71.7$ $I_{\gamma}(118 \text{ gate}) = 25.5$		
277.5 2 288 7 5	x + 9252	$(21/2^{-})$ $(23/2^{-})$	x+6365	(17/2) $(19/2^{-})$			I_{γ} . $I_{\gamma}(103 \text{ gate}) = 7.17$, $I_{\gamma}(110 \text{ gate}) = 2.53$. L.: $I_{\gamma}(103 \text{ gate}) = 52.5$ $I_{\gamma}(118 \text{ gate}) = 0.8.4$		
296.4 2	910.7	$(23/2^+)$	614.3	$(19/2^+)$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = \approx 2$. $I_{\gamma}(118 \text{ gate}) = 6.1 I_2$.		
303.5 2	1072.2	$(25/2^{-})$	768.7	$(21/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 5.3 \ 8. \ I_{\gamma}(118 \text{ gate}) = 8.9 \ 9.$		
320.4 2	x+1096	$(25/2^+)$	x+775.6	$(21/2^+)$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 4.2 6$, $I_{\gamma}(118 \text{ gate}) = 2.1 3$.		
334.1 2	x+1259.3	$(27/2^{-})$	x+925.2	$(23/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate})=3.5 4$, $I_{\gamma}(118 \text{ gate})=1.2 3$.		
340.6 5	1251.3	$(27/2^+)$	910.7	$(23/2^+)$			I_{γ} : $I_{\gamma}(103 \text{ gate})=0.9 \ 3$, $I_{\gamma}(118 \text{ gate})=4.7 \ 7$.		
354.1 2	1426.3	$(29/2^{-})$	1072.2	$(25/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 1.4 5$, $I_{\gamma}(118 \text{ gate}) = 4.7 5$.		
358.2 ^{<i>x</i>} 5	x+1454.2?	$(29/2^+)$	x+1096	$(25/2^+)$			I_{γ} : $I_{\gamma}(103 \text{ gate})=1.8 9$, $I_{\gamma}(118 \text{ gate})=1.1 4$.		
367.0 ^{&} 2	x+1626.3?	$(31/2^{-})$	x+1259.3	$(27/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate})=3.8 4$, $I_{\gamma}(118 \text{ gate})=2.8 3$.		
380.5 5	1631.8	$(31/2^+)$	1251.3	$(27/2^+)$			I_{γ} : $I_{\gamma}(103 \text{ gate})=0.5 3$, $I_{\gamma}(118 \text{ gate})=2.4 4$.		
384.9 ^{x} 5	x+1839.1?	$(33/2^+)$	x+1454.2?	$(29/2^+)$			I_{γ} : $I_{\gamma}(103 \text{ gate})=1.2 \ 3$, $I_{\gamma}(118 \text{ gate})=0.9 \ 3$.		
393.8 [°] 5	x+2020.1?	$(35/2^{-})$	x+1626.3?	$(31/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 1.3 3$, $I_{\gamma}(118 \text{ gate}) = 0.6 3$.		
398.2.5	1824.5	$(33/2^{-})$	1426.3	$(29/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 1.1 \ 3, \ I_{\gamma}(118 \text{ gate}) = 2.4 \ 4.$		
415.4° 5	2047.2?	$(35/2^+)$	1631.8	$(31/2^{+})$			I_{γ} : $I_{\gamma}(103 \text{ gate}) = 1.6 4$, $I_{\gamma}(118 \text{ gate}) = 1.2 3$.		
434.6 ^{°°} 5	2259.1?	$(37/2^{-})$	1824.5	$(33/2^{-})$			I_{γ} : $I_{\gamma}(103 \text{ gate})=1.0 \ 3$, $I_{\gamma}(118 \text{ gate})=1.4 \ 3$.		
447.2 [∞] 5	2494.4?	$(39/2^+)$	2047.2?	$(35/2^+)$			I_{γ} : $I_{\gamma}(103 \text{ gate})=0.7 2$, $I_{\gamma}(118 \text{ gate})=1.2 3$.		

[†] Uncertainty in γ -energies is 0.2 keV for strong lines and up to 0.5 keV for weak lines. Lines with intensities around 1.0 have been considered as weak lines in this dataset.

^{\pm} Multipolarities from conversion electron measurements, (L1+L2)/L3 intensity ratios and (L1+L2) conversion coefficients.

[#] Calculated using brice, assuming stretched transitions, according to 1990Hu04.

[@] Multiply placed.

& Placement of transition in the level scheme is uncertain.

	$\frac{226}{2} Ra(\alpha, 5n\gamma) \qquad 1990 Hu04$	Leg	gend
	Level Scheme		
		•	γ Decay (Uncertain)
(35/2 ⁻)			<u>x+2020_1_</u>
(33/2+)			<u>x+1839.1</u>
(31/2 ⁻)			<u>x+1626.3</u>
(29/2 ⁺)			<u>x+1454.2</u>
(27/2-)			x+1259.3
(25/2+)			x+1096
(23/2 ⁻)			x+925.2
(21/2+)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		x+775.6
(19/2 ⁻)			x+636.5
(17/2 ⁺)	→ → ¹ ¹ ² → ²		x+498.1
(15/2-)			x+401.6
(13/2+)		47 7	x+271.1
(11/2 ⁻)	↓ ↓ ≈		x+222.8
(9/2+)		Ŷ	x+103.5
(5/2+)		_ورر بورر	X_
(39/2+)			2494.4_
(37/2 ⁻)		<u>+</u>	22 <u>59.1</u>
(35/2+)			2047.2_
(3/2+)			0.0

 $^{225}_{90}{\rm Th}_{135}$

 $^{225}_{90}{
m Th}_{135}$

²²⁶Ra(α,5nγ) 1990Hu04

 $^{225}_{90}{
m Th}_{135}$