## $^{225}\mathrm{Fr}\,\beta^-$ decay

|                 | History                                 |                      |                        |
|-----------------|-----------------------------------------|----------------------|------------------------|
| Туре            | Author                                  | Citation             | Literature Cutoff Date |
| Full Evaluation | A. K. Jain (a), R. Raut (b), J. K. Tuli | NDS 110, 1409 (2009) | 1-Dec-2008             |

Parent: <sup>225</sup>Fr: E=0.0;  $J^{\pi}=3/2^{-}$ ;  $T_{1/2}=4.0 \text{ min } 2$ ;  $Q(\beta^{-})=1850 \ 90$ ;  $\%\beta^{-} \text{ decay}=100.0$ 

1983Ny01: Decay scheme from the  $\gamma\gamma$ -coincidence data, supplemented with information from <sup>229</sup>Th  $\alpha$  decay. Absolute photon intensities and  $\beta$  feedings could not be calculated with the available data.

1989An02: Measured ce,  $\gamma\gamma$ , E $\gamma$ . Deduced levels,  $\alpha$ , M, J<sup> $\pi$ </sup>. Online mass separation, Ge and Si(Li) detectors, mini-orange spectrometer.

F-K analysis of singles  $\beta$  spectrum by 1975We23 gave a value of 1.64±0.01 MeV for the end-point  $\beta$  energy which would correspond to  $\beta^-$  feedings to levels around 210 91 keV, since Q( $\beta^-$ )=1850 90 (1985Wa02). However, intensity imbalances at lower energy levels suggest that they are directly populated by  $\beta$  branches.  $\beta$  feedings to the 1/2[631] g.s. and the low energy 1/2[501] band members are expected.

## <sup>225</sup>Ra Levels

| E(level) | $\mathbf{J}^{\pi}$ | T <sub>1/2</sub> | E(level) | $\mathbf{J}^{\pi}$ | E(level)       | $J^{\pi}$             |
|----------|--------------------|------------------|----------|--------------------|----------------|-----------------------|
| 0.0      | $1/2^{+}$          | 14.9 d 2         | 100.50 6 | $9/2^{+}$          | 236.25 2       | 5/2+                  |
| 25.41 2  | $5/2^+$            |                  | 111.60 5 | $7/2^{+}$          | 260.2 1        | 5/2-                  |
| 31.56 3  | $3/2^{-}$          |                  | 120.36 6 | $5/2^{-}$          | 394.2 <i>1</i> | $3/2^{-}, 5/2$        |
| 42.77 3  | $3/2^{+}$          |                  | 149.96 6 | $3/2^{+}$          | 478.4 <i>1</i> | 3/2+                  |
| 55.16 6  | $(1/2^{-})$        |                  | 179.75 2 | $5/2^{+}$          | 724.1 <i>1</i> | $(1/2, 3/2, 5/2)^{-}$ |
| 69.36 6  | $(7/2^{-})$        |                  | 225.2 1  | $3/2^{-}$          |                |                       |

| $^{225}$ Fr $\beta^-$ decay (continued) |                         |                        |                      |        |                    |                        |                |                |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-----------------------------------------|-------------------------|------------------------|----------------------|--------|--------------------|------------------------|----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\gamma$ <sup>(225</sup> Ra)            |                         |                        |                      |        |                    |                        |                |                |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| $E_{\gamma}^{\dagger}$                  | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathrm{J}_f^\pi$ | Mult. <sup>&amp;</sup> | δ              | $\alpha^{c}$   | Comments                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| (11.1 <sup>@</sup> <i>1</i> )           |                         | 111.60                 | 7/2+                 | 100.50 | 9/2+               |                        |                |                |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| (11.21 <sup>#</sup> )                   |                         | 42.77                  | 3/2+                 | 31.56  | 3/2-               |                        |                |                |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| (17.36 <sup>@</sup> 3)                  | 5.3 29                  | 42.77                  | 3/2+                 | 25.41  | 5/2+               | (M1)                   |                | 140.6          | $\alpha$ (L)=2.99; $\alpha$ (M)=103.5<br>I <sub><math>\gamma</math></sub> : calculated from I $\gamma$ (17.36 $\gamma$ )/I $\gamma$ (42.8 $\gamma$ )=18 9/16 1, as measured in <sup>229</sup> Th $\alpha$ decay, and I $\gamma$ (42.8 $\gamma$ )=4.7 9.                                                                                                                                                 |  |  |
| (23.6 <sup>#</sup> )                    | 1.1 4                   | 55.16                  | (1/2 <sup>-</sup> )  | 31.56  | 3/2-               | (M1+E2)                |                | 241 <i>33</i>  | $\begin{aligned} &\alpha(L)=182 \ 9; \ \alpha(M)=43.9 \ 24 \\ I_{\gamma}: \ calculated \ from \ I_{\gamma}(23.6\gamma)/I_{\gamma}(55.1\gamma)=12 \ 1/26 \ 4 \ as \ measured \ in \\ & \ ^{229}\text{Th} \ \alpha \ decay. \end{aligned}$ $\alpha: \ deduced \ in \ ^{229}\text{Th} \ \alpha \ decay. \end{aligned}$                                                                                     |  |  |
| (25.39 <sup>@</sup> 2)                  |                         | 25.41                  | 5/2+                 | 0.0    | 1/2+               | (E2)                   |                | 7377           | $\alpha(L)=5442; \ \alpha(M)=1455$<br>Mult.: ( $\alpha(L1)\exp+\alpha(L2)\exp)=83, \ \alpha(L3)\exp=6.123,$                                                                                                                                                                                                                                                                                             |  |  |
| (30.3 <sup>@</sup> 1)                   | <0.28                   | 179.75                 | 5/2+                 | 149.96 | 3/2+               | (M1+E2)                |                | ≈223           | $\alpha(L) \approx 167$ ; $\alpha(M) \approx 42$<br>I <sub>y</sub> : calculate from I $\gamma(30\gamma)/I\gamma(137\gamma) < 4/115$ , as measured in <sup>229</sup> Th $\alpha$ decay.                                                                                                                                                                                                                  |  |  |
| 31.10 <sup>@</sup> 5                    |                         | 100.50                 | 9/2+                 | 69.36  | $(7/2^{-})$        | [E1]                   |                | 2.52           |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 31.7 2                                  | 91 <i>16</i>            | 31.56                  | $3/2^{-}$            | 0.0    | $1/2^{+}$          | E1                     |                | 2.44           | $\alpha$ (L)=1.83; $\alpha$ (M)=0.456                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 27 8 2                                  | 0 12 7                  | 60.26                  | $(7/2^{-})$          | 21.56  | 2/2-               | E2                     |                | 1040           | Mult.: $(\alpha(M)\exp) < 0.6$ .                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 51.8 2                                  | 0.13 /                  | 09.30                  | (1/2)                | 31.30  | 5/2                | E2                     |                | 1040           |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| $(42.3^{\textcircled{0}}{1})$           | 470                     | 111.60                 | $\frac{7}{2^+}$      | 69.36  | $(7/2^{-})$        | M1                     | 0.28.7         | 77 20          | $\alpha(1) = 58  M \approx \alpha(M) = 15  A$                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 42.8 2                                  | 4.7 9                   | 42.77                  | 5/2                  | 0.0    | 1/2                | 1411                   | 0.28 /         | 11 20          | Mult.: $(\alpha(L)exp)=13.3 31.$                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 44.0 2                                  | 26 5                    | 69.36                  | (7/2 <sup>-</sup> )  | 25.41  | 5/2+               | E1 <sup><i>a</i></sup> |                | 1.002          | $\alpha(L)=0.756; \ \alpha(M)=0.185$<br>Mult.: ( $\alpha(L)\exp)=0.60$ 12.                                                                                                                                                                                                                                                                                                                              |  |  |
| 45.2 2                                  | 5.6 10                  | 225.2                  | 3/2-                 | 179.75 | 5/2+               | E1                     |                | 0.932          | $\alpha(L)=0.703; \ \alpha(M)=0.172$<br>Mult: $(\alpha(L)exp)=2.0.5.$                                                                                                                                                                                                                                                                                                                                   |  |  |
| 50.8 2                                  | 3.4 3                   | 120.36                 | 5/2-                 | 69.36  | $(7/2^{-})$        | M1                     |                | 23.5           | $\alpha(L)=17.7; \ \alpha(M)=4.25; \ \alpha(N+)=1.52$<br>Mult: $\alpha(L)\exp[7,3,18]$                                                                                                                                                                                                                                                                                                                  |  |  |
| 55.1 2                                  | 2.3 6                   | 55.16                  | (1/2 <sup>-</sup> )  | 0.0    | $1/2^{+}$          | E1                     |                | 0.549          | $\alpha(L)=0.414; \ \alpha(M)=0.1008; \ \alpha(N+)=0.0339$<br>Mult.: $\alpha(L)\exp<1.9$ ,                                                                                                                                                                                                                                                                                                              |  |  |
| 56.3 5                                  | 0.4 <sup>b</sup> 2      | 236.25                 | 5/2+                 | 179.75 | 5/2+               | M1(+E2)                | 0.11 <i>11</i> | 18.9 <i>16</i> | $\alpha$ (L)=14.3 <i>12</i> ; $\alpha$ (M)=3.5 <i>4</i> ; $\alpha$ (N+)=1.23 <i>12</i><br>Mult.: $\alpha$ (L)exp=9.6 <i>27</i> ,<br>I $\gamma$ (56 $\gamma$ )/I $\gamma$ (211 $\gamma$ )=0.28 2/2.7 <i>3</i> , measured in <sup>229</sup> Th $\alpha$ decay, and<br>I $\gamma$ (211 $\gamma$ )=8.5 7 from <sup>225</sup> Fr $\beta$ <sup>-</sup> decay yield I $\gamma$ (56 $\gamma$ )=0.88 <i>14</i> . |  |  |
| (68.09 <sup>@</sup> 4)                  | 0.47 8                  | 179.75                 | 5/2+                 | 111.60 | $7/2^{+}$          | M1+E2                  | 0.32 16        | 15 5           | $\alpha$ (L)=11 4; $\alpha$ (M)=2.8 10; $\alpha$ (N+)=1.0 4                                                                                                                                                                                                                                                                                                                                             |  |  |

From ENSDF

 $^{225}_{88}\mathrm{Ra}_{137}$ -2

 $^{225}_{88} {
m Ra}_{137}$ -2

L

|                             |                                           |               |                    |        |                        | $^{225}$ <b>Fr</b> $\beta^{-}$ | decay ( | continued)     |                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|-------------------------------------------|---------------|--------------------|--------|------------------------|--------------------------------|---------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | $\gamma$ ( <sup>225</sup> Ra) (continued) |               |                    |        |                        |                                |         |                |                                                                                                                                                                                                                                                                                                                                              |
| $E_{\gamma}^{\dagger}$      | $I_{\gamma}^{\ddagger}$                   | $E_i$ (level) | $\mathbf{J}_i^\pi$ | $E_f$  | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>&amp;</sup>         | δ       | α <sup>C</sup> | Comments                                                                                                                                                                                                                                                                                                                                     |
|                             |                                           |               |                    |        |                        |                                |         |                | I <sub><math>\gamma</math></sub> : calculated from I $\gamma$ (68 $\gamma$ )/I $\gamma$ (137 $\gamma$ )=0.067 <i>10</i> /1.15 <i>3</i> , as measured in <sup>229</sup> Th $\alpha$ decay.                                                                                                                                                    |
| (68.83 <sup>@</sup> 3)      |                                           | 111.60        | 7/2+               | 42.77  | 3/2+                   |                                |         |                |                                                                                                                                                                                                                                                                                                                                              |
| 75.09 <sup>@</sup> 7        |                                           | 100.50        | 9/2+               | 25.41  | 5/2+                   | E2                             |         | 37.6           |                                                                                                                                                                                                                                                                                                                                              |
| 75.1 <i>1</i>               | 45 4                                      | 225.2         | 3/2-               | 149.96 | 3/2+                   | E1                             |         | 0.240          | $\alpha(L)=0.181; \alpha(M)=0.0438; \alpha(N+)=0.0149$                                                                                                                                                                                                                                                                                       |
| 77.5 1                      | 10.6 11                                   | 120.36        | 5/2-               | 42.77  | 3/2+                   | E1                             |         | 0.220          | Mult.: $\alpha$ (L)exp=0.12 3, $\alpha$ (M)exp=0.02 1,<br>$\alpha$ (L)=0.1659; $\alpha$ (M)=0.0401; $\alpha$ (N+)=0.01362<br>Mult.: $\alpha$ (L)exp<0.3.                                                                                                                                                                                     |
| 80.3 1                      | 2.6 <sup>b</sup> 5                        | 260.2         | 5/2-               | 179.75 | 5/2+                   | E1                             |         | 0.201          | $\alpha$ (L)=0.152; $\alpha$ (M)=0.0366; $\alpha$ (N+)=0.0125<br>Mult.: $\alpha$ (L)exp<0.9.                                                                                                                                                                                                                                                 |
| (86.25 <sup>@</sup> 4)      |                                           | 111.60        | 7/2+               | 25.41  | 5/2+                   |                                |         |                |                                                                                                                                                                                                                                                                                                                                              |
| 86.7 3                      | 6 <sup>b</sup> 2                          | 236.25        | 5/2+               | 149.96 | 3/2+                   | M1                             |         | 5.03           | $\alpha(L)=3.80; \ \alpha(M)=0.908; \ \alpha(N+)=0.324$<br>Mult.: $\alpha(L)\exp=5.0 \ I9, \ \alpha(M)\exp=1.2 \ 2.$<br>$I\gamma(87\gamma)/I\gamma(211\gamma)=2.5 \ I/2.7 \ 3, measured in \ ^{229}Th \ \alpha \ decay, and \ L_{12}(211\gamma)=2.5 \ 7, from \ ^{225}Te \ \sigma_{-} \ decay \ wield \ L_{12}(27\gamma)=7.0 \ 2.$           |
| 95.0 <i>3</i>               | 2.2 <sup>b</sup> 17                       | 120.36        | 5/2-               | 25.41  | 5/2+                   | E1                             |         | 0.1286         | $\alpha(L)=0.0971; \ \alpha(M)=0.0234; \ \alpha(N+)=0.00803$<br>Mult.: $\alpha(L)\exp<0.12.$<br>E <sub><math>\gamma</math></sub> : 94.92 8 from <sup>229</sup> Th $\alpha$ decay.<br>I $\gamma(94.9\gamma)/I\gamma(77.5\gamma)=3.4 \ 10$ was measured in <sup>229</sup> Th $\alpha$ decay; this ratio yields I $\gamma(94.9\gamma)=3.1 \ 9.$ |
| 95.0 <i>3</i>               | 2.8 <sup>b</sup> 18                       | 149.96        | 3/2+               | 55.16  | $(1/2^{-})$            | E1                             |         | 0.1292         | $\alpha(L)=0.0977; \alpha(M)=0.0235; \alpha(N+)=0.00807$                                                                                                                                                                                                                                                                                     |
| 107.1 <i>1</i>              | 11 2                                      | 149.96        | 3/2+               | 42.77  | 3/2+                   | M1(+E2)                        | 0.3 3   | 13.1 6         | Mult.: $\alpha(L) < 0.04$ .<br>$\alpha(K) = 10.1 \ 9; \ \alpha(L) = 2.3 \ 3; \ \alpha(M) = 0.56 \ 7; \ \alpha(N+) = 0.20 \ 3$<br>Mult.: $(\alpha(L) \exp = 0.71 \ 20, \ \alpha(M) \exp = 0.37 \ 7.$                                                                                                                                          |
| 110.3 <sup><i>d</i></sup> 1 | 0.85 11                                   | 179.75        | 5/2+               | 69.36  | (7/2 <sup>-</sup> )    | [E1]                           |         | 0.385          | $\alpha$ (K)=0.299; $\alpha$ (L)=0.0653; $\alpha$ (M)=0.01567; $\alpha$ (N+)=0.00541<br>I <sub><math>\gamma</math></sub> : calculated from I $\gamma$ (110 $\gamma$ )/I $\gamma$ (137 $\gamma$ )=0.12112/1.15 <i>3</i> , as<br>measured in <sup>229</sup> Th $\alpha$ decay                                                                  |
| 110.3 1                     | 20 3                                      | 260.2         | 5/2-               | 149.96 | 3/2+                   | (E1) <sup><i>a</i></sup>       |         | 0.385          | $\alpha(K)=0.299; \ \alpha(L)=0.0653; \ \alpha(M)=0.0157; \ \alpha(N+)=0.00541$<br>Mult.: $\alpha(L)\exp=0.07$ 4.                                                                                                                                                                                                                            |
| (115.98 <sup>@</sup> 10)    | 0.054 13                                  | 236.25        | 5/2+               | 120.36 | 5/2-                   | [E1]                           |         | 0.341          | $\alpha(K)=0.265; \ \alpha(L)=0.0572; \ \alpha(M)=0.01373; \ \alpha(N+)=0.00474$<br>I <sub><math>\gamma</math></sub> : calculated from I $\gamma(115\gamma)/I\gamma(211\gamma)=0.017$ 3/2.7 3, as measured in <sup>229</sup> Th $\alpha$ decay.                                                                                              |
| 124.5 <sup>d</sup> 1        | 9.2 10                                    | 149.96        | 3/2+               | 25.41  | 5/2+                   | M1                             |         | 8.84           | $\alpha$ (K)=7.09; $\alpha$ (L)=1.322; $\alpha$ (M)=0.316; $\alpha$ (N+)=0.1131<br>Mult.: $\alpha$ (K)exp=7.3 <i>15</i> , $\alpha$ (L)exp=1.3 <i>4</i> .<br>I $\gamma$ =11.5 <i>9</i> was measured for the doublet.                                                                                                                          |
| 124.5 <sup>d</sup>          | 2.3 4                                     | 236.25        | 5/2+               | 111.60 | 7/2+                   | (M1)                           |         | 8.82           | $\alpha$ (K)=7.07; $\alpha$ (L)=1.32; $\alpha$ (M)=0.315; $\alpha$ (N+)=0.113<br>I <sub><math>\gamma</math></sub> : calculated from I $\gamma$ (124.65 $\gamma$ )/I $\gamma$ (211 $\gamma$ )=0.72 6/2.7 3, as measured in <sup>229</sup> Th $\alpha$ decay, and I $\gamma$ (211 $\gamma$ )=8.5 7.                                            |
| 134.0 <i>I</i>              | 0.9 3                                     | 394.2         | 3/2-,5/2           | 260.2  | 5/2-                   |                                |         | 3.7 35         |                                                                                                                                                                                                                                                                                                                                              |
| 137.0 1                     | 8.1 6                                     | 179.75        | 5/2+               | 42.77  | 3/2+                   | M1                             |         | 6.91           | $\alpha$ (K)=5.40; $\alpha$ (L)=1.01; $\alpha$ (M)=0.241; $\alpha$ (N+)=0.086<br>Mult.: $\alpha$ (K)exp=1.6 3, $\alpha$ (L)exp=1.0 1.                                                                                                                                                                                                        |

ω

From ENSDF

L

|                                          |                          |                        |                                           |                |                                         | $^{225}$ Fr $\beta^{-}$      | decay ( | continued            | )                 |                                                                                                                                                                                                                                                                                           |  |
|------------------------------------------|--------------------------|------------------------|-------------------------------------------|----------------|-----------------------------------------|------------------------------|---------|----------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\gamma$ <sup>(225</sup> Ra) (continued) |                          |                        |                                           |                |                                         |                              |         |                      |                   |                                                                                                                                                                                                                                                                                           |  |
| $E_{\gamma}^{\dagger}$                   | $I_{\gamma}^{\ddagger}$  | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                      | $E_f$          | $\mathbf{J}_f^{\pi}$                    | Mult.&                       | δ       | α <sup>C</sup>       | $I_{(\gamma+ce)}$ | Comments                                                                                                                                                                                                                                                                                  |  |
| 139.8 <i>1</i>                           | 11.1 8                   | 260.2                  | 5/2-                                      | 120.36         | 5/2-                                    | M1 <sup>a</sup>              |         | 4.6 21               |                   | $\alpha(K)=2.8\ 26;\ \alpha(L)=1.3\ 3;\ \alpha(M)=0.34\ 11;\ \alpha(N+)=0.12\ 4$                                                                                                                                                                                                          |  |
| 148.4 <i>1</i>                           | 14.5 11                  | 179.75                 | 5/2+                                      | 31.56          | 3/2-                                    | E1                           |         | 0.1877               |                   | Mult: $\alpha(K)\exp=3.3 3, \alpha(L)\exp=1.7 3, \alpha(M)\exp<0.4$ .<br>$\alpha(K)=0.1478; \alpha(L)=0.0302; \alpha(M)=0.00722; \alpha(N+)=0.00250$                                                                                                                                      |  |
| 149.9 <i>1</i>                           | 0.8 2                    | 149.96                 | 3/2+                                      | 0.0            | 1/2+                                    | M1(+E2)                      | 0.4 4   | 4.7 5                |                   | Mult.: $\alpha(K)\exp<0.2, \alpha(L)\exp<1.0.$<br>$\alpha(K)=3.6 \ 6; \ \alpha(L)=0.82 \ 5; \ \alpha(M)=0.201 \ 16; \ \alpha(N+)=0.072$                                                                                                                                                   |  |
| 154.4 1                                  | 4.8 4                    | 179.75                 | 5/2+                                      | 25.41          | 5/2+                                    | M1(+E2)                      | 0.4 4   | 4.4 4                |                   | Mult.: $\alpha(K)$ exp=9.6 <i>14</i> .<br>$\alpha(K)$ =3.4 <i>5</i> ; $\alpha(L)$ =0.75 <i>4</i> ; $\alpha(M)$ =0.184 <i>13</i> ; $\alpha(N+)$ =0.066<br><i>5</i>                                                                                                                         |  |
| 157.9 1                                  | 1.3.3                    | 394.2                  | $3/2^{-}.5/2$                             | 236.25         | $5/2^{+}$                               | E1                           |         | 2.3 21               |                   | Mult.: $\alpha$ (K)exp=7.6 <i>15</i> .<br>Mult.: $\alpha$ (K)exp=4.3 <i>21</i> .                                                                                                                                                                                                          |  |
| (166.976 <sup>@</sup> 7)                 | 0.63 10                  | 236.25                 | 5/2+                                      | 69.36          | (7/2 <sup>-</sup> )                     | [E1]                         |         | 0.141                |                   | $\alpha(K)=0.1115; \ \alpha(L)=0.222; \ \alpha(M)=0.00530; \ \alpha(N+)=0.00183$<br>I <sub><math>\gamma</math></sub> : calculated from I $\gamma(167\gamma)/I\gamma(211\gamma)=0.200 \ 10/2.7 \ 3$ , as measured in <sup>229</sup> Th $\alpha$ decay, and I $\gamma(211\gamma)=8.5 \ 7$ . |  |
| 169.0 <i>3</i><br>169.9 <i>1</i>         | 2 <sup>b</sup> 1<br>20 2 | 394.2<br>225.2         | 3/2 <sup>-</sup> ,5/2<br>3/2 <sup>-</sup> | 225.2<br>55.16 | 3/2 <sup>-</sup><br>(1/2 <sup>-</sup> ) | M1<br>M1 <sup><i>a</i></sup> |         | 1.9<br>2.4 <i>13</i> | 18                | Mult.: $\alpha(K)\exp=2.8$ 7, $\alpha(L)\exp=0.4$ 1.<br>$\alpha(K)=1.6$ 14; $\alpha(L)=0.59$ 5; $\alpha(M)=0.15$ 2; $\alpha(N+)=0.054$ 8<br>Mult.: $\alpha(K)\exp=2.3$ 8 $\alpha(L)\exp=0.465$ $\alpha(M)\exp=0.162$                                                                      |  |
| 179.9 <i>1</i>                           | 1.4 3                    | 179.75                 | 5/2+                                      | 0.0            | $1/2^{+}$                               | E2                           |         | 0.884                |                   | $\alpha(K) = 0.2000; \ \alpha(L) = 0.500; \ \alpha(M) = 0.1353; \ \alpha(N+) = 0.0487$                                                                                                                                                                                                    |  |
| 182.3 <i>1</i>                           | 100                      | 225.2                  | 3/2-                                      | 42.77          | 3/2+                                    | E1                           |         | 0.1138               |                   | Mult.: $\alpha(\mathbf{K}) \exp[=0.5211]$ .<br>$\alpha(\mathbf{K}) = 0.0903; \ \alpha(\mathbf{L}) = 0.0177; \ \alpha(\mathbf{M}) = 0.00424;$<br>$\alpha(\mathbf{N}+) = 0.00147$                                                                                                           |  |
| 190.8 <i>1</i>                           | 24 2                     | 260.2                  | 5/2-                                      | 69.36          | $(7/2^{-})$                             | M1 <sup><i>a</i></sup>       |         | 2.63                 |                   | Mult.: $\alpha(K)\exp=0.002/8, \alpha(L)\exp=0.0089/11.$<br>$\alpha(K)=2.12; \alpha(L)=0.392; \alpha(M)=0.0937; \alpha(N+)=0.0332$<br>Mult.: $\alpha(K)\exp=3.1/3, \alpha(L)\exp=0.56/10, \alpha(M)\exp <0.096.$                                                                          |  |
| 193.5 <i>3</i>                           | 15 <sup>b</sup> 3        | 225.2                  | 3/2-                                      | 31.56          | 3/2-                                    | M1                           |         | 1.6 9                |                   | $\alpha(K)=1.1 \ 9; \ \alpha(L)=0.370 \ 7; \ \alpha(M)=0.094 \ 4; \ \alpha(N+)=0.0336 \ 17$<br>Mult.: $\alpha(K)\exp=1.6 \ 2, \alpha(L)\exp=0.36 \ 2, \ \alpha(M)\exp=0.08 \ 1.$                                                                                                          |  |
| 193.5 <i>3</i>                           | 14 <sup>b</sup> 3        | 236.25                 | 5/2+                                      | 42.77          | 3/2+                                    | M1                           |         | 2.53                 |                   | $\alpha(K)=2.03; \ \alpha(L)=0.377; \ \alpha(M)=0.0900; \ \alpha(N+)=0.0319$                                                                                                                                                                                                              |  |
| 199.7 <i>1</i>                           | 35 <i>3</i>              | 225.2                  | 3/2-                                      | 25.41          | 5/2+                                    | E1                           |         | 0.0914               |                   | Mult.: $\alpha(\mathbf{K}) \exp[=2.9 \ 10]$<br>$\alpha(\mathbf{K}) = 0.0728; \ \alpha(\mathbf{L}) = 0.0141; \ \alpha(\mathbf{M}) = 0.00336;$<br>$\alpha(\mathbf{N}+) = 0.00116$                                                                                                           |  |
| 204.9 1                                  | 4.1 4                    | 236.25                 | 5/2+                                      | 31.56          | 3/2-                                    | E1                           |         | 0.0861               |                   | Mult.: $\alpha(K)\exp=0.041$ 3, $\alpha(L)\exp=0.016$ 2, $\alpha(M)\exp<0.06$ .<br>$\alpha(K)=0.0687$ ; $\alpha(L)=0.0132$ ; $\alpha(M)=0.00316$ ;<br>$\alpha(N+)=0.00109$                                                                                                                |  |
| 210.9 1                                  | 8.5 7                    | 236.25                 | 5/2+                                      | 25.41          | 5/2+                                    | M1                           |         | 1.98                 |                   | Mult.: $\alpha(K)\exp=0.10$ 6.<br>$\alpha(K)=1.60; \ \alpha(L)=0.296; \ \alpha(M)=0.0706; \ \alpha(N+)=0.0250$                                                                                                                                                                            |  |
| 217.5 1                                  | 8.8 9                    | 260.2                  | 5/2-                                      | 42.77          | 3/2+                                    | E1                           |         | 0.0746               |                   | Mult.: $\alpha(K)\exp=1.0 \ 3, \alpha(L)\exp=0.25 \ 5.$<br>$\alpha(K)=0.0595; \ \alpha(L)=0.0114; \ \alpha(M)=0.00271; \ \alpha(N+)=0.00094$                                                                                                                                              |  |
| 225.1 <i>I</i>                           | 55 4                     | 225.2                  | 3/2-                                      | 0.0            | $1/2^{+}$                               | E1                           |         | 0.0688               |                   | Mult.: $\alpha(K)\exp < 0.3, \alpha(L)\exp < 0.03$ .<br>$\alpha(K)=0.0550; \alpha(L)=0.01044; \alpha(M)=0.00249;$                                                                                                                                                                         |  |

4

 $^{225}_{88} {
m Ra}_{137}$ -4

L

From ENSDF

 $^{225}_{88} \mathrm{Ra}_{137}$ -4

### $^{225}$ Fr $\beta^-$ decay (continued)

#### $\gamma$ <sup>(225</sup>Ra) (continued)

| $E_{\gamma}^{\dagger}$   | $I_{\gamma}^{\ddagger}$ | $E_i$ (level)  | $\mathbf{J}_i^\pi$                 | $\mathbf{E}_{f}$ | $J_f^{\pi}$       | Mult.& | α <sup>C</sup>            | Comments                                                                                                                                                                                                                                                                                                                     |
|--------------------------|-------------------------|----------------|------------------------------------|------------------|-------------------|--------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 228.6 1                  | 3.3 4                   | 260.2          | 5/2-                               | 31.56            | 3/2-              | M1     | 1.0 6                     | $\alpha(N+)=0.00086$<br>Mult.: $\alpha(K)\exp < 0.06, \alpha(L)\exp < 0.02, \alpha(M)\exp < 0.004.$<br>$\alpha(K)=0.75; \alpha(L)=0.213; \alpha(M)=0.0524; \alpha(N+)=0.018613$<br>Mult.: $\alpha(K)\exp = 0.905\alpha(L)\exp = 0.172$                                                                                       |
| 234.8 11                 | 14.3 <i>1</i>           | 260.2          | 5/2-                               | 25.41            | 5/2+              | E1     | 0.0623                    | $\alpha(K)=0.0498; \ \alpha(L)=0.00941; \ \alpha(M)=0.00225; \ \alpha(N+)=0.00078$<br>Mult.: $\alpha(K)\exp < 0.06.$                                                                                                                                                                                                         |
| (236.249 <sup>@</sup> 8) | 0.54 8                  | 236.25         | 5/2+                               | 0.0              | 1/2+              | E2     | 0.333                     | $\alpha$ (K)=0.118; $\alpha$ (L)=0.158; $\alpha$ (M)=0.0423; $\alpha$ (N+)=0.0151<br>I <sub>y</sub> : calculated from I <sub>y</sub> (236 <sub>y</sub> )/I <sub>y</sub> (211 <sub>y</sub> )=0.170 9/2.7 <i>3</i> , as measured in<br><sup>229</sup> Th $\alpha$ decay, and I <sub>y</sub> (211 <sub>y</sub> )=8.5 <i>7</i> . |
| 242.1 <i>I</i>           | 1.6 2                   | 478.4          | 3/2+                               | 236.25           | 5/2+              | M1     | 0.7 6                     | Mult.: $\alpha(K)\exp=1.3 2$ .                                                                                                                                                                                                                                                                                               |
| 244.2 1                  | 0.7 2                   | 394.2          | 3/2-,5/2                           | 149.96           | $3/2^{+}$         |        | 0.7 6                     |                                                                                                                                                                                                                                                                                                                              |
| 253.4 1                  | 1.9 3                   | 478.4          | 3/2+                               | 225.2            | 3/2-              |        | 0.62 57                   |                                                                                                                                                                                                                                                                                                                              |
| 324.7 2                  | 0.4 1                   | 394.2          | 3/2 ,5/2                           | 69.36            | (1/2)             | 1.01   | 0.31 28                   |                                                                                                                                                                                                                                                                                                                              |
| 328.6 I                  | 1.3 3                   | 4/8.4          | $3/2^+$                            | 149.96           | 3/2 -             | MI     | 0.31 28                   | Mult.: $\alpha(K) \exp[-0.74]{12}$ .                                                                                                                                                                                                                                                                                         |
| 338.1 3                  | 0.5 2                   | 4/8.4          | $\frac{3}{2}$                      | 120.30           | 5/2<br>5/2+       |        | 0.24 22                   |                                                                                                                                                                                                                                                                                                                              |
| 308.8 Z                  | 0.8 5                   | 394.2<br>178 1 | $\frac{3/2}{3/2+}$ , $\frac{3}{2}$ | 25.41<br>42.77   | $\frac{3}{2^{+}}$ | M1     | $0.22\ 20$<br>$0.14\ 13$  | Mult: $\alpha(K) = 0.16.2 \alpha(I) = 0.046.15$                                                                                                                                                                                                                                                                              |
| 453.0 1                  | 4.75                    | 478.4          | $\frac{3}{2}$                      | 42.77            | 5/2<br>5/2+       | M1     | 0.14 I J<br>0.13 I I      | Mult: $\alpha(K) \exp[-0.10, 3, \alpha(L) \exp[-0.040, 15]]$                                                                                                                                                                                                                                                                 |
| 455.01                   | 163                     | 724 1          | $(1/2 \ 3/2 \ 5/2)^{-}$            | 25.41            | 5/2-              | M1     | 0.13 11<br>0.12 10        | Mult: $\alpha(K) \exp[-0.25]$ 0.<br>Mult: $\alpha(K) \exp[-0.13]$ 6                                                                                                                                                                                                                                                          |
| 478 3 1                  | 666                     | 124.1<br>478 4 | (1/2, 5/2, 5/2)<br>$3/2^+$         | 200.2            | $\frac{3}{2}$     | M1     | $0.12\ 10$<br>$0\ 11\ 10$ | Mult: $\alpha(K) \exp[-0.13, 3, \alpha(I)] \exp[-0.04, I]$                                                                                                                                                                                                                                                                   |
| 499.0.2                  | 447                     | 774 1          | $(1/2 \ 3/2 \ 5/2)^{-}$            | 225.2            | $\frac{1}{2}$     | M1     | 0.10.9                    | Mult: $\alpha(K) \exp[-0.13/3, \alpha(L) \exp[-0.03/1]]$                                                                                                                                                                                                                                                                     |
| 574.1 2                  | 1.9 3                   | 724.1          | $(1/2,3/2,5/2)^{-}$                | 149.96           | $3/2^+$           | E1     | 0.07 6                    | Mult.: $\alpha(K) \exp < 0.06$ .                                                                                                                                                                                                                                                                                             |

<sup>†</sup> Measurements of 1983Ny01, unless otherwise noted.

<sup>‡</sup> Relative photon intensity measured by 1983Ny01. <sup>‡</sup> Transition was not observed; energy from level scheme. <sup>@</sup> From <sup>229</sup>Th  $\alpha$  decay; transition was not observed in <sup>225</sup>Fr  $\beta^-$  decay. <sup>&</sup> From 1989An02 and <sup>229</sup>Th  $\alpha$  decay, except those noted.

<sup>*a*</sup> Determined by 1983Ny01 from K x ray/ $\gamma$  in coincidence data.

<sup>b</sup> Obtained by 1983Ny01 from  $\gamma\gamma$ -coincidence data.

<sup>c</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>d</sup> Multiply placed.

From ENSDF

# $^{225}$ Fr $\beta^-$ decay





-

 $^{225}_{88}$ Ra $_{137}$ -7