Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	A. K. Jain (a), R. Raut (b), J. K. Tuli	NDS 110,1409 (2009)	1-Dec-2008				

 $Q(\beta^{-})=356\ 5;\ S(n)=4904\ 3;\ S(p)=7090\ 14;\ Q(\alpha)=5097\ 5\ 2012Wa38$

Note: Current evaluation has used the following Q record 356 5 4904.5 29 6950 50 5097 5 2003Au03.

Assignment: decay product of ²³³U series (1947En03 and 1947Ha02); chem (1950Ha52).

Fission isomer was not observed in 226 Ra(n,2n) with E=0.7-10 MeV and with E=14.5 MeV (1972Ku26).

Fission barrier was deduced by 1970Ba22 as 7.0 MeV 5 from their ²²⁶Ra(n,F) data.

1989Sh07: Experimental data interpreted in terms of the coexistence of reflection symmetry and reflection asymmetry. Odd particle is suggested to polarize the soft nuclei towards or away from octupole deformation.

1988Le13: Calculated level energies including octupole and quadrupole deformations with a reflection-asymmetric rotor core. Calculations of transition probabilities between parity doublet bands. See also 1986Ch43 and 1986Re04 for discussions.

1975Iv06: Calculated nonrotational states.

A

D

²²⁵Ra Levels

Cross Reference (XREF) Flags

²²⁹ Th	α	decay	
-------------------	---	-------	--

B 225 Fr β^- decay

C 226 Ra(d,t), (pol d,t)

 226 Ra(³He, α)

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0†	1/2+	14.9 d 2	ABC	$%β^-=100$ μ=-0.7338 15 (LASER spectroscopy; 1987Ar20,1983Ah03). $μ=-0.85$ was calculated by 1988Le13 for octupole deformation of $β_3=0.15$ and quadrupole deformation of $β_2=0.148$. See also 1983Ra28, 1985Dz04 for calculated $μ$ values. No $α'$ s observed: $%α<0.0001$ (1960Ma40). $J^{π}$: spin measured (LASER spectroscopy; 1983Ah03); the orbital assignment from measured magnetic moment. T _{1/2} : measured values: 15.0 d 6 (1987Mi10), 14.8 d 2 (1950Ha52). Other
25 41 2	5/2+	0 88 ns 4	ARCD	measurement: 14 d (1947En03). I^{π} : 242 4x from 7/2 ⁺ is M1: 25 39x to 1/2 ⁺ is (F2)
23.11 2	5/2	0.00 115 7	IIDCD	$T_{1/2}$: from (α)(ce)(t) data in ²²⁹ Th α decay (1985Is03).
31.56 [‡] 3	3/2-	2.1 ns 5	AB	J^{π} : 31.50 γ to 1/2 ⁺ g.s. and 148.15 γ from 5/2 ⁺ are E1. T _{1/2} : from (α)(ce)(t) data in ²²⁹ Th α decay (1985Is03).
42.77 [†] 3	3/2+	<3 ns	ABCD	J^{π} : 42.82 γ to 1/2 ⁺ g.s. is M1+E2. T _{1/2} : from 1970Tr04 (presumably from time limit set for $\gamma\gamma$ and γ ce coincidence experiment).
55.16 [‡] 6	(1/2 ⁻)		AB	J^{π} : 23.6 γ to 3/2 ⁻ is (M1+E2); 55.11 γ to 1/2 ⁺ g.s.; probable 1/2 member of the K=1/2 band.
69.36 [‡] 6	$(7/2)^{-}$		AB	J^{π} : 43.990 γ to 5/2 ⁺ is E1, 37.8 γ to 3/2 ⁻ is (E2).
100.50 [†] 6 101	(9/2) ⁺ (3/2 ⁺)		A D C	J^{π} : 75.09 γ to 5/2 ⁺ of g.s. band is E2; 11.1 γ from 7/2 ⁺ of g.s. band. J^{π} : angular distributions in (d,t) reaction were consistent with $J^{\pi}=3/2^+$, 1/2 ⁺ or 5/2 ⁻ ; 3/2 ⁺ assignment was prefered (1983Ny01).
111.60 [†] 5	7/2+		ABCD	J^{π} : 86.25 γ and 68.83 γ to 5/2 ⁺ and 3/2 ⁺ of g.s. band are M1+E2 and E2, respectively; intensities of deexciting γ 's.
120.36 [‡] 6	5/2-		AB	J^{π} : 147.64 γ from 7/2 ⁺ is E1, 77.63 γ to 3/2 ⁺ .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²²⁵Ra Levels (continued)

E(level)	J^{π}	XREF	Comments		
149.96 [#] 6	3/2+	ABCD	J^{π} : 150.04 γ to 1/2 ⁺ is M1+E2.		
179.75 [#] 2	5/2+	AB	J^{π} : 179.757 γ to 1/2 ⁺ is E2.		
≈203.5? [‡]	$(9/2^{-})$	А	J^{π} : 134.2 γ to $(7/2)^{-}$ is (M1): α -hindrance factor.		
≈215.8?	(*/=)	A	This level could possibly be the $13/2^+$ member of the K=1/2 g.s. band.		
220.55 7	$(7/2^+, 9/2^+)$	A CD	J^{π} : 63.7 γ from $(7/2)^+$ is possibly M1+E2; $I\gamma$'s of transitions to $(9/2)^+$, $7/2^+$ states.		
225.2 [@] 1	3/2-	В	J^{π} : 169.9 γ to 1/2 ⁻ is M1+E2.		
226.9 [†] 3	$(11/2^+)$	A	J^{π} : 126.4 γ to 9/2 ⁺ member of the g.s. band; α -hindrance factor. $J^{\pi} = (13/2^+)$ was proposed by 1986He06.		
236.25 ^{&} 2	5/2+	ABCD	J^{π} : favored α decay from 5/2[633] ²²⁹ Th g.s.		
243.56 [#] 4	7/2+	A CD	I^{π} : 218.154 γ and 142.962 γ to the 5/2 ⁺ and 9/2 ⁺ members of the g.s. band are M1.		
≈248.5?	.,=	A			
$260.2^{\textcircled{0}}$ 1	$(5/2)^{-}$	В	I^{π} : 139.8v to 5/2 ⁻ is M1+E2. 190.8v to (7/2) ⁻ is M1. 110.3v to 3/2 ⁺ level.		
267.92° 5	7/2+		I^{π} : 156 400v to 7/2 ⁺ is M1 gammas to 3/2 ⁺ and 9/2 ⁺ levels: α hindrance factor		
272 15 15	1/2	A	Level could be the $9/2^+$ member of the K= $3/2$ hand based at 149.96 keV		
284.49 5	7/2+	A	J^{π} : 127.926 and 183.928 γ 's to 7/2 ⁺ and 9/2 ⁺ levels are M1. 134.2 γ to 3/2 ⁺ level.		
293 8		С			
321.76 ^{&} 8	(9/2 ⁺)	A CD	J ^{π} : α hindrance factor; level's energy spacing from the 5/2 ⁺ and 7/2 ⁺ members of the band; γ deexcitation mode.		
≈328		Α			
≈335?		Α			
≈347?		Α			
390.0 4	$(11/2^+)$	A CD	J^{π} : α hindrance factor; level's energy spacing from other members of the band.		
394.2 1	3/2-,5/2	В	J^{π} : γ transitions to $3/2^+$, $3/2^-$, $5/2^+$ and $7/2^-$ levels.		
394.72 13	$(3/2, 5/2, 7/2)^{+}$	A	J^{\prime} : 158.42 γ to 5/2 ⁺ 1s M1.		
400 8 ~4172		ر ۸			
~417?		л D			
478.4 1	(3/2)	AB	J^{π} : from γ transitions to $1/2^+$, $5/2^+$ and $5/2^-$ levels $J^{\pi} = 3/2\pm$, $5/2^+$. Transition to the $1/2^+$ state being the strongest suggests J=3/2.		
484 8		CD	Level seen in (d,t) at 484-keV was possibly doublet (1983Ny01). J^{π} : (5/2 ⁺) was proposed by 1983Ny01 from (d,t) data.		
487 <mark>&</mark> 3	$(13/2^+)$	AC	J^{π} : α hindrance factor; level energy spacing from other members of the band.		
535 8		CD			
546 8		С			
603 <i>3</i>		AC			
609 3		A CD			
630 8		C	$J^{(1/2^{-})}(5/2^{-})$ was suggested by 1983NyU1 from (d,t) data.		
073 8	(3/2, 5/2)	R	J : $(5/2^{-})$ was suggested by 1965(NyO1 from (u,t) data. $I^{\pi_{1}}$ intensities of gammas to $3/2^{+}$ $3/2^{-}$ and $5/2^{-}$ levels		
815.8	$(5/2^{-})$	CD CD	I^{π} (d t) data		
851 8	(0/=)	C			
898 <mark>a</mark> 8	$(1/2^{-})$	CD	J^{π} : from (d,t) data.		
956 ^a 8	$(5/2^{-})$	CD	J^{π} : from (d,t) data.		
967 ^a 8	$(3/2^{-})$	CD	J^{π} : from (d,t) data.		
1009 8		CD			
1025 8		CD			
1056 8		C			
10/0 ð 1001 s		CD CD			
1091 0					
1184 10		D D			
1225 8	$(5/2^{-})$	CD	J^{π} : from (d,t) data 1983Ny01 proposed 5/2[503] assignment.		
1258 8	. / /	C			

Adopted Levels, Gammas (continued)

²²⁵Ra Levels (continued)

E(level)	\mathbf{J}^{π}	XREF	Comments
1272 10		D	
1334 8		CD	
1377 10		D	
1441 8		CD	
1479 8		CD	
1553 8		С	
1766 8		С	
1792 8		С	
1872 10		D	
1912 <i>10</i>		D	
1972 10		D	
2138 10	(13/2 ⁺)	D	J ^{π} : 13/2 ⁺ , 3/2[606] assignment was proposed by 1986Lo01 from their (³ He, α) data.

[†] Band(A): $K^{\pi}=1/2^+$ band, largely includes 1/2[631] band. Coriolis coupled with the 3/2[631] band. [‡] Band(B): $K^{\pi}=1/2^-$ band, largely includes 1/2[501] band.

[#] Band(D): $K^{\pi}=3/2^+$ band, largely includes 3/2[631] band. Coriolis coupled with the 1/2[631] band. ^(a) Band(D): $K^{\pi}=3/2^-$ band. [&] Band(E): 5/2[633] band.

^{*a*} Band(F): K=1/2.

$\gamma(^{225}\mathrm{Ra})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [@]	δ	α &	Comments
25.41	5/2+	25.39 2	100#	0.0 1/2+	(E2)		7377	B(E2)(W.u.)=102 6
31.56	3/2-	31.50.5	100 [#]	$0.0 1/2^+$	E1		2.44	$B(E1)(W_{11})=0.00081.20$
42.77	$3/2^+$	17.36.3	110 60	$25.41 \ 5/2^+$	(M1)		140.6	B(M1)(W.u.) > 0.0064
		42.82.5	100 7	$0.0 1/2^+$	(M1+E2)	0.28 7	77 20	B(M1)(W.u.) > 0.00027; B(E2)(W.u.) > 2.0
55.16	$(1/2^{-})$	23.6	46 4	31.56 3/2-	(M1+E2)	0.034 34	241 12	
		55.11 <i>3</i>	100 16	$0.0 1/2^+$	· · · · ·			
69.36	$(7/2)^{-}$	37.8 1	0.50 25	31.56 3/2-	(E2)		1040	
	.,,	43.990 10	100 5	$25.41 \ 5/2^+$	E1		1.002	
100.50	$(9/2)^+$	31.10 5	100 10	69.36 (7/2)-				
		75.09 7	72 16	$25.41 \ 5/2^+$	E2		37.6	
111.60	$7/2^{+}$	11.1 <i>I</i>		$100.50 (9/2)^+$				
		42.3 1	6.2 7	69.36 (7/2)-				
		68.83 <i>3</i>	10.2 10	42.77 3/2+	E2		57.0	
		86.25 4	100 8	25.41 5/2+	M1+E2	0.27 9	6.0 7	
120.36	5/2-	50.99 4	39 10	69.36 (7/2)-				
		77.63 5	100 14	42.77 3/2+				
		94.92 8	30 7	25.41 5/2+				
149.96	3/2+	94.73 2	33 <i>3</i>	55.16 (1/2-)				
		107.108 8	100 6	42.77 3/2+	M1+E2	0.3 <i>3</i>	13.1 6	
		124.55 5	85 8	25.41 5/2+	(M1)		8.84	
		150.04 <i>3</i>	7.3 19	$0.0 1/2^+$	M1+E2	0.4 4	4.7 5	
179.75	$5/2^{+}$	30.3 1	<3.5	149.96 3/2+	(M1+E2)		≈223	
		68.09 4	5.8 9	111.60 7/2+	M1+E2	0.32 16	15 5	
		110.332 8	10.5 11	69.36 (7/2)-				
		136.990 4	100 3	42.77 3/2+	M1(+E2)		6.91	
		148.15 4	75 6	31.56 3/2-	E1		0.1877	
		154.336 10	65 2	25.41 5/2+	M1+E2	0.4 4	4.4 4	
		179.757 7	16.7 14	$0.0 1/2^+$	E2		0.884	
≈203.5?	$(9/2^{-})$	134.2 1		69.36 (7/2)	(M1)		7.14	
220.55	$(1/2^+, 9/2^+)$	109.2	86 16	111.60 7/2+				
		119.98 2	100 40	$100.50 (9/2)^{+}$				
225.2	2/2-	194.3 3	60 <i>40</i>	25.41 5/2				
225.2	3/2	45.2 2	5.6 10	1/9./5 5/2*				
		/5.1 /	45 4	$149.96 \ 3/2^{-1}$	M1 . E2		2 4 12	
		109.9 1	20 2	33.10 (1/2)	MIT+E2		2.4 13	
		182.5 1	100	$42.77 \ 3/2^{-1}$				
		195.5 5	13 3	$31.30 \ 5/2$				
		199./ 1	55 5 55 1	$23.41 \ 3/2^{+}$				
226.6	(11/2+)	223.1 1	<i>33 4</i>	0.0 1/2	D (1 D 2)		50.00	
226.9	$(11/2^+)$	126.4 2	100"	$100.50 (9/2)^+$	[M1,E2]	0.11.17	5.8 23	
236.25	5/2+	56.518 5	6.5 <i>5</i>	179.75 5/2*	M1+E2	0.11 11	18.9 <i>16</i>	

$\gamma(^{225}\text{Ra})$	(continued)
---------------------------	-------------

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [@]	α &
236.25	$5/2^{+}$	86.40 5	58 <i>3</i>	149.96	3/2+	M1	5.03
	,	115.98 10	0.40 7	120.36	5/2-		
		124.65 5	16.7 14	111.60	7/2+	(M1)	8.82
		166.976 7	4.7 <i>3</i>	69.36	$(7/2)^{-}$		
		193.509 4	100	42.77	3/2+	M1	2.53
		204.690 5	13.5 7	31.56	3/2-	(E1)	0.0861
		210.853 <i>3</i>	63 7	25.41	5/2+	M1	1.98
		236.249 8	3.95 21	0.0	$1/2^{+}$	E2	0.333
243.56	7/2+	123.193 13	37.3 18	120.36	5/2-		
		131.926 5	83 <i>3</i>	111.60	7/2+	M1	7.49
		142.962 5	100 3	100.50	$(9/2)^+$	M1	5.97
		174.82 2	<8	69.36	$(1/2)^{-}$		
		200.807 16	17.0 8	42.77	3/2+		1.01
		218.154 <i>17</i>	46 6	25.41	5/2	MI	1.81
≈248.5?		68.8 ^{<i>ab</i>}		179.75	5/2+		
260.2	$(5/2)^{-}$	80.3 1	10.8 21	179.75	5/2+		
		110.3 <i>1</i>	83 <i>13</i>	149.96	$3/2^{+}$	(E1)	0.385
		139.8 <i>1</i>	46 4	120.36	5/2-	M1+E2	4.6 21
		190.8 <i>1</i>	100 9	69.36	$(7/2)^{-}$	M1	2.63
		217.5 1	37 4	42.77	$3/2^{+}$		
		228.6 1	13.7 17	31.56	3/2-		
		234.8 1	60 5	25.41	5/2+		
267.92	7/2+	31.57 9	5.7 9	236.25	5/2+		
		117.99 15	1.1 4	149.96	3/2+		
		147.64 5	17.2 18	120.36	5/2-	E1	0.1893
		156.409 9	100 3	111.60	7/2+	M1	4.62
		167.45 5	4.3 9	100.50	(9/2)		
		225.149 19	6.0 9	42.77	3/2+	1.01	1.05
070.15		242.4 2	1.9 13	25.41	5/2	MI	1.35
272.15		30.3ª		243.56	1/2*		
		68.8 ⁴⁰		≈203.5?	$(9/2^{-})$		
		160.6		111.60	7/2+		
		171.75 2		100.50	$(9/2)^+$		
284.49	7/2+	63.7 2	3.6 15	220.55	$(7/2^+, 9/2^+)$		
		104.6 <mark>0</mark> 2	62	179.75	5/2+		
		134.2 ^{<i>a</i>}	≤2.2	149.96	3/2+		
		172.926 18	80 8	111.60	7/2+	M1	3.47
		183.928 8	100 5	100.50	$(9/2)^+$	M1(+E2)	2.92
		215.100 10	97 8	69.36	$(7/2)^{-}$		
		259.08 4	24 4	25.41	5/2+		
321.76	$(9/2^+)$	49.75 8	11.1 <i>11</i>	272.15			

S

γ ⁽²²⁵Ra) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult.@	δ	α &
321.76	$(9/2^+)$	53.75 20	5.8 16	267.92	7/2+			
		78.3 2	4.2 11	243.56	7/2+			
		101.1 2	9.5 16	220.55	$(7/2^+, 9/2^+)$			
		142.0 <i>1</i>	5.8 16	179.75	5/2+			
		210.15 8	100 22	111.60	7/2+			
		221.22 5	12 4	100.50	$(9/2)^+$			
		252.43 <i>3</i>	49 7	69.36	$(7/2)^{-}$			
		296.2 2	≈6	25.41	5/2+			
390.0	$(11/2^+)$	163.34 17		226.9	$(11/2^+)$			
		169.09 <i>3</i>		220.55	$(7/2^+, 9/2^+)$			
		174.22 ^{<i>a</i>} 22		≈215.8?				
394.2	3/2-,5/2	134.0 <i>1</i>	45 15	260.2	$(5/2)^{-}$			
		157.9 <i>1</i>	65 15	236.25	5/2+			
		169.0 <i>3</i>	100 50	225.2	3/2-			
		244.2 1	35 10	149.96	3/2+			
		324.7 2	20 5	69.36	$(7/2)^{-}$			
		368.8 2	40 15	25.41	5/2+			
394.72	$(3/2, 5/2, 7/2)^+$	126.5 3	23 11	267.92	7/2+			
		151.6 <i>3</i>	≈53	243.56	7/2+			
		158.42 12	100 11	236.25	5/2+	M1(+E2)	< 0.9	4.5 14
		174.22 ^a 11		220.55	$(7/2^+, 9/2^+)$			
478.4	(3/2)	242.1 <i>1</i>	24 3	236.25	5/2+			
		253.4 1	29 5	225.2	3/2-			
		328.6 1	20 5	149.96	3/2+			
		358.1 <i>3</i>	84	120.36	5/2-			
		435.6 1	71 8	42.77	3/2+			
		453.0 <i>1</i>	50 7	25.41	5/2+			
		478.3 1	100 10	0.0	$1/2^{+}$			
724.1	(3/2, 5/2)	464.1 <i>1</i>	36 7	260.2	$(5/2)^{-}$			
		499.0 2	100 16	225.2	3/2-			
		574.1 2	43 7	149.96	3/2+			

[†] From ²²⁹Th α decay and ²²⁵Fr β^- decay.

6

[‡] Relative photon intensity deexciting each level. [#] Set 100 (β . Singh). [@] From ce work in ²²⁹Th α decay and γ -x ray coincidence data in ²²⁵Fr β^- decay. [&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Multiply placed.

^b Placement of transition in the level scheme is uncertain.

²²⁵₈₈Ra₁₃₇

²²⁵₈₈Ra₁₃₇

9

 $^{225}_{88}$ Ra 137 -9

 $^{225}_{88}$ Ra $_{137}$ -9

From ENSDF

Adopted Levels, Gammas

Band(E): 5/	2[633] band
(13/2+)	487

(11/2⁺) 390.0

 $^{225}_{88}\rm{Ra}_{137}$

Adopted Levels, Gammas (continued)

Band(F): K=1/2

(3/2⁻) 967

(5/2-) 956

(1/2⁻) 898

²²⁵₈₈Ra₁₃₇