	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. K. Jain (a), R. Raut (b), J. K. Tuli	NDS 110, 1409 (2009)	1-Dec-2008

Parent: ²²⁵Rn: E=0.0; $J^{\pi}=7/2^{-}$; $T_{1/2}=4.66 \text{ min } 4$; $Q(\beta^{-})=2.68\times10^{3} SY$; $\%\beta^{-}$ decay=100.0

1997Bu03: ²²⁵Fr sources from Isolde mass separator following spallation of UC₂ target by 600 MeV protons; two HPGe detectors (FWHM=1.8 keV at 1333); one HPGe x-ray detector (FWHM=0.70 keV at 122 keV); mini-Orange electron spectrometer; measured Eγ, Iγ, E(ce), I(ce), γγ coin, γ-ce coin, parent T_{1/2}. Supersedes 1987BoZP.

The decay scheme is taken from 1997Bu03. Note, however, that negative β^- feeding of the 28 level is implied unless $\delta(28\gamma)=0.6$, significantly larger than measured values (0.32 2 and 0.44 2). Also, the measured multipolarity of the 202 γ is inconsistent with its placement.

²²⁵Fr Levels

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	Comments
0.0	3/2-	
28.545 23	5/2-	Apparent $\%\beta^{-}$ feeding to level of $-22\ 21$ may indicate that $\delta(29\gamma)$ is significantly larger than $\alpha(M)$ exp and $\alpha(N)$ exp imply.
82.515 24	$7/2^{-}$	
128.06 4	9/2-	
142.59 <i>3</i>	$(3/2)^+$	
151.63 <i>3</i>	5/2+	
181.66 <i>3</i>	$(9/2)^+$	
198.23 <i>3</i>	$(7/2)^+$	
203.40 4	$(9/2)^{-}$	
207.20 3	$(5/2)^{-}$	
228.36 5	$(7/2,9/2)^{-}$	
241.37 3	$(5/2)^+$	
293.23 4	$(7/2)^+$	
303.25 5	7/2+,9/2+,11/2+	
330.10 4	$(5/2,7/2)^{-}$	
346.03 4	$(9/2)^{+}$	
409.04 4	$5/2,7/2^{(+)}$	
424.97 8	$(5/2^{-},7/2^{-})$	
480.09 6	$(5/2, 7/2, 9/2)^+$	
502.96 5	$(5/2)^{-}$	
559.68 4	7/2-	
5/1.51 5	(1/2)	
618.66 6	$(5/2, 1/2, 9/2)^+$	
635.60 5	$(3/2, 5/2, 1/2)^{+}$	
005.18 4	$(1/2)^{-1}$	
721.00 5	(3/2) $(5/2,7/2)^+$	
744.20 4	(3/2, 7/2)	
778 64 4	7/2-	
832 18 7	$(5/2^+ 7/2 9/2^+)$	
839.09.5	$(5/2,7/2,9/2)^+$	
865 74 4	$(7/2)^{-}$	
885.95.5	$(3/2.5/2)^+$	
935.68 8	$(5/2^{-}, 7/2, 9/2^{+})$	
979.66 5	$(3/2^{-}, 5/2)$	
1047.44 5	× 1 - 1 - 1 - 1	
1063.03 5		
1101.84 8	$(7/2, 9/2, 11/2)^+$	
1185.18 5	$(5/2^-, 7/2)$	
1226.03 7		

225 Rn β^- decay 1997Bu03 (continued)

²²⁵Fr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
1392.17 6	(5/2,7/2 ⁻)	1519.42 6	1577.88 7	$(5/2^+,7/2)$	1655.35 <i>5</i>	$(5/2,7/2^+)$
1479.63 5	(7/2)	1526.13 <i>10</i>	1614.26 7	$(5/2,7/2^+)$	1749.84 <i>6</i>	$(5/2,7/2^+)$

[†] From least-squares adjustment of $E\gamma$, omitting the 136.0 γ , 668.05 γ and 1421.0 γ each of which fits its placement very poorly (at least 5 σ from least-squares adjusted value), and all unresolved or multiply-placed lines.

[‡] From Adopted Levels.

β^- radiations

E(decay)	E(level)	Ιβ ^{-†#}	Log <i>ft</i> ‡	Comments
(930 <i>SY</i>)	1749.84	1.53 9	6.4 6	av $E\beta = 3.0 \times 10^2 I2$
(1024 SY)	1655.35	1.32 8	6.6 6	av $E\beta = 3.3 \times 10^2 \ I2$
(1065 SY)	1614.26	0.84 6	6.9 5	av $E\beta = 3.5 \times 10^2 \ I2$
(1102 <i>SY</i>)	1577.88	1.04 6	6.8 5	av $E\beta = 3.6 \times 10^2 \ 12$
(1153 <i>SY</i>)	1526.13	0.58 7	7.2 5	av $E\beta = 3.8 \times 10^2 \ 12$
(1160 <i>SY</i>)	1519.42	0.93 8	7.0 5	av $E\beta = 3.9 \times 10^2 \ 12$
(1200 SY)	1479.63	2.58 15	6.5 5	av E β =4.0×10 ² 12
(1287 SY)	1392.17	0.66 5	7.2 5	av E β =4.4×10 ² 12
(1453 <i>SY</i>)	1226.03	0.44 5	7.6 4	av $E\beta = 5.0 \times 10^2 I2$
(1494 <i>SY</i>)	1185.18	1.73 10	7.1 4	av $E\beta = 5.2 \times 10^2 \ 13$
(1578 <i>SY</i>)	1101.84	0.58 5	7.6 4	av $E\beta = 5.5 \times 10^2 \ 13$
(1616 <i>SY</i>)	1063.03	1.06 7	7.4 4	av $E\beta = 5.7 \times 10^2 \ 13$
(1632 <i>SY</i>)	1047.44	1.00 8	7.5 4	av $E\beta = 5.7 \times 10^2 \ 13$
(1700 <i>SY</i>)	979.66	1.15 16	7.4 4	av E β =6.0×10 ² 13
(1744 [@] SY)	935.68	0.01 3	8.6 5	av E β =6.2×10 ² 13
(1794 <i>SY</i>)	885.95	2.41 22	7.2 3	av $E\beta = 6.4 \times 10^2$ 13
(1814 <i>SY</i>)	865.74	5.4 <i>3</i>	6.9 <i>3</i>	av $E\beta = 6.5 \times 10^2$ 13
(1840 <i>SY</i>)	839.09	1.35 10	7.6 3	av E β =6.6×10 ² 13
(1847 <i>SY</i>)	832.18	0.30 6	8.2 3	av $E\beta = 6.6 \times 10^2 \ 13$
(1901 <i>SY</i>)	778.64	27.0 15	6.2 3	av $E\beta = 6.8 \times 10^2 \ 13$
(1925 ^(a) SY)	754.53	0.47 5	8.2 4	av E β =6.9×10 ² 13
(1935 [@] SY)	744.26	1.06 19	7.8 <i>3</i>	av E β =7.0×10 ² 13
(1958 SY)	721.06	3.97 24	7.1 3	av E β =7.1×10 ² 13
(2014 <i>SY</i>)	665.18	1.11 9	7.8 <i>3</i>	av $E\beta = 7.3 \times 10^2 \ I3$
(2108 <i>SY</i>)	571.51	1.11 8	7.8 <i>3</i>	av E β =7.7×10 ² 13
(2120 <i>SY</i>)	559.68	6.2 4	7.1 3	av $E\beta = 7.7 \times 10^2 \ 13$
(2177 <i>SY</i>)	502.96	0.69 7	8.1 3	av $E\beta = 8.0 \times 10^2 \ I3$
(2199 <i>SY</i>)	480.09	1.43 18	7.75 25	av E β =8.1×10 ² 13
(2255 [@] SY)	424.97	0.64 18	8.1 <i>3</i>	av E β =8.3×10 ² 13
(2333 <i>SY</i>)	346.03	3.0 7	7.51 25	av E β =8.6×10 ² 13
(2349 [@] SY)	330.10	0.8 4	8.1 4	av E β =8.7×10 ² 13
(2386 SY)	293.23	2.88 25	7.58 23	av E β =8.8×10 ² 13
(2451 <i>SY</i>)	228.36	2.8 11	7.6 <i>3</i>	av E β =9.1×10 ² 13
$(2476^{@} SY)$	203.40	3.2 18	7.6 4	av E β =9.2×10 ² 13
(2481 <i>SY</i>)	198.23	3.3 6	7.60 24	av E β =9.2×10 ² 13
(2498 [@] SY)	181.66	5.1 14	7.41 25	av $E\beta = 9.3 \times 10^2 \ 13$
(2528 <i>SY</i>)	151.63	2.4 5	7.79 23	av E β =9.4×10 ² 13

$^{225}\mathbf{Rn}\,\beta^-$ decay 1997Bu03 (continued)

 β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger \#}$	$\log ft^{\ddagger}$		Comments	
(2537 SY)	142.59	2.4 3	9.0 ¹ <i>u</i> 4	av E β =9.1×10 ² 13		
(2551 [@] SY)	128.06	6 <i>3</i>	7.3 <i>3</i>	av E β =9.5×10 ² 13		

[†] From intensity balance at level, assigning $(1/2)I\gamma \pm (1/2)I\gamma$ at each placement for doubly-placed transitions whose intensity ⁴ From intensity balance at level, assigning (1/2)(y±(1/2))y at division has not been determined.
[‡] Calculated assuming an uncertainty of 300 keV in Q value.
[#] Absolute intensity per 100 decays.
[@] Existence of this branch is questionable.

 $\gamma(\frac{225}{Fr})$

Iγ normalization: From [Σ (I(γ+ce) to g.s. and 29 level) omitting I(γ+ce)(29)]=100; this assumes negligible β^- feeding from the 7/2[743] parent to the 3/2[532] g.s. (Δ K= Δ N= Δ J=2, $\Delta\pi$ =no) and the 5/2 3/2[532] 28 level. Note that Iγ normalization becomes 0.0071 *19* if δ (28γ)=0.45 *15* (assuming Σ (I(γ+ce) to g.s.)=100), but this δ (28γ) implies negative β^- feeding to the 29 level.

Eγ	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{\dagger}	$I_{(\gamma+ce)}^{b}$	Comments
21.72 10	12.2 26	203.40	(9/2)-	181.66	(9/2)+	[E1]		6.22 12		α (L)=4.66 9; α (M)=1.197 23; α (N+)=0.367 7 α (N)=0.302 6; α (O)=0.0586 11; α (P)=0.00653 12; α (Q)=0.0001379 23
28.51 5	12.2 22	28.545	5/2-	0.0	3/2-	M1+E2	0.45 15	7.×10 ² 4		$\alpha(L)=5.E2 3; \alpha(M)=1.4\times10^2 7; \alpha(N+)=46 23$ $\alpha(N)=37 19; \alpha(O)=8 4; \alpha(P)=1.0 5;$ $\alpha(Q)=0.0099 5$ Mult.: $\alpha(M)\exp=89 6, \alpha(N)\exp=35.7 26.$ $\delta: 0.32 2$ from $\alpha(M)\exp; 0.44 2$ from $\alpha(N)\exp,$ assuming no contribution from higher shells and $\alpha(N)(M1)=5.31, \alpha(N)(E2)=195$ from 2002Ba85. However, intensity balance at the 29 keV level implies a lower limit for $\alpha(\exp)$ of $1.1\times10^3 2$ and this corresponds to $\delta\approx0.6$, so the evaluators adopt $\delta=0.45 15.$
30.0 ^{<i>a</i>}	а	181.66	(9/2)+	151.63	5/2+	[E2]		2.94×10 ³	400	$\begin{array}{l} {\rm ce(L)}/(\gamma+{\rm ce})=0.738 \ 8; \ {\rm ce(M)}/(\gamma+{\rm ce})=0.198 \ 4; \\ {\rm ce(N+)}/(\gamma+{\rm ce})=0.0637 \ 13 \\ {\rm ce(N)}/(\gamma+{\rm ce})=0.0517 \ 10; \ {\rm ce(O)}/(\gamma+{\rm ce})=0.01066 \\ 21; \ {\rm ce(P)}/(\gamma+{\rm ce})=0.00135 \ 3; \\ {\rm ce(Q)}/(\gamma+{\rm ce})=1.68\times10^{-6} \ 4 \end{array}$
45.5 ^{&} 1	32 5	128.06	9/2-	82.515	7/2-	[M1]		28.1		$\begin{aligned} &\alpha(L)=21.3 \ 4; \ \alpha(M)=5.09 \ 8; \ \alpha(N+)=1.68 \ 3\\ &\alpha(N)=1.335 \ 21; \ \alpha(O)=0.299 \ 5; \ \alpha(P)=0.0479 \ 8; \\ &\alpha(Q)=0.00268 \ 5\\ &\text{Mult.:} \ (\alpha(L1)\exp+\alpha(L2)\exp)\leq37. \end{aligned}$
46.6 ^d 1	6 ^{<i>d</i>} 2	198.23	(7/2)+	151.63	5/2+	[M1]		26.2		$\begin{array}{l} \alpha(L)=19.9 \ 3; \ \alpha(M)=4.75 \ 8; \ \alpha(N+)=1.570 \ 25 \\ \alpha(N)=1.245 \ 20; \ \alpha(O)=0.278 \ 5; \ \alpha(P)=0.0446 \ 7; \\ \alpha(Q)=0.00250 \ 4 \\ \\ \text{Mult.:} \ (\alpha(L1)\exp{+\alpha(L2)\exp{)}\leq196}, \\ \alpha(M)\exp{\leq10.0 \ \text{for doubly-placed } \gamma. \end{array}$
46.6 ^{<i>d</i>} 1	29 ^d 2	228.36	(7/2,9/2) ⁻	181.66	(9/2)+	(E1)		0.823 13		α(L)=0.623 10; α(M)=0.1522 23; α(N+)=0.0480 8 α(N)=0.0389 6; α(O)=0.00802 13; $α(P)=0.001046 16; α(Q)=2.96×10^{-5} 5$ Mult.: $(α(L1)exp+α(L2)exp)≤40.5,$ α(M)exp≤2.1 for doubly-placed γ dominated by this transition; not M1 from level scheme.
53.6 [@] 1	30 [@] 10	181.66	$(9/2)^+$	128.06	9/2-	[E1]		0.566		α (L)=0.429 7; α (M)=0.1043 16;

 $^{225}_{87}\mathrm{Fr}_{138}\text{-}4$

					225 Rn β^-	decay	1997Bu03	(continued))
						$\gamma(^{225}\text{Fr})$	(continued)	<u>)</u>	
E_{γ}	I_{γ}^{b}	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult.‡	δ	α^{\dagger}	Comments
									$ \begin{array}{l} \alpha(\text{N}+)=0.0330\ 5\\ \alpha(\text{N})=0.0267\ 4;\ \alpha(\text{O})=0.00555\ 9;\ \alpha(\text{P})=0.000738\ 11;\\ \alpha(\text{Q})=2.20\times10^{-5}\ 4 \end{array} $
53.93 ^{&} 5	210 12	82.515	7/2-	28.545	5/2-	M1+E2	0.18 3	21.8 17	$\begin{array}{l} \alpha(L)=16.4 \ 13; \ \alpha(M)=4.0 \ 4; \ \alpha(N+)=1.33 \ 11 \\ \alpha(N)=1.06 \ 9; \ \alpha(O)=0.232 \ 18; \ \alpha(P)=0.0353 \ 23; \\ \alpha(Q)=0.00159 \ 3 \\ \\ \text{Mult.:} \ (\alpha(L1)\exp{+\alpha(L2)\exp{)}=13.4 \ 10, \ \alpha(L3)\exp{=3.5 \ 3}, \\ \alpha(M)\exp{=4.3 \ 3, \ \alpha(N)\exp{<1.8}.} \\ \delta: \ \text{from } \delta{=}0.17 \ 3 \ \text{from } \alpha(L)\exp{=16.9 \ 10} \ \text{and } 0.19 \ 3 \ \text{from} \end{array}$
									α (M)exp. Note that δ <0.13 from α (L12)exp and δ =0.250 <i>12</i> from α (L3)exp. 1997Bu03, however, adopted δ =0.31 <i>4</i> from these data. %I γ =1.16 7 assuming adopted normalization.
x58.0 1	13.6 17								
62.48 5 64.6 <i>1</i>	30.3 <i>15</i> 10.0 <i>19</i>	207.20	(5/2) ⁻	142.59	$(3/2)^+$	[E1]		0.343	α (L)=0.260 4; α (M)=0.0630 10; α (N+)=0.0201 3 α (N)=0.01620 24; α (O)=0.00339 5; α (P)=0.000462 7; α (O)=1.466×10 ⁻⁵ 22
69.12 ^{&} 5	136 7	151.63	5/2+	82.515	7/2-	E1		0.287	$\alpha(L)=0.217 \ 3; \ \alpha(M)=0.0525 \ 8; \ \alpha(N+)=0.01675 \ 24$ $\alpha(N)=0.01351 \ 19; \ \alpha(O)=0.00284 \ 4; \ \alpha(P)=0.000390 \ 6;$ $\alpha(Q)=1.264\times10^{-5} \ 18$ Mult.: $(\alpha(L1)\exp+\alpha(L2)\exp)<1.8.$
70.15 ^{&} 5	54 3	198.23	$(7/2)^+$	128.06	9/2-	[E1]		0.275	$\alpha(L)=0.209 \ 3; \ \alpha(M)=0.0505 \ 8; \ \alpha(N+)=0.01610 \ 23 \\ \alpha(N)=0.01298 \ 19; \ \alpha(O)=0.00273 \ 4; \ \alpha(P)=0.000376 \ 6; \\ \alpha(O)=1.224 \times 10^{-5} \ 18 $
71.16 <i>10</i>	20.1 23	480.09	(5/2,7/2,9/2)+	409.04	5/2,7/2 ⁽⁺⁾	[M1]		7.58	α (L)=5.75 9; α (M)=1.372 20; α (N+)=0.454 7 α (N)=0.360 6; α (O)=0.0804 12; α (P)=0.01290 19; α (Q)=0.000722 11
82.55 [@] 5	80 [@] 20	82.515	7/2-	0.0	3/2-	E2		21.6	$\alpha(L)=15.93\ 23;\ \alpha(M)=4.31\ 7;\ \alpha(N+)=1.394\ 20$ $\alpha(N)=1.130\ 17;\ \alpha(O)=0.234\ 4;\ \alpha(P)=0.0300\ 5;$ $\alpha(Q)=6.20\times10^{-5}\ 9$ Mult.: $(\alpha(L1)\exp+\alpha(L2)\exp)=8\ 3,\ \alpha(L3)\exp=6.1\ 23,\ \alpha(M)\exp=5.4\ 20.$ %Iy=0.44\ 10 assuming adopted normalization.
89.7 [@] 1	26 [@] 3	241.37	(5/2)+	151.63	5/2+	M1		3.86	$\alpha(L)=2.93$ 5; $\alpha(M)=0.699$ 10; $\alpha(N+)=0.231$ 4 $\alpha(N)=0.183$ 3; $\alpha(O)=0.0410$ 6; $\alpha(P)=0.00658$ 10; $\alpha(Q)=0.000368$ 6 Mult: $(\alpha(L1)\exp+\alpha(L2)\exp)=2.0.3$
94.9 [@] 1	14 [@] 3	293.23	(7/2)+	198.23	(7/2)+	M1		3.28	$\begin{aligned} &\alpha(L)=2.49 \ 4; \ \alpha(M)=0.594 \ 9; \ \alpha(N+)=0.196 \ 3\\ &\alpha(N)=0.1557 \ 23; \ \alpha(O)=0.0348 \ 5; \ \alpha(P)=0.00558 \ 8;\\ &\alpha(Q)=0.000312 \ 5\\ &\text{Mult.:} \ (\alpha(L1)\exp+\alpha(L2)\exp)=1.8 \ 5. \end{aligned}$

S

 $^{225}_{87}\mathrm{Fr}_{138}$ -5

				225	$\operatorname{Rn}\beta^-$ decay 1	997Bu03 (c	ontinued)	
					$\gamma(^{225}\mathrm{Fr})$ ((continued)		
E_{γ}	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	α^{\dagger}	Comments
99.15 5	1.50×10 ³ 20	181.66	(9/2)+	82.515	7/2-	E1	0.1095	$\alpha(L)=0.0831 \ 12; \ \alpha(M)=0.0200 \ 3; \ \alpha(N+)=0.00642 \ 9$ $\alpha(N)=0.00516 \ 8; \ \alpha(O)=0.001098 \ 16; \ \alpha(P)=0.0001564 \ 22;$ $\alpha(Q)=5.67\times10^{-6} \ 8$ Mult.: $(\alpha(L1)\exp+\alpha(L2)\exp)\leq 0.62, \ \alpha(L3)\exp\leq 0.31, \ \alpha(M)\exp< 0.21$
99.4 [@] 1	150 [@] 50	128.06	9/2-	28.545	5/2-	E2	9.02	$\begin{aligned} &\alpha(L)=6.64 \ 10; \ \alpha(M)=1.80 \ 3; \ \alpha(N+)=0.582 \ 9 \\ &\alpha(N)=0.472 \ 7; \ \alpha(O)=0.0977 \ 15; \ \alpha(P)=0.01259 \ 19; \\ &\alpha(Q)=3.22\times10^{-5} \ 5 \\ &\text{Mult.:} \ (\alpha(L1)\exp+\alpha(L2)\exp)=4.8 \ 16, \ \alpha(L3)\exp\leq3.1, \end{aligned}$
104.72 10	16 <i>3</i>	346.03	(9/2)+	241.37	(5/2)+	[E2]	7.37	$\alpha(M)\exp\{2.1.$ $\alpha(K)=0.301\ 5;\ \alpha(L)=5.21\ 8;\ \alpha(M)=1.410\ 21;\ \alpha(N+)=0.456$
105.29 10	24 3	665.18	(7/2)+	559.68	7/2-	[E1]	0.415	$\alpha(N)=0.370\ 6;\ \alpha(O)=0.0767\ 12;\ \alpha(P)=0.00989\ 15;\alpha(Q)=2.72\times10^{-5}\ 4\alpha(K)=0.321\ 5;\ \alpha(L)=0.0709\ 10;\ \alpha(M)=0.01702\ 25;\alpha(N+)=0.00547\ 8\alpha(N)=0.00440\ 7;\ \alpha(O)=0.000938\ 14;\ \alpha(P)=0.0001343\ 19;\alpha(O)=4\ 95\times10^{-6}\ 7$
114.03 ^{&} 5	157 8	142.59	(3/2)+	28.545	5/2-	E1	0.344	$\alpha(\mathbf{K})=0.268 \ 4; \ \alpha(\mathbf{L})=0.0574 \ 8; \ \alpha(\mathbf{M})=0.01377 \ 20; \\ \alpha(\mathbf{N}+)=0.00444 \ 7 \\ \alpha(\mathbf{N})=0.00356 \ 5; \ \alpha(\mathbf{O})=0.000762 \ 11; \ \alpha(\mathbf{P})=0.0001097 \ 16; \\ \alpha(\mathbf{Q})=4.13\times10^{-6} \ 6 \\ \text{Mult.:} \ (\alpha(\mathbf{L}1)\exp+\alpha(\mathbf{L}2)\exp)\leq 0.2, \ \alpha(\mathbf{M})\exp\leq 0.29. $
115.75 ^{&} 5	116 6	198.23	(7/2)+	82.515	7/2-	E1	0.332	$\begin{aligned} &\alpha(\mathbf{K})=0.259 \ 4; \ \alpha(\mathbf{L})=0.0552 \ 8; \ \alpha(\mathbf{M})=0.01324 \ 19; \\ &\alpha(\mathbf{N}+)=0.00426 \ 6 \\ &\alpha(\mathbf{N})=0.00342 \ 5; \ \alpha(\mathbf{O})=0.000733 \ 11; \ \alpha(\mathbf{P})=0.0001057 \ 15; \\ &\alpha(\mathbf{Q})=4.00\times10^{-6} \ 6 \\ &\text{Mult.:} \ (\alpha(\mathbf{L}1)\exp+\alpha(\mathbf{L}2)\exp)\leq 0.54. \end{aligned}$
120.83 ^{&} 5	139 7	203.40	(9/2)-	82.515	7/2-	M1+E2	6.2 22	$\alpha(K)=4$ 4; $\alpha(L)=2.0$ 8; $\alpha(M)=0.51$ 22; $\alpha(N+)=0.17$ 7 $\alpha(N)=0.13$ 6; $\alpha(O)=0.028$ 12; $\alpha(P)=0.0040$ 12; $\alpha(Q)=9.E-5$ 7 Mult.: $\alpha(K)\exp=6$ 2, $(\alpha(L1)\exp+\alpha(L2)\exp)=1.6$ 1.
123.06 ^{&} 5	453 23	151.63	5/2+	28.545	5/2-	E1	0.286	$\alpha(K)=0.224 \ 4; \ \alpha(L)=0.0470 \ 7; \ \alpha(M)=0.01126 \ 16; \\ \alpha(N+)=0.00363 \ 5 \\ \alpha(N)=0.00291 \ 4; \ \alpha(O)=0.000625 \ 9; \ \alpha(P)=9.05\times10^{-5} \ 13; \\ \alpha(Q)=3.48\times10^{-6} \ 5 \\ Mult.: \ (\alpha(L1)exp+\alpha(L2)exp)\le0.34, \ \alpha(L3)exp\le0.10, \\ \alpha(M)exp\le0.25 \\ \ \alpha(L3)exp\le0.25 \\ \ \alpha(L3)exp\ge0.25 \\ \ \alpha($
126.80 10	26.2 14	330.10	(5/2,7/2)-	203.40	(9/2)-	[M1,E2]	5.3 21	$\alpha(K)=3 \ 3; \ \alpha(L)=1.6 \ 6; \ \alpha(M)=0.42 \ 17; \ \alpha(N+)=0.14 \ 6 \ \alpha(N)=0.11 \ 5; \ \alpha(O)=0.023 \ 9; \ \alpha(P)=0.0033 \ 9; \ \alpha(Q)=8.E-5 \ 6$
$127.31^{c} 10 \\ 127.31^{c} 10 \\ 131.84^{@\&} 10$	$17^{c} 3$ $17^{c} 3$ $74^{@} 4$	1063.03 1519.42 330.10	(5/2,7/2)-	935.68 1392.17 198.23	$(5/2^-,7/2,9/2^+)$ $(5/2,7/2^-)$ $(7/2)^+$	E1	0.242	$\alpha(K)=0.190$ 3; $\alpha(L)=0.0392$ 6; $\alpha(M)=0.00939$ 14;

 $^{225}_{87}\mathrm{Fr}_{138}$ -6

					225 Rn β^- d	ecay 199	7Bu03 (co	ntinued)
						$\gamma(^{225}\text{Fr})$ (con	ntinued)	
Eγ	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	α^{\dagger}	Comments
								$ \frac{\alpha(N+)=0.00303 \ 5}{\alpha(N)=0.00243 \ 4; \ \alpha(O)=0.000522 \ 8; \ \alpha(P)=7.61\times10^{-5} \ 11;} \\ \alpha(Q)=2.98\times10^{-6} \ 5 \\ Mult.: \ (\alpha(L1)exp+\alpha(L2)exp)\leq0.07. $
136.06 ^{&#} 5	47.5 24	754.53		618.66	(5/2,7/2,9/2)+			
141.65 ^d 10	7 ^d 3	293.23	(7/2)+	151.63	5/2+	[M1]	5.32	$ \begin{array}{l} \alpha(\mathrm{K}) = 4.28 \ 6; \ \alpha(\mathrm{L}) = 0.786 \ 12; \ \alpha(\mathrm{M}) = 0.187 \ 3; \ \alpha(\mathrm{N}+) = 0.0620 \ 9 \\ \alpha(\mathrm{N}) = 0.0491 \ 7; \ \alpha(\mathrm{O}) = 0.01098 \ 16; \ \alpha(\mathrm{P}) = 0.001762 \ 25; \\ \alpha(\mathrm{Q}) = 9.84 \times 10^{-5} \ 14 \end{array} $
141.65 ^d 10	8 ^d 6	885.95	(3/2,5/2)+	744.26	(5/2,7/2)+	[M1,E2]	3.7 17	α (K)=2.3 20; α (L)=1.0 3; α (M)=0.27 9; α (N+)=0.09 3 α (N)=0.071 22; α (O)=0.015 5; α (P)=0.0021 4; α (Q)=5.E-5 5
142.60 ^{<i>d</i>} 5	547 ^d 28	142.59	(3/2)+	0.0	3/2-	E1	0.200	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1578\ 23;\ \alpha(\mathbf{L}) = 0.0319\ 5;\ \alpha(\mathbf{M}) = 0.00765\ 11;\\ &\alpha(\mathbf{N}+) = 0.00247\ 4\\ &\alpha(\mathbf{N}) = 0.00198\ 3;\ \alpha(\mathbf{O}) = 0.000426\ 6;\ \alpha(\mathbf{P}) = 6.25 \times 10^{-5}\ 9;\\ &\alpha(\mathbf{Q}) = 2.49 \times 10^{-6}\ 4\\ &\text{Mult.:}\ \alpha(\mathbf{K}) \exp{\leq} 0.11,\ (\alpha(\mathbf{L}1) \exp{+\alpha(\mathbf{L}2)} \exp{)\leq} 0.04,\\ &\alpha(\mathbf{M}) \exp{\leq} 0.07. \end{aligned}$
142.60 ^{<i>d</i>} 10	40 ^{<i>d</i>} 5	346.03	(9/2)+	203.40	(9/2)-	[E1]	0.200	$\alpha(K)=0.1578\ 23;\ \alpha(L)=0.0319\ 5;\ \alpha(M)=0.00765\ 11;\ \alpha(N+)=0.00247\ 4$ $\alpha(N)=0.00198\ 3;\ \alpha(O)=0.000426\ 6;\ \alpha(P)=6.25\times10^{-5}\ 9;\ \alpha(Q)=2.49\times10^{-6}\ 4$
145.80 ^{&} 5	116 6	228.36	(7/2,9/2)-	82.515	7/2-	M1+E2	3.4 16	$\alpha(K)=2.1 \ 19; \ \alpha(L)=0.93 \ 22; \ \alpha(M)=0.24 \ 7; \ \alpha(N+)=0.079 \ 22 \ \alpha(N)=0.063 \ 18; \ \alpha(O)=0.013 \ 4; \ \alpha(P)=0.0019 \ 3; \ \alpha(Q)=5.E-5 \ 4$ Mult : $\alpha(K)=x_{1}=0 \ (\alpha(L)=x_{1}+\alpha(L)=x_{2})=1 \ 0.5$
147.96 10	33 6	346.03	(9/2)+	198.23	$(7/2)^+$	M1,E2	3.2 15	$\alpha(K)=2.0$ 18; $\alpha(L)=0.88$ 19; $\alpha(M)=0.23$ 7; $\alpha(N+)=0.074$ 20 $\alpha(N)=0.060$ 17; $\alpha(Q)=0.013$ 3; $\alpha(P)=0.0018$ 3; $\alpha(Q)=5.E-5$ 4 Mult.: ($\alpha(L1)\exp+\alpha(L2)\exp)=1.3$ 4.
151.65 ^{&} 5	1000	151.63	5/2+	0.0	3/2-	E1	0.1721	$\alpha(K)=0.1362 \ 20; \ \alpha(L)=0.0272 \ 4; \ \alpha(M)=0.00651 \ 10; \alpha(N+)=0.00211 \ 3 \alpha(N)=0.001687 \ 24; \ \alpha(O)=0.000364 \ 6; \ \alpha(P)=5.36\times10^{-5} \ 8; \alpha(Q)=2.17\times10^{-6} \ 3 Mult.: \ \alpha(K)exp\leq1.1, \ (\alpha(L1)exp+\alpha(L2)exp)=\leq0.05, \alpha(L3)exp\leq0.01, \ \alpha(M)exp\leq0.10. $
164.41 ^{&} 5	79 4	346.03	(9/2)+	181.66	(9/2)+	M1+E2	2.3 12	$\alpha(K) = 1.5 \ 13; \ \alpha(L) = 0.59 \ 8; \ \alpha(M) = 0.15 \ 3; \ \alpha(N+) = 0.050 \ 10$ $\alpha(N) = 0.040 \ 8; \ \alpha(O) = 0.0085 \ 14; \ \alpha(P) = 0.00122 \ 8; \ \alpha(Q) = 4.E-5 \ 3$ Mult.: $\alpha(K) \exp = 2.2 \ 5; \ (\alpha(L1) \exp + \alpha(L2) \exp) < 1.3$.
165.20 ^{&} 5	255 13	293.23	(7/2)+	128.06	9/2-	[E1]	0.1398	$\alpha(K)=0.1110 \ 16; \ \alpha(L)=0.0218 \ 3; \ \alpha(M)=0.00522 \ 8; \\ \alpha(N+)=0.001690 \ 24 \\ \alpha(N)=0.001353 \ 19; \ \alpha(O)=0.000292 \ 5; \ \alpha(P)=4.33\times10^{-5} \ 6; \\ \alpha(Q)=1.79\times10^{-6} \ 3 \\ Mult.: \ \alpha(K)\exp{\leq}4.5, \ (\alpha(L1)\exp{+\alpha(L2)\exp})\leq0.41, \ \alpha(M)\exp{\leq}0.47. $

 $^{225}_{87}\mathrm{Fr}_{138}$ -7

I

				22	25 Rn β^{-}	decay 1	997 <mark>Bu0</mark> 3 (contin	ued)	
						γ ⁽²²⁵ Fr) (continued)		
Eγ	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α^{\dagger}	Comments
169.73 5	932 56	198.23	(7/2)+	28.545	5/2-	E1		0.1309	$\begin{aligned} &\alpha(\text{K})=0.1041 \ 15; \ \alpha(\text{L})=0.0204 \ 3; \ \alpha(\text{M})=0.00487 \ 7; \\ &\alpha(\text{N}+)=0.001577 \ 23 \\ &\alpha(\text{N})=0.001262 \ 18; \ \alpha(\text{O})=0.000273 \ 4; \\ &\alpha(\text{P})=4.05\times10^{-5} \ 6; \ \alpha(\text{Q})=1.683\times10^{-6} \ 24 \\ &\text{Mult.:} \ \alpha(\text{K})\text{exp}\leq 0.66, \ (\alpha(\text{L}1)\text{exp}+\alpha(\text{L}2)\text{exp})\leq 0.02, \\ &\alpha(\text{M})\text{exp}\leq 0.04. \end{aligned}$
174.90 [@] 10	100 [@] 30	203.40	(9/2) ⁻	28.545	5/2-	E2		0.906	$\begin{aligned} &\alpha(\text{K}) = 0.211 \ 3; \ \alpha(\text{L}) = 0.512 \ 8; \ \alpha(\text{M}) = 0.1379 \ 20; \\ &\alpha(\text{N}+) = 0.0447 \ 7 \\ &\alpha(\text{N}) = 0.0362 \ 6; \ \alpha(\text{O}) = 0.00754 \ 11; \ \alpha(\text{P}) = 0.000993 \ 15; \\ &\alpha(\text{Q}) = 6.23 \times 10^{-6} \ 9 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.33 \ 13. \end{aligned}$
175.17 ^{&} 5	136 32	303.25	7/2+,9/2+,11/2+	128.06	9/2-	E1		0.1213	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0965 \ 14; \ \alpha(\mathbf{L}) = 0.0188 \ 3; \ \alpha(\mathbf{M}) = 0.00449 \ 7; \\ &\alpha(\mathbf{N}+) = 0.001455 \ 21 \\ &\alpha(\mathbf{N}) = 0.001164 \ 17; \ \alpha(\mathbf{O}) = 0.000252 \ 4; \\ &\alpha(\mathbf{P}) = 3.74 \times 10^{-5} \ 6; \ \alpha(\mathbf{Q}) = 1.568 \times 10^{-6} \ 22 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp \leq 0.92, \ (\alpha(\mathbf{L}1) \exp + \alpha(\mathbf{L}2) \exp) \leq 0.60, \\ &\alpha(\mathbf{M}) \exp \leq 0.03. \end{aligned}$
178.66 ^{&} 5	367 18	207.20	(5/2)-	28.545	5/2-	M1+E2	1.47 +18-14	1.44 <i>10</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.84 \ 10; \ \alpha(\mathbf{L}) = 0.448 \ 7; \ \alpha(\mathbf{M}) = 0.1165 \ 22; \\ &\alpha(\mathbf{N}+) = 0.0380 \ 7 \\ &\alpha(\mathbf{N}) = 0.0306 \ 6; \ \alpha(\mathbf{O}) = 0.00649 \ 11; \ \alpha(\mathbf{P}) = 0.000907 \ 13; \\ &\alpha(\mathbf{Q}) = 2.01 \times 10^{-5} \ 22 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.88 \ 10, \ (\alpha(\mathbf{L}1) \exp + \alpha(\mathbf{L}2) \exp) = 0.27 \\ &5, \ \alpha(\mathbf{M}) \exp \leq 0.12. \end{aligned}$
186.6 [@] 3	20 [@] 4	480.09	(5/2,7/2,9/2)+	293.23	(7/2)+	M1+E2		1.6 9	$\alpha(K)=1.1 \; 9; \; \alpha(L)=0.373 \; 15; \; \alpha(M)=0.095 \; 10; \\ \alpha(N+)=0.031 \; 3 \\ \alpha(N)=0.0249 \; 25; \; \alpha(O)=0.0054 \; 4; \; \alpha(P)=0.00078 \; 3; \\ \alpha(Q)=2.5\times10^{-5} \; 20 \\ Mult.: \; \alpha(K)exp=0.54 \; 15.$
202.02 ^{&} 5	48.2 24	409.04	5/2,7/2 ⁽⁺⁾	207.20	(5/2) ⁻	(E1)		0.0860	$\alpha(K)=0.0688 \ 10; \ \alpha(L)=0.01309 \ 19; \ \alpha(M)=0.00312 \ 5; \\ \alpha(N+)=0.001014 \ 15 \\ \alpha(N)=0.000810 \ 12; \ \alpha(O)=0.0001760 \ 25; \\ \alpha(P)=2.64\times10^{-5} \ 4; \ \alpha(Q)=1.139\times10^{-6} \ 16 \\ Mult.: \ \alpha(K)exp=2.4 \ 9, \ (\alpha(L1)exp+\alpha(L2)exp)\leq 0.37 \\ suggest an M1 \ transition. It is inconsistent with the placement from this level unless, perhaps, the 202\gamma feeds the (3/2^+) level at E=205 3 seen in (t,\alpha);this would not, however, explain observed \gamma\gamma coin data or absence of strong enough transition(s) to deexcite that (3/2^+) level. 1997Bu03 suggest that the 409 keV level may be a doublet with levels of either parity. Therefore, at present E1 seems to be a better choice.$

 ∞

					225 Rn β^- deca	ıy <mark>1997Bu</mark>	03 (continue	d)	
					$\gamma(^2$	²⁵ Fr) (continu	ued)		
Eγ	I_{γ}^{b}	E _i (level)	J^{π}_i	\mathbf{E}_{f}	J_f^π	Mult. [‡]	δ	α^{\dagger}	Comments
203.4 [@] 3	10 [@] 3	839.09	(5/2,7/2,9/2)+	635.60	(3/2,5/2,7/2)+	[M1,E2]		1.2 7	$\begin{aligned} &\alpha(\text{K})=0.9\ 7;\ \alpha(\text{L})=0.275\ 9;\ \alpha(\text{M})=0.069\ 3;\\ &\alpha(\text{N}+)=0.0227\ 7\\ &\alpha(\text{N})=0.0182\ 7;\ \alpha(\text{O})=0.00393\ 6;\ \alpha(\text{P})=0.00058\ 6;\\ &\alpha(\text{Q})=2.0\times10^{-5}\ 16 \end{aligned}$
207.21 ^{&} 5	132 7	207.20	(5/2)-	0.0	3/2-	M1+E2	1.4 +4-3	0.94 <i>16</i>	α(K)=0.60 15; α(L)=0.254 5; α(M)=0.0654 10; α(N+)=0.0214 3 α(N)=0.0172 3; α(O)=0.00367 6; α(P)=0.000522 15; α(Q)=1.4×10-5 4 Mult.: α(K)exp=0.62 15, (α(L1)exp+α(L2)exp)≤0.43, α(M)exp≤0.08. δ: from α(K)exp.
210.70 [@] 10	15 [@] 2	409.04	5/2,7/2 ⁽⁺⁾	198.23	(7/2)+	M1(+E2)		1.1 7	$\begin{aligned} &\alpha(\mathbf{K}) = 0.8 \ 7; \ \alpha(\mathbf{L}) = 0.243 \ 13; \ \alpha(\mathbf{M}) = 0.0613 \ 11; \\ &\alpha(\mathbf{N}+) = 0.0201 \ 3 \\ &\alpha(\mathbf{N}) = 0.0161 \ 3; \ \alpha(\mathbf{O}) = 0.00347 \ 10; \ \alpha(\mathbf{P}) = 0.00051 \\ &6; \ \alpha(\mathbf{Q}) = 1.8 \times 10^{-5} \ 14 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 1.4 \ 3. \end{aligned}$
212.85 ^{&} 5	51.2 26	241.37	(5/2)+	28.545	5/2-	(E1)		0.0760	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0609 \; 9; \; \alpha(\mathbf{L}) = 0.01149 \; I6; \; \alpha(\mathbf{M}) = 0.00274 \\ &4; \; \alpha(\mathbf{N}+) = 0.000890 \; I3 \\ &\alpha(\mathbf{N}) = 0.000711 \; I0; \; \alpha(\mathbf{O}) = 0.0001546 \; 22; \\ &\alpha(\mathbf{P}) = 2.32 \times 10^{-5} \; 4; \; \alpha(\mathbf{Q}) = 1.015 \times 10^{-6} \; I5 \\ &\text{Mult:} \; \alpha(\mathbf{K}) \exp \leq 0.18 \; \text{consistent with E1 or E2;} \end{aligned}$
218.60 <i>10</i>	18.4 <i>13</i>	778.64	7/2-	559.68	7/2-	[M1,E2]		1.0 6	α (K)=0.7 6; α (L)=0.214 17; α (M)=0.0538 12; α (N+)=0.0176 6 α (N)=0.0141 4; α (O)=0.00306 16; α (P)=0.00045 7; α (Q)=1.6×10 ⁻⁵ 13
229.45 ^{&} 5	51.8 26	559.68	7/2-	330.10	(5/2,7/2) ⁻	M1		1.366	$\alpha(K)=1.102 \ 16; \ \alpha(L)=0.201 \ 3; \ \alpha(M)=0.0478 \ 7; \ \alpha(N+)=0.01581 \ 23 \ \alpha(N)=0.01253 \ 18; \ \alpha(O)=0.00280 \ 4; \ \alpha(P)=0.000449 \ 7; \ \alpha(Q)=2.51\times10^{-5} \ 4 \ Mult : \ \alpha(K)exp=1.0 \ 3 \ or \ 1.8 \ 7 \ control \ 7 \ con$
240.6 [@] 3	6 [@] 2	721.06	(5/2)-	480.09	(5/2,7/2,9/2)+	[E1]		0.0569	$\alpha(\mathbf{K})=0.0457 \ 7; \ \alpha(\mathbf{L})=0.00848 \ 13; \ \alpha(\mathbf{M})=0.00202 \ 3; \ \alpha(\mathbf{N}+)=0.000657 \ 10 \ \alpha(\mathbf{N})=0.000524 \ 8; \ \alpha(\mathbf{O})=0.0001143 \ 17; \ \alpha(\mathbf{P})=1.728\times10^{-5} \ 25; \ \alpha(\mathbf{O})=7.74\times10^{-7} \ 11 \ 10^{-7} \ $
241.34 ^{&} 5	99 5	241.37	(5/2)+	0.0	3/2-	(E1)		0.0565	$\alpha(K)=0.0454 7; \alpha(L)=0.00842 12; \alpha(M)=0.00200$ 3; $\alpha(N+)=0.000652 10$ $\alpha(N)=0.000520 8; \alpha(O)=0.0001135 16;$ $\alpha(P)=1.716\times10^{-5} 24; \alpha(Q)=7.69\times10^{-7} 11$ Mult.: $\alpha(K)\exp\leq 0.37, (\alpha(L1)\exp+\alpha(L2)\exp)\leq 0.11$ consistent with E1 or E2. $\Delta\pi=$ yes from level scheme.

²²⁵₈₇Fr₁₃₈-9

					225 Rn β^-	decay 199	7Bu03 (co	ontinued)
						γ ⁽²²⁵ Fr) (co	ntinued)	
E_{γ}	I_{γ}^{b}	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{\dagger}	Comments
247.60 ^{&} 5	66 <i>3</i>	330.10	(5/2,7/2) ⁻	82.515	7/2-	[M1,E2]	0.7 5	$ \begin{array}{c} \alpha(\mathrm{K}) = 0.5 \ 4; \ \alpha(\mathrm{L}) = 0.140 \ 22; \ \alpha(\mathrm{M}) = 0.035 \ 4; \ \alpha(\mathrm{N}+) = 0.0115 \ 13 \\ \alpha(\mathrm{N}) = 0.0092 \ 10; \ \alpha(\mathrm{O}) = 0.0020 \ 3; \ \alpha(\mathrm{P}) = 0.00030 \ 7; \ \alpha(\mathrm{Q}) = 1.1 \times 10^{-5} \\ 9 \end{array} $
251.65 10	12.0 12	480.09	(5/2,7/2,9/2)+	228.36	(7/2,9/2)-			Mult.: $\alpha(K)\exp\leq 1.6$, $(\alpha(L1)\exp+\alpha(L2)\exp)\leq 0.19$.
256.20 10	14.6 <i>15</i>	665.18	$(7/2)^+$	409.04	5/2,7/2 ⁽⁺⁾	[M1,E2]	0.6 4	$\begin{array}{l} \alpha(\mathrm{K}){=}0.5 \ 4; \ \alpha(\mathrm{L}){=}0.125 \ 23; \ \alpha(\mathrm{M}){=}0.031 \ 4; \ \alpha(\mathrm{N}{+}){=}0.0103 \ 14 \\ \alpha(\mathrm{N}){=}0.0082 \ 11; \ \alpha(\mathrm{O}){=}0.0018 \ 3; \ \alpha(\mathrm{P}){=}0.00027 \ 7; \ \alpha(\mathrm{Q}){=}1.0{\times}10^{-5} \\ 8 \end{array}$
257.38 ^{&} 5	62 <i>3</i>	409.04	5/2,7/2 ⁽⁺⁾	151.63	5/2+	M1+E2	0.6 4	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.4 \ 4; \ \alpha(\mathrm{L}) = 0.123 \ 23; \ \alpha(\mathrm{M}) = 0.031 \ 4; \ \alpha(\mathrm{N}+) = 0.0101 \ 14 \\ \alpha(\mathrm{N}) = 0.0081 \ 11; \ \alpha(\mathrm{O}) = 0.0018 \ 3; \ \alpha(\mathrm{P}) = 0.00026 \ 7; \ \alpha(\mathrm{Q}) = 1.0 \times 10^{-5} \\ 8 \end{array} $
262 56 <mark>&</mark> 5	152 7	246.02	$(0/2)^{+}$	PD 515	7/2-			Mult.: $\alpha(K)\exp=0.65 \ 10, \ (\alpha(L1)\exp+\alpha(L2)\exp)\leq 0.19.$
203.30 5	1327	540.05	(9/2)	62.313	1/2			E1 or E2.
264.67 ^{&} 5	292 14	293.23	$(7/2)^+$	28.545	5/2-	E1	0.0456	α (K)=0.0367 6; α (L)=0.00672 10; α (M)=0.001598 23; α (N+)=0.000521 8
								$\alpha(N)=0.000415 \ 6; \ \alpha(O)=9.08\times10^{-5} \ 13; \ \alpha(P)=1.378\times10^{-5} \ 20; \ \alpha(Q)=6.29\times10^{-7} \ 9$
273.07 10	12.8 11	618.66	(5/2,7/2,9/2)+	346.03	(9/2)+	[M1,E2]	0.5 4	Mult.: $\alpha(K)\exp\leq 0.12$, $(\alpha(L1)\exp+\alpha(L2)\exp)\leq 0.03$. $\alpha(K)=0.4$ 3; $\alpha(L)=0.102$ 22; $\alpha(M)=0.025$ 5; $\alpha(N+)=0.0083$ 15 $\alpha(N)=0.0066$ 11: $\alpha(O)=0.0014$ 3: $\alpha(P)=0.00022$ 6: $\alpha(O)=9$ E=6 7
275.65 10	11.6 12	778.64	7/2-	502.96	(5/2)-	[M1]	0.822	$\alpha(K)=0.663 \ 10; \ \alpha(L)=0.1204 \ 17; \ \alpha(M)=0.0287 \ 4; \ \alpha(N+)=0.00948 \ 14$
								α (N)=0.00751 <i>11</i> ; α (O)=0.001679 <i>24</i> ; α (P)=0.000269 <i>4</i> ; α (Q)=1.503×10 ⁻⁵ <i>21</i>
288.80 ^{&} 10	27.9 16	618.66	(5/2,7/2,9/2)+	330.10	(5/2,7/2)-	[E1]	0.0373	α (K)=0.0301 5; α (L)=0.00545 8; α (M)=0.001295 19; α (N+)=0.000422 6
								α (N)=0.000337 5; α (O)=7.37×10 ⁻⁵ 11; α (P)=1.124×10 ⁻⁵ 16; α (Q)=5.21×10 ⁻⁷ 8
292.80 <i>10</i>	7.0 10	1047.44	(5/0)-	754.53	(5/2)-	241	0 (70	
295.55~ 10	53 4	502.96	(5/2)	207.20	(5/2)	MI	0.678	$\alpha(\mathbf{K})=0.547 \ 8; \ \alpha(\mathbf{L})=0.0992 \ 14; \ \alpha(\mathbf{M})=0.0236 \ 4; \ \alpha(\mathbf{N}+)=0.00781 \ 11 \ \alpha(\mathbf{N})=0.00619 \ 9; \ \alpha(\mathbf{O})=0.001384 \ 20; \ \alpha(\mathbf{P})=0.000222 \ 4; \ \alpha(\mathbf{Q})=1.239\times10^{-5} \ 18 \ \text{Mult} : \ \alpha(\mathbf{K})=0.0236 \ 4 \ 13 \ (\alpha(\mathbf{L}))=0.00236 \ 4 \ 13 \ \alpha(\mathbf{M})=0.00236 \ 4 \ \alpha(\mathbf{M}+)=0.00781 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ $
296.80 ^{&} 10	104 5	424.97	(5/2 ⁻ ,7/2 ⁻)	128.06	9/2-	[M1+E2]	0.4 3	$\alpha(K) = 0.31 \ 24; \ \alpha(L) = 0.078 \ 21; \ \alpha(M) = 0.019 \ 4; \ \alpha(N+) = 0.0063 \ 14 \\ \alpha(N) = 0.0051 \ 11; \ \alpha(O) = 0.0011 \ 3; \ \alpha(P) = 0.00017 \ 6; \ \alpha(Q) = 7.E-6 \ 6 \\ Mult.: \ \alpha(K) exp \le 0.35, \ (\alpha(L1) exp + \alpha(L2) exp) \le 0.13. $
298.35 ^{&} 10	95 <i>5</i>	480.09	(5/2,7/2,9/2)+	181.66	(9/2)+	[M1]	0.661	$\alpha(K)=0.533 \ 8; \ \alpha(L)=0.0967 \ 14; \ \alpha(M)=0.0230 \ 4; \ \alpha(N+)=0.00761 \ 11$

From ENSDF

²²⁵₈₇Fr₁₃₈-10

 $^{225}_{87}\mathrm{Fr}_{138}$ -10

						a (225 E-1)	aantinuad	
						$\gamma(220 \text{ Fr})$ ((continued)	
Eγ	Ι _γ ^b	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{\dagger}	Comments
299.6 2	8.9 14	502.96	(5/2)-	203.40	(9/2)-	[E2]	0.1454	$\alpha(Q)=1.207\times10^{-5} \ 17$ Mult: $\alpha(K)\exp=0.51 \ 13$ and 0.60 6, $(\alpha(L1)\exp+\alpha(L2)\exp)=0.12 \ 2$ $\alpha(K)=0.0701 \ 10; \ \alpha(L)=0.0558 \ 8; \ \alpha(M)=0.01473 \ 21; \ \alpha(N+)=0.00479 \ 7$ $\alpha(N)=0.00386 \ 6; \ \alpha(Q)=0.000815 \ 12; \ \alpha(P)=0.0001116 \ 16;$
301.5 2	8.8 14	330.10	(5/2,7/2)-	28.545	5/2-	[M1,E2]	0.39 25	$\begin{array}{l} \alpha(\mathbf{X}) & 0.00000 \text{ of } \alpha(\mathbf{X}) & 0.000013 \text{ f } 12, \alpha(\mathbf{Y}) & 0.0001110 \text{ f } 13, \\ \alpha(\mathbf{X}) = 0.696 \times 10^{-6} \text{ 24} \\ \alpha(\mathbf{X}) = 0.29 \text{ 23}; \ \alpha(\mathbf{L}) = 0.074 \text{ 20}; \ \alpha(\mathbf{M}) = 0.018 \text{ 4}; \ \alpha(\mathbf{N}+) = 0.0060 \text{ 14} \\ \alpha(\mathbf{X}) = 0.024 \text{ 23}; \ \alpha(\mathbf{L}) = 0.074 \text{ 20}; \ \alpha(\mathbf{M}) = 0.018 \text{ 4}; \ \alpha(\mathbf{N}+) = 0.0060 \text{ 14} \\ \alpha(\mathbf{X}) = 0.024 \text{ 23}; \ \alpha(\mathbf{L}) = 0.074 \text{ 20}; \ \alpha(\mathbf{M}) = 0.018 \text{ 4}; \ \alpha(\mathbf{N}+) = 0.0060 \text{ 14} \\ \alpha(\mathbf{X}) = 0.024 \text{ 23}; \ \alpha(\mathbf{L}) = 0.074 \text{ 20}; \ \alpha(\mathbf{M}) = 0.018 \text{ 4}; \ \alpha(\mathbf{N}+) = 0.0060 \text{ 14} \\ \alpha(\mathbf{X}) = 0.024 \text{ 23}; \ \alpha(\mathbf{L}) = 0.074 \text{ 20}; \ \alpha(\mathbf{M}) = 0.018 \text{ 4}; \ \alpha(\mathbf{N}+) = 0.0060 \text{ 14} \\ \alpha(\mathbf{X}) = 0.024 \text{ 23}; \ \alpha(\mathbf{L}) = 0.074 \text{ 20}; \ \alpha(\mathbf{M}) = 0.018 \text{ 4}; \ \alpha(\mathbf{N}+) = 0.0060 \text{ 14} \\ \alpha(\mathbf{X}) = 0.004 \text{ 15} 1$
304.7 2 308.8 2	10.2 <i>12</i> 10.5 <i>12</i>	502.96 1063.03	(5/2)-	198.23 754.53	$(7/2)^+$			α (N)=0.0048 <i>11</i> ; α (O)=0.0011 <i>3</i> ; α (P)=0.00016 <i>5</i> ; α (Q)=7.E-6 <i>5</i>
318.32 ^{&} 10 319.61 ^{&} 10 326.47 ^c ^{&} 10	64 <i>3</i> 29.6 <i>15</i> 49.5 ^c 25	559.68 1185.18 409.04	7/2 ⁻ (5/2 ⁻ ,7/2) 5/2,7/2 ⁽⁺⁾	241.37 865.74 82.515	(5/2) ⁺ (7/2) ⁻ 7/2 ⁻			Mult.: $\alpha(K)\exp\leq 0.22$, $(\alpha(L1)\exp+\alpha(L2)\exp)\leq 0.08$.
326.47 ^c 10 326.47 ^c 10	49.5 ^c 25 49.5 ^c 25	885.95 1047.44	(3/2,5/2)+	559.68 721.06	7/2 ⁻ (5/2) ⁻			
330.10 ^{&} 10 335.45 ^{&} 10	30.0 <i>15</i> 26.0 <i>13</i>	330.10 744.26	$(5/2,7/2)^-$ $(5/2,7/2)^+$	0.0 409.04	3/2 ⁻ 5/2,7/2 ⁽⁺⁾	M1	0.32 <i>21</i> 0.479	$\begin{aligned} &\alpha(\mathbf{K})=0.24 \ 19; \ \alpha(\mathbf{L})=0.058 \ 19; \ \alpha(\mathbf{M})=0.014 \ 4; \ \alpha(\mathbf{N}+)=0.0050 \ 14 \\ &\alpha(\mathbf{K})=0.387 \ 6; \ \alpha(\mathbf{L})=0.0700 \ 10; \ \alpha(\mathbf{M})=0.01665 \ 24; \\ &\alpha(\mathbf{N}+)=0.00551 \ 8 \\ &\alpha(\mathbf{N})=0.00437 \ 7; \ \alpha(\mathbf{O})=0.000976 \ 14; \ \alpha(\mathbf{P})=0.0001566 \ 22; \\ &\alpha(\mathbf{Q})=8.74\times10^{-6} \ 13 \\ &\text{Mult.:} \ \alpha(\mathbf{K})\exp=0.37 \ 4. \end{aligned}$
351.3 [@] 2	20 [@] 5	502.96	(5/2)-	151.63	5/2+			
352.30 ^{&} 10	309 15	559.68	7/2-	207.20	(5/2)-	M1	0.419	$\alpha(K)=0.339 5; \alpha(L)=0.0612 9; \alpha(M)=0.01455 21; \alpha(N+)=0.00481 7$ $\alpha(N)=0.00382 6; \alpha(O)=0.000853 12; \alpha(P)=0.0001369 20; \alpha(Q)=7.64\times10^{-6} 11$ Mult.: $\alpha(K)=0.33 2$ and 0.34 5, $(\alpha(L1)=xp+\alpha(L2)=xp)=0.070 3$
356.30 ^{&} 10	162 8	559.68	7/2-	203.40	(9/2)-	M1	0.407	$\alpha(K)=0.329 \ 5; \ \alpha(L)=0.0593 \ 9; \ \alpha(M)=0.01411 \ 20; \\ \alpha(N+)=0.00467 \ 7 \\ \alpha(N)=0.00370 \ 6; \ \alpha(O)=0.000827 \ 12; \ \alpha(P)=0.0001327 \ 19; \\ \alpha(Q)=7.41\times10^{-6} \ 11 \\ Mult: \ \alpha(K)=xn=0 \ 36 \ 2 \ (\alpha(L))=xn+\alpha(L2)=xn)=0 \ 09 \ 1 \\ \label{eq:alpha}$
360.45 <i>10</i> 361.55 <i>10</i> 362.75 <i>10</i>	30 <i>3</i> 34.4 <i>21</i> 20.0 <i>16</i>	502.96 559.68 865.74	$(5/2)^{-}$ $7/2^{-}$ $(7/2)^{-}$	142.59 198.23 502.96	$(3/2)^+$ $(7/2)^+$ $(5/2)^-$	[M 1]	0.387	Mult.: $\alpha(K) \exp \le 0.0652$; $(\alpha(E1)) \exp (\alpha(E2)) \exp (-3.05)1$. $\alpha(K) \exp \le 0.06$; consistent with E1 or E2. $\alpha(K) = 0.3135$; $\alpha(L) = 0.05658$; $\alpha(M) = 0.0134319$:
202.70 10	20.0 10	000.71	(1-)	562.96	()-)	[1144]	0.201	$\alpha(N+)=0.00444\ 7$ $\alpha(N)=0.00352\ 5;\ \alpha(O)=0.000787\ 11;\ \alpha(P)=0.0001263\ 18;$ $\alpha(Q)=7.05\times10^{-6}\ 10$
364.10 ^{&} 10	52.1 26	571.51	(7/2)-	207.20	(5/2)-	M1	0.383	α (K)=0.310 5; α (L)=0.0559 8; α (M)=0.01330 19; α (N+)=0.00440 7 α (N)=0.00349 5; α (O)=0.000779 11; α (P)=0.0001250 18;

From ENSDF

					225 Rn β^- decay	1997B u	103 (continu	ued)
					γ ⁽²²⁵⁾	⁵ Fr) (contin	ued)	
Eγ	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{\dagger}	Comments
^x 366.92 ^{&} 10	57 3					M1	0.375	$\begin{array}{l} \alpha(\mathrm{Q}) = 6.98 \times 10^{-6} \ 10 \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) \mathrm{exp} = 0.50 \ 4, \ (\alpha(\mathrm{L1}) \mathrm{exp} + \alpha(\mathrm{L2}) \mathrm{exp}) \leq 0.14. \\ \alpha(\mathrm{K}) = 0.303 \ 5; \ \alpha(\mathrm{L}) = 0.0547 \ 8; \ \alpha(\mathrm{M}) = 0.01302 \ 19; \\ \alpha(\mathrm{N}+) = 0.00430 \ 6 \\ \alpha(\mathrm{N}) = 0.00341 \ 5; \ \alpha(\mathrm{O}) = 0.000763 \ 11; \ \alpha(\mathrm{P}) = 0.0001224 \ 18; \end{array}$
368.2 2	17.0 <i>17</i>	571.51	(7/2)-	203.40	(9/2)-	[M1]	0.372	$\begin{aligned} &\alpha(\mathbf{Q}) = 6.84 \times 10^{-6} \ 10 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.54 \ 4. \\ &\alpha(\mathbf{K}) = 0.301 \ 5; \ \alpha(\mathbf{L}) = 0.0542 \ 8; \ \alpha(\mathbf{M}) = 0.01290 \ 19; \\ &\alpha(\mathbf{N}+) = 0.00426 \ 6 \\ &\alpha(\mathbf{N}) = 0.00338 \ 5; \ \alpha(\mathbf{O}) = 0.000756 \ 11; \ \alpha(\mathbf{P}) = 0.0001213 \ 17; \\ &\alpha(\mathbf{Q}) = 6.77 \times 10^{-6} \ 10 \end{aligned}$
369.65 ^{&} 10	34.0 19	778.64	7/2-	409.04	5/2,7/2 ⁽⁺⁾			
373.40 ^{&} 10	44.6 22	571.51	$(7/2)^{-}$	198.23	(7/2)+			Mult.: $\alpha(K)\exp\leq 0.32$, $(\alpha(L1)\exp+\alpha(L2)\exp)\leq 0.09$.
378.05 [°] 10	64 <i>3</i> 34 3 17	559.68 1614.26	$7/2^{-}$	181.66	$(9/2)^+$			Mult.: $\alpha(K)\exp\leq 0.22$, $(\alpha(L1)\exp+\alpha(L2)\exp)\leq 0.06$.
389.90 10	24.3 17 24.9 16	571.51	$(3/2, 7/2)^{-}$	1220.03	$(9/2)^+$			
394.50 <i>10</i>	14.8 <i>15</i>	635.60	(1/2) $(3/2,5/2,7/2)^+$	241.37	$(5/2)^+$	[M1,E2]	0.19 12	α (K)=0.14 <i>11</i> ; α (L)=0.033 <i>13</i> ; α (M)=0.008 <i>3</i> ; α (N+)=0.0026 <i>9</i> α (N)=0.0021 <i>7</i> ; α (O)=0.00046 <i>17</i> ; α (P)=7.E–5 <i>3</i> ;
397.6 2 398.5 2	14.8 25 11.5 26	1063.03 744.26	$(5/2,7/2)^+$	665.18 346.03	$(7/2)^+$ $(9/2)^+$ $(5/2,7/2,0/2)^+$			$a(Q)=5.5\times10^{-1}24$
$405.6^{\circ} 2$	45.5 70d.5	885.95 550.68	$(3/2, 5/2)^{-1}$	480.09	$(5/2, 1/2, 9/2)^{+}$			Mult: $\alpha(K) \approx 0.16$
$\begin{array}{c} 400.10^{-1} & 10 \\ 408.10^{-1} & 10 \\ 409.1 & 2 \\ 412.30 & 10 \\ 414.1^{-1} & 2 \\ 414.1^{-1} & 2 \end{array}$	$\begin{array}{c} 34^{d} 7 \\ 17.2 \ 23 \\ 20.7 \ 18 \\ 9.3^{c} \ 14 \\ 0.2^{c} \ 14 \end{array}$	979.66 409.04 1392.17 744.26	$(3/2^{-},5/2)$ $5/2,7/2^{(+)}$ $(5/2,7/2^{-})$ $(5/2,7/2)^{+}$ $(5/2,7/2)^{+}$	571.51 0.0 979.66 330.10	$(7/2)^{-}$ $3/2^{-}$ $(3/2^{-}, 5/2)$ $(5/2, 7/2)^{-}$ $(5/2, 7/2)^{-}$			Mult.: $\alpha(K)\exp \leq 0.34$.
$414.1^{\circ} 2$ $110.8^{\circ} 2$ 2	$9.3^{\circ} 14$ $57^{\circ} 6$	639.09 571.51	(3/2, 7/2, 9/2)	424.97	(3/2, 7/2)			Mult $\cdot \alpha(K) \exp(0.16)$
420.15 [@] 20	$21^{@} 5$	618.66	(7/2) $(5/2,7/2,9/2)^+$	198.23	$(7/2)^+$	M1	0.260	$\alpha(K)=0.210 \ 3; \ \alpha(L)=0.0378 \ 6; \ \alpha(M)=0.00900 \ 13; \ \alpha(N+_{*})=0.00297 \ 5$
								α (N)=0.00236 4; α (O)=0.000527 8; α (P)=8.46×10 ⁻⁵ 12; α (Q)=4.73×10 ⁻⁶ 7 Mult.: α (K)exp=0.41 13.
423.65 ^{&} 10	41.3 21	665.18	(7/2)+	241.37	(5/2)+	M1	0.254	$\begin{aligned} &\alpha(\mathrm{K}) = 0.206 \ 3; \ \alpha(\mathrm{L}) = 0.0370 \ 6; \ \alpha(\mathrm{M}) = 0.00879 \ 13; \\ &\alpha(\mathrm{N}+) = 0.00291 \ 4 \\ &\alpha(\mathrm{N}) = 0.00231 \ 4; \ \alpha(\mathrm{O}) = 0.000515 \ 8; \ \alpha(\mathrm{P}) = 8.27 \times 10^{-5} \ 12; \\ &\alpha(\mathrm{Q}) = 4.62 \times 10^{-6} \ 7 \\ &\mathrm{Mult.:} \ \alpha(\mathrm{K}) \mathrm{exp} = 0.33 \ 7. \end{aligned}$

From ENSDF

L

²²⁵₈₇Fr₁₃₈-12

	225 Rn β^- decay 1997Bu03 (continued)											
					γ ⁽²²⁵ Fr)	(continue	d)					
Eγ	I_{γ}^{b}	E_i (level)	J_i^π	E_f	J_f^{π}	Mult.‡	α^{\dagger}	Comments				
424.9 2	12.5 24	424.97	(5/2 ⁻ ,7/2 ⁻)	0.0	3/2-							
427.65 ^{&} 10	38.3 22	1063.03		635.60	$(3/2, 5/2, 7/2)^+$							
431.63 ^{&} 10	39 4	559.68	7/2-	128.06	9/2-	M1	0.242	$\begin{aligned} &\alpha(\mathbf{K}) = 0.196 \ 3; \ \alpha(\mathbf{L}) = 0.0352 \ 5; \ \alpha(\mathbf{M}) = 0.00836 \ 12; \\ &\alpha(\mathbf{N}+) = 0.00276 \ 4 \\ &\alpha(\mathbf{N}) = 0.00219 \ 3; \ \alpha(\mathbf{O}) = 0.000490 \ 7; \ \alpha(\mathbf{P}) = 7.86 \times 10^{-5} \ 11; \\ &\alpha(\mathbf{Q}) = 4.39 \times 10^{-6} \ 7 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.40 \ 5. \end{aligned}$				
432.54 ^{&} 10	55 4	778.64	7/2-	346.03	$(9/2)^+$			Mult.: $\alpha(K) \exp \leq 0.29$.				
448.65 ^{&} 10	55 <i>3</i>	778.64	7/2-	330.10	$(5/2,7/2)^{-}$			Mult.: $\alpha(K) \exp \leq 0.10$.				
451.00 10	22.0 16	744.26	$(5/2,7/2)^+$	293.23	$(7/2)^+$							
461.55 10	18.2 16	665.18	$(7/2)^+$	203.40	$(9/2)^{-}$		0.107					
466.90 10	43.3 22	665.18	(7/2)*	198.23	(1/2)+	MI	0.196	$\alpha(K)=0.1585\ 23;\ \alpha(L)=0.0284\ 4;\ \alpha(M)=0.00676\ 10;\alpha(N+)=0.00223\ 4\alpha(N)=0.001771\ 25;\ \alpha(O)=0.000396\ 6;\ \alpha(P)=6.35\times10^{-5}\ 9;\alpha(Q)=3.55\times10^{-6}\ 5Mult.:\ \alpha(K)exp=0.19\ 3.$				
470.2 2	10.4 22	1655.35	$(5/2,7/2^+)$	1185.18	$(5/2^-, 7/2)$							
472.1 ^c 2	11.0 [°] 22	1226.03		754.53								
472.1° 2	11.0° 22	1519.42	7/2-	1047.44	5/0-							
4/6.9° 2	18./° 19	559.68 885.05	1/2	82.515	1/2							
476.9° 2 ×482.1 2	18.7° 19 15 5	885.95	$(3/2, 5/2)^{-1}$	409.04	5/2,1/2(*)	2.61	0.1501					
485.80** 10	36" 3	635.60	(3/2,5/2,7/2)*	151.63	5/2"	MI	0.1781	$\alpha(K)=0.1441\ 21;\ \alpha(L)=0.0258\ 4;\ \alpha(M)=0.00614\ 9;\alpha(N+)=0.00203\ 3\alpha(N)=0.001608\ 23;\ \alpha(O)=0.000360\ 5;\ \alpha(P)=5.77\times10^{-5}\ 8;\alpha(Q)=3.23\times10^{-6}\ 5$ Mult.: $\alpha(K)\exp=0.52$ if entire I(ce) for doublet is assigned to this placement. $\alpha(K)\exp=0.18$ for doublet.				
483.80 ^{d&} 10	70 ^d 5	665.18	(7/2)+	181.66	(9/2)+	M1	0.1781	$\alpha(K)=0.1441\ 21;\ \alpha(L)=0.0258\ 4;\ \alpha(M)=0.00614\ 9;\alpha(N+)=0.00203\ 3\alpha(N)=0.001608\ 23;\ \alpha(O)=0.000360\ 5;\ \alpha(P)=5.77\times10^{-5}\ 8;\alpha(Q)=3.23\times10^{-6}\ 5$ Mult.: $\alpha(K)exp=0.27$ if entire I(ce) for doublet is assigned to this placement. $\alpha(K)exp=0.18$ for doublet				
^x 484.7 2	22 5											
486.1 2	28 8	832.18	$(5/2^+, 7/2, 9/2^+)$	346.03	$(9/2)^+$							
503.00° 10	25.2° 20 25.2° 20	502.96 744.26	(5/2) $(5/2,7/2)^+$	0.0	$\frac{3}{2}$							
514.2 2	50 8	721.06	$(5/2)^{-}$	207.20	$(5/2)^{-}$	M1	0.1514	α (K)=0.1225 <i>18</i> ; α (L)=0.0219 <i>3</i> ; α (M)=0.00521 <i>8</i> ; α (N+)=0.001721 <i>25</i>				

From ENSDF

²²⁵₈₇Fr₁₃₈-13

				225	$\operatorname{Rn}\beta^-$ decay 19	997Bu03 (continued)	
					$\gamma(^{225}\text{Fr})$ (6	continued)		
E_{γ}	I_{γ}^{b}	E _i (level)	J_i^π	E_{f}	J_f^{π}	Mult. [‡]	α^{\dagger}	Comments
					<u> </u>			α (N)=0.001365 20; α (O)=0.000305 5; α (P)=4.90×10 ⁻⁵ 7; α (Q)=2.74×10 ⁻⁶ 4 Mult.: α (K)exp=0.26 6.
517.8 2 ^x 521.0 2	9.6 23 15.7 <i>19</i>	721.06	(5/2) ⁻	203.40	(9/2) ⁻			
531.10 ^{&} 10	180 9	559.68	7/2-	28.545	5/2-	M1	0.1389	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1124 \ 16; \ \alpha(\mathbf{L}) = 0.0201 \ 3; \ \alpha(\mathbf{M}) = 0.00477 \ 7; \\ &\alpha(\mathbf{N}+) = 0.001578 \ 23 \\ &\alpha(\mathbf{N}) = 0.001251 \ 18; \ \alpha(\mathbf{O}) = 0.000280 \ 4; \ \alpha(\mathbf{P}) = 4.49 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{Q}) = 2.51 \times 10^{-6} \ 4 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.13 \ 1, \ (\alpha(\mathbf{L}1) \exp + \alpha(\mathbf{L}2) \exp) = 0.02 \ 1. \end{aligned}$
^x 534.25 10	25.0 18							
535.80 ^{&} 10	71 4	839.09	(5/2,7/2,9/2)+	303.25	7/2+,9/2+,11/2+	M1	0.1356	$\alpha(K)=0.1098 \ 16; \ \alpha(L)=0.0196 \ 3; \ \alpha(M)=0.00466 \ 7; \ \alpha(N+)=0.001541 \ 22 \ \alpha(N)=0.001222 \ 18; \ \alpha(O)=0.000273 \ 4; \ \alpha(P)=4.38\times10^{-5} \ 7; \ \alpha(Q)=2.45\times10^{-6} \ 4 \ Mult: \ \alpha(K)=0.015 \ 2 \ Mult: \ \alpha(K)=0.015 \ Mul$
537.15 ^c 10	40.5 [°] 21	665.18	$(7/2)^+$	128.06	9/2-			Mult.: $\alpha(\mathbf{K})\exp[=0.15/2]$. Mult.: $\alpha(\mathbf{K})\exp[=0.05$.
537.15 ^c 10 537.15 ^c 10	40.5 ^c 21 40.5 ^c 21	744.26 778.64	(5/2,7/2) ⁺ 7/2 ⁻	207.20 241.37	$(5/2)^-$ $(5/2)^+$			
543.05 ^{&} 10	26.8 20	571.51	$(7/2)^{-}$	28.545	5/2-			
545.85 ^{d&} 10	50.0 ^d 20	744.26	(5/2,7/2)+	198.23	(7/2)+	M1	0.1291	$\begin{aligned} &\alpha(\text{K})=0.1045 \ 15; \ \alpha(\text{L})=0.0187 \ 3; \ \alpha(\text{M})=0.00443 \ 7; \\ &\alpha(\text{N}+)=0.001466 \ 21 \\ &\alpha(\text{N})=0.001162 \ 17; \ \alpha(\text{O})=0.000260 \ 4; \ \alpha(\text{P})=4.17\times10^{-5} \ 6; \\ &\alpha(\text{Q})=2.33\times10^{-6} \ 4 \\ &\text{Mult.:} \ \alpha(\text{K})\text{exp}=0.19, \ \alpha(\text{L}12)\text{exp}=0.04 \ \text{if entire I(ce) for} \\ &\text{doublet is assigned to this placement.} \ \alpha(\text{K})\text{exp}=0.14 \ \text{for} \\ &\text{doublet.} \end{aligned}$
545.85 ^d 10	20.0 ^d 20	839.09	(5/2,7/2,9/2)+	293.23	(7/2)+	M1	0.1291	$\alpha(K)=0.1045 \ I5; \ \alpha(L)=0.0187 \ 3; \ \alpha(M)=0.00443 \ 7; \ \alpha(N+)=0.001466 \ 21 \ \alpha(N)=0.001162 \ I7; \ \alpha(O)=0.000260 \ 4; \ \alpha(P)=4.17\times10^{-5} \ 6; \ \alpha(Q)=2.33\times10^{-6} \ 4 \ Mult.: \ \alpha(K)exp=0.47 \ if entire \ I(ce) \ for \ doublet \ is \ assigned to \ this \ placement. \ \alpha(K)exp=0.14 \ for \ doublet.$
551.10 ^c 10 551.10 ^c 10 *561.3.2	22.5 ^c 21 22.5 ^c 21	754.53 1614.26	(5/2,7/2+)	203.40 1063.03	(9/2) ⁻			
562.50 <i>10</i> 562.50 <i>10</i> 566.3 <i>2</i>	10 3 15 3 17.9 22	744.26 865.74 1185.18	$(5/2,7/2)^+$ $(7/2)^-$ $(5/2^-,7/2)$	181.66 303.25 618.66	(9/2) ⁺ 7/2 ⁺ ,9/2 ⁺ ,11/2 ⁺ (5/2,7/2,9/2) ⁺			
571.40 ^{&} 10	272 13	778.64	7/2-	207.20	(5/2)-	M1	0.1143	α (K)=0.0926 <i>13</i> ; α (L)=0.01652 <i>24</i> ; α (M)=0.00392 <i>6</i> ; α (N+)=0.001297 <i>19</i> α (N)=0.001028 <i>15</i> ; α (O)=0.000230 <i>4</i> ; α (P)=3.69×10 ⁻⁵ <i>6</i> ;

²²⁵₈₇Fr₁₃₈-14

L

From ENSDF

²²⁵₈₇Fr₁₃₈-14

				225	²²⁵ Rn β^- decay 1997Bu03 (continued))
					γ ⁽²²⁵ Fr)	(continued)		
Eγ	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^π	Mult. [‡]	α^{\dagger}	Comments
					ř			$\alpha(Q)=2.07\times10^{-6} 3$ Mult.: $\alpha(K)\exp=0.10 1$ and 0.11 3, $(\alpha(L)\exp+\alpha(L2)\exp)=0.021 2$.
572.70 ^c 10 572.70 ^c 10 *587 7 2	46 ^c 5 46 ^c 5 11 4 20	754.53 865.74	(7/2)-	181.66 293.23	$(9/2)^+$ $(7/2)^+$			
590.6 2 600.9 2 602 2 2	11.5 20 16.6 <i>19</i> 12 0 <i>19</i>	832.18 744.26 754.53	$(5/2^+,7/2,9/2^+)$ $(5/2,7/2)^+$	241.37 142.59 151.63	$(5/2)^+$ $(3/2)^+$ $5/2^+$			
605.6 2 *614.8 2	17.0 23 15.3 21	935.68	$(5/2^{-},7/2,9/2^{+})$	330.10 241.27	$(5/2)^+$			
624.32 $627.10^{\&} 10$ 634.02 $635.60^{\circ} 10$ $635.60^{\circ} 10$	94 5 12.3 <i>19</i> 23.9 ^c 20	778.64 832.18 635.60	(7/2) $7/2^{-}$ $(5/2^{+},7/2,9/2^{+})$ $(3/2,5/2,7/2)^{+}$ $(5/2,7/2,9/2^{+})$	151.63 198.23 0.0 202.40	(3/2) $5/2^+$ $(7/2)^+$ $3/2^-$ $(0/2)^-$			Mult.: $\alpha(K)\exp \leq 0.023$.
638.50 ^{<i>c</i>} 10	29.6 ^c 22	721.06	(5/2) ⁻	82.515	(9/2) 7/2 ⁻	M1	0.0852	$\alpha(K)=0.0690 \ 10; \ \alpha(L)=0.01228 \ 18; \ \alpha(M)=0.00291 \ 4; \ \alpha(N)=0.000963 \ 14 \ \alpha(N)=0.000764 \ 11; \ \alpha(O)=0.0001708 \ 24; \ \alpha(P)=2.74\times10^{-5} \ 4; \ \alpha(Q)=1.537\times10^{-6} \ 22 \ Mult : \ \alpha(K)=n=0 \ 10 \ 3$
638.50 ^c 10 640.8 2	29.6 ^c 22	1047.44	(5/2 7/2 9/2)+	409.04	$5/2,7/2^{(+)}$			
$644.40^{\&}$ 10	28.4 23	885.95	$(3/2, 5/2)^+$	241.37	$(7/2)^+$			
650.65 ^{d&} 10	260 ^d 14	778.64	7/2-	128.06	9/2-	M1	0.0811	$\alpha(K)=0.0657 \ 10; \ \alpha(L)=0.01168 \ 17; \ \alpha(M)=0.00277 \ 4; \ \alpha(N+)=0.000916 \ 13 \ \alpha(N)=0.000726 \ 11; \ \alpha(O)=0.0001624 \ 23; \ \alpha(P)=2.61\times10^{-5} \ 4; \ \alpha(Q)=1.462\times10^{-6} \ 21 \ Mult.; \ \alpha(K)exp=0.071 \ 6, \ (\alpha(L1)exp+\alpha(L2)exp)\leq0.012.$
650.65 ^d 10	30 ^d 5	832.18	(5/2 ⁺ ,7/2,9/2 ⁺)	181.66	$(9/2)^+$			Mult.: $\alpha(K)\exp \le 0.69$.
658.30 ^{&} 10	71 4	865.74	(7/2) ⁻	207.20	(5/2)-	M1	0.0786	$\begin{split} &\alpha(\mathrm{K}){=}0.0637 \; 9; \; \alpha(\mathrm{L}){=}0.01132 \; 16; \; \alpha(\mathrm{M}){=}0.00269 \; 4; \\ &\alpha(\mathrm{N}{+}){=}0.000888 \; 13 \\ &\alpha(\mathrm{N}){=}0.000704 \; 10; \; \alpha(\mathrm{O}){=}0.0001574 \; 22; \; \alpha(\mathrm{P}){=}2.53{\times}10^{-5} \; 4; \\ &\alpha(\mathrm{Q}){=}1.417{\times}10^{-6} \; 20 \\ &\mathrm{Mult.:} \; \alpha(\mathrm{K})\mathrm{exp}{=}0.10 \; 1. \end{split}$
662.30^{X} 10	80 5	865.74	(7/2)-	203.40	(9/2)-			
668.05 [#] 10 679.1 ^c 2 679.1 ^c 2 680.9 2	31.7 <i>16</i> 11.1 ^c 22 11.1 ^c 22 16.1 <i>18</i>	865.74 885.95 1614.26 832.18	$(7/2)^-$ $(3/2,5/2)^+$ $(5/2,7/2^+)$ $(5/2^+,7/2,9/2^+)$	198.23 207.20 935.68 151.63	$(7/2)^+$ $(5/2)^-$ $(5/2^-,7/2,9/2^+)$ $5/2^+$			

From ENSDF

²²⁵₈₇Fr₁₃₈-15

		$\frac{225}{\mathrm{Rn}}\beta^{-}$ decay 1997Bu03 (continued)		ontinued)				
					γ ⁽²²⁵ Fr)	(continued)		
Eγ	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	${ m J}_f^\pi$	Mult. [‡]	α^{\dagger}	Comments
683.9 2	16.8 <i>19</i>	865.74	$(7/2)^{-}$	181.66	$(9/2)^+$			
692.60 ^{&} 10	202 10	721.06	(5/2)-	28.545	5/2-	M1	0.0687	$\begin{split} &\alpha(\mathbf{K}) = 0.0557 \ 8; \ \alpha(\mathbf{L}) = 0.00989 \ 14; \ \alpha(\mathbf{M}) = 0.00235 \ 4; \\ &\alpha(\mathbf{N}+) = 0.000776 \ 11 \\ &\alpha(\mathbf{N}) = 0.000615 \ 9; \ \alpha(\mathbf{O}) = 0.0001375 \ 20; \ \alpha(\mathbf{P}) = 2.21 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{Q}) = 1.238 \times 10^{-6} \ 18 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.077 \ 9. \end{split}$
696.20 ^{&} 10	1.51×10 ³ 7	778.64	7/2-	82.515	7/2-	M1	0.0678	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0550 \ 8; \ \alpha(\mathbf{L}) = 0.00976 \ 14; \ \alpha(\mathbf{M}) = 0.00231 \ 4; \\ &\alpha(\mathbf{N}+) = 0.000765 \ 11 \\ &\alpha(\mathbf{N}) = 0.000607 \ 9; \ \alpha(\mathbf{O}) = 0.0001356 \ 19; \ \alpha(\mathbf{P}) = 2.18 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{Q}) = 1.222 \times 10^{-6} \ 18 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.052 \ 2, \ (\alpha(\mathbf{L}1) \exp + \alpha(\mathbf{L}2) \exp) \le 0.009. \end{aligned}$
702.40 10	22.3 24	1749.84	$(5/2,7/2^+)$	1047.44				
705.10 ^{&} 10	64 <i>3</i>	1185.18	$(5/2^{-},7/2)$	480.09	(5/2,7/2,9/2)	F		
711.0 ^{&} 2 714.00 <i>10</i> ^x 718.0 2	16.7 <i>17</i> 29.7 <i>17</i> 19.9 <i>20</i>	839.09 865.74	$(5/2,7/2,9/2)^+$ $(7/2)^-$	128.06 151.63	9/2 ⁻ 5/2 ⁺			
721.10 ^{&} 10	475 23	721.06	(5/2)-	0.0	3/2-	M1	0.0618	$\begin{aligned} &\alpha(\text{K})=0.0501 \ 7; \ \alpha(\text{L})=0.00889 \ 13; \ \alpha(\text{M})=0.00211 \ 3; \\ &\alpha(\text{N}+)=0.000697 \ 10 \\ &\alpha(\text{N})=0.000552 \ 8; \ \alpha(\text{O})=0.0001235 \ 18; \ \alpha(\text{P})=1.98\times10^{-5} \ 3; \\ &\alpha(\text{Q})=1.113\times10^{-6} \ 16 \\ &\text{Mult.:} \ \alpha(\text{K})\text{exp}=0.046 \ 7, \ (\alpha(\text{L1})\text{exp}+\alpha(\text{L2})\text{exp})=0.008 \ 1. \\ &\%\text{I}\gamma=2.62 \ 17 \ \text{assuming adopted normalization.} \end{aligned}$
723.00 ^{&} 10	85 4	865.74	$(7/2)^{-}$	142.59	$(3/2)^+$			Mult.: $\alpha(K)\exp \leq 0.08$. Transition omitted from level scheme in fig. 6 of 1997Bu03.
727.4 2 ^x 729.9 2	14.1 20 12.5 20	1392.17	(5/2,7/2 ⁻)	665.18	$(7/2)^+$			
734.40 <mark>&</mark> 10	56 <i>3</i>	885.95	$(3/2, 5/2)^+$	151.63	5/2+			
737.70 ^{&} 10	98 5	865.74	(7/2)-	128.06	9/2-	M1	0.0582	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0472 \ 7; \ \alpha(\mathbf{L}) = 0.00837 \ 12; \ \alpha(\mathbf{M}) = 0.00198 \ 3; \\ &\alpha(\mathbf{N}+) = 0.000656 \ 10 \\ &\alpha(\mathbf{N}) = 0.000520 \ 8; \ \alpha(\mathbf{O}) = 0.0001163 \ 17; \ \alpha(\mathbf{P}) = 1.87 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{Q}) = 1.048 \times 10^{-6} \ 15 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.041 \ 9. \end{aligned}$
743.35 ^{&} 10	102 5	885.95	(3/2,5/2)+	142.59	(3/2)+	M1	0.0571	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0463 \ 7; \ \alpha(\mathbf{L}) = 0.00820 \ 12; \ \alpha(\mathbf{M}) = 0.00195 \ 3; \\ &\alpha(\mathbf{N}+) = 0.000643 \ 9 \\ &\alpha(\mathbf{N}) = 0.000510 \ 8; \ \alpha(\mathbf{O}) = 0.0001140 \ 16; \ \alpha(\mathbf{P}) = 1.83 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{Q}) = 1.027 \times 10^{-6} \ 15 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.04 \ 1. \end{aligned}$
750.15 ^{&} 10	2.15×10 ³ 11	778.64	7/2-	28.545	5/2-	M1	0.0557	$\alpha(K)=0.0452\ 7;\ \alpha(L)=0.00800\ 12;\ \alpha(M)=0.00190\ 3;$ $\alpha(N+)=0.000628\ 9$ $\alpha(N)=0.000497\ 7;\ \alpha(O)=0.0001112\ 16;\ \alpha(P)=1.79\times10^{-5}\ 3;$

²²⁵₈₇Fr₁₃₈-16

From ENSDF

²²⁵₈₇Fr₁₃₈-16

				225	$^{225}\mathbf{Rn}\beta^{-}\mathbf{decay}\qquad \mathbf{1997Bu0}$		continued)	
					γ ⁽²²⁵ Fr)	(continued)		
Eγ	I_{γ}^{b}	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	α^{\dagger}	Comments
								$\alpha(Q)=1.003\times10^{-6}$ 14 Mult.: $\alpha(K)\exp=0.040$ 2, $(\alpha(L1)\exp+\alpha(L2)\exp)=0.007$, $\alpha(M)\exp\leq0.002$.
756.70 ^c 10 756.70 ^c 10 758.5 2 759.6 2 *768.60 ^{&} 10	22.9 ^c 23 22.9 ^c 23 14.9 20 22.4 22 71.5	839.09 1392.17 1479.63 1063.03	(5/2,7/2,9/2) ⁺ (5/2,7/2 ⁻) (7/2)	82.515 635.60 721.06 303.25	7/2 ⁻ (3/2,5/2,7/2) ⁺ (5/2) ⁻ 7/2 ⁺ ,9/2 ⁺ ,11/2 ⁻	+		
778.70 ^{&} 10	127 6	778.64	7/2-	0.0	3/2-	E2	0.01401	α (K)=0.01049 <i>15</i> ; α (L)=0.00265 <i>4</i> ; α (M)=0.000654 <i>10</i> ; α (N+)=0.000215 <i>3</i> α (N)=0.0001714 <i>24</i> ; α (O)=3.74×10 ⁻⁵ <i>6</i> ; α (P)=5.65×10 ⁻⁶ <i>8</i> ; α (Q)=2.28×10 ⁻⁷ <i>4</i> Mult.: α (K)exp=0.004 <i>3</i> .
783.40 ^{&} 10	72 4	865.74	(7/2)-	82.515	7/2-	M1	0.0497	$\alpha(K)=0.0404\ 6;\ \alpha(L)=0.00714\ 10;\ \alpha(M)=0.001693\ 24;\ \alpha(N+)=0.000559\ 8$ $\alpha(N)=0.000443\ 7;\ \alpha(O)=9.92\times10^{-5}\ 14;\ \alpha(P)=1.593\times10^{-5}\ 23;\ \alpha(Q)=8.94\times10^{-7}\ 13$ Mult: $\alpha(K)=0.052\ 9.$
784.0 [@] 2 ^x 788.8 2 ^x 790.70 10 ^x 795 3 2	@ 17.3 24 30 3 19 7 20	935.68	(5/2 ⁻ ,7/2,9/2 ⁺)	151.63	5/2+			
798.7 ^c 2 798.7 ^c 2 801.0 2 *804.6 2	18.4 ^c 17 18.4 ^c 17 19.7 22 24.0 18	1519.42 1577.88 1226.03	(5/2 ⁺ ,7/2)	721.06 778.64 424.97	(5/2) ⁻ 7/2 ⁻ (5/2 ⁻ ,7/2 ⁻)			
806.2 2 808.0 2 808.0 2 *812.6 2	21.7 <i>17</i> 13.5 <i>18</i> 14.5 <i>16</i>	1047.44 935.68 1101.84	(5/2 ⁻ ,7/2,9/2 ⁺) (7/2,9/2,11/2) ⁺	241.37 128.06 293.23	$(5/2)^+$ 9/2 ⁻ $(7/2)^+$			
814.1 2 *815.5 2 *817.70 10	18.6 22 16.2 26 38.0 24	1479.63	(7/2)	665.18	(7/2)+			
821.1 2 823.40 10 *826.25 10	13.0 23 32.8 21 31.5 21	1392.17 1655.35	$(5/2,7/2^{-})$ $(5/2,7/2^{+})$	571.51 832.18	$(7/2)^{-}$ $(5/2^{+},7/2,9/2^{+})$			
828.05 <i>10</i> 834.6 2	27 <i>3</i> 18 <i>3</i>	979.66 1063.03	(3/2 ⁻ ,5/2)	151.63 228.36	5/2+ (7/2,9/2) ⁻			
837.00 ^{<i>a x</i>} 10	386 ^{<i>a</i>} 25	865.74	$(7/2)^{-}$	28.545	5/2-	M1	0.0418	α (K)=0.0339 5; α (L)=0.00599 9; α (M)=0.001421 20; α (N+)=0.000470 7

²²⁵₈₇Fr₁₃₈-17

L

From ENSDF

²²⁵₈₇Fr₁₃₈-17

				22	5 Rn β^{-} decay	1997Bu03	(continue	ed)
					γ ⁽²²⁵ Fr)) (continued	d)	
Eγ	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	α^{\dagger}	Comments
								α (N)=0.000372 6; α (O)=8.32×10 ⁻⁵ 12; α (P)=1.337×10 ⁻⁵ 19; α (Q)=7.51×10 ⁻⁷ 11 Mult.: α (K)exp=0.045 4.
837.00 ^d 10	100 ^d 25	979.66	$(3/2^{-}, 5/2)$	142.59	$(3/2)^+$			Mult.: $\alpha(K) \exp \leq 0.17$.
839.2 ^c 2	32 [°] 7	839.09	$(5/2,7/2,9/2)^+$	0.0	3/2-			
839.2 [°] 2	32 [°] 7	1185.18	$(5/2^-, 7/2)$	346.03	$(9/2)^+$			
*844.90 10	$32.5\ 24$	1062.02		207.20	$(5/2)^{-}$			
833.3° 2 855.5° 2	10.8° 20	1005.05	(5/2 - 7/2)	207.20	(5/2) $(5/2,7/2)^{-}$			
857.5.2	23 3	885.05	(3/2, 7/2) $(3/2, 5/2)^+$	28 545	(3/2, 7/2) $5/2^{-}$			
859 2 2	13 5 21	1063.03	(3/2, 3/2)	203 40	$(9/2)^{-}$			
864.5 2	33.1 22	1063.03		198.23	$(7/2)^+$			
866.0 ^C 2	10.4 ^c 25	865.74	$(7/2)^{-}$	0.0	3/2-			
866.0 ^C 2	10.4 ^c 25	1047.44	.,,,	181.66	$(9/2)^+$			
876.7 2	16.9 22	1655.35	$(5/2,7/2^+)$	778.64	7/2-			
881.40 10	36.4 22	1063.03		181.66	$(9/2)^+$			
885.85 ^{&} 10	59 <i>3</i>	885.95	$(3/2,5/2)^+$	0.0	3/2-			
891.7 2	23.3 20	1185.18	$(5/2^{-},7/2)$	293.23	$(7/2)^+$			
895.7 2	54 8	1047.44		151.63	5/2+			
899.0 2	11.9 13	1101.84	$(7/2,9/2,11/2)^+$	203.40	$(9/2)^{-}$			
901.8 2	15 4	1055.35	$(5/2, 1/2^+)$ $(7/2, 0/2, 11/2)^+$	/54.53	$(7/2)^+$			
905.2 2 ×915 70 10	14 4 30 8 19	1101.64	(7/2,9/2,11/2)	198.25	(1/2)			
917.4.2	9.9.19	1749.84	$(5/2.7/2^{+})$	832.18	$(5/2^+, 7/2, 9/2^+)$			
920.30 10	76 4	1101.84	$(7/2,9/2,11/2)^+$	181.66	$(9/2)^+$	M1	0.0326	$\alpha(K)=0.0265 4; \alpha(L)=0.00467 7; \alpha(M)=0.001106 16;$
								α (N+)=0.000366 6
								α (N)=0.000290 4; α (O)=6.48×10 ⁻⁵ 9; α (P)=1.041×10 ⁻⁵ 15;
								$\alpha(Q) = 5.86 \times 10^{-7} \ 9$
X027 4 2	17.0.17							Mult.: $\alpha(\mathbf{K})\exp=0.06 \ 3$.
x937.4 2	17.0 17							
941.0 2	10.5.18	1577 88	$(5/2^+, 7/2)$	635 60	$(3/2 5/2 7/2)^+$			
948 9 2	21 3 21	1614 26	$(5/2, 7/2^+)$	665.18	(3/2, 3/2, 7/2) $(7/2)^+$			
951.00 10	54.8 27	979.66	$(3/2^-, 5/2)$	28.545	5/2-			
^x 956.1 2	12.9 20		(-1)-1)		- 1			
959.8 2	11.0 20	1519.42		559.68	7/2-			
^x 974.6 2	28.1 22							
978.1 2	12.6 20	1185.18	$(5/2^-, 7/2)$	207.20	$(5/2)^{-}$			
979.6 2	14.1 20	979.66	$(3/2^{-}, 5/2)$	0.0	3/2-			
981.5 2	23.2 23	1185.18	$(5/2^-, 7/2)$	203.40	$(9/2)^{-}$			
990.0 2 X007.20, 10	13.8 15	1655.35	$(5/2, 7/2^{+})$	665.18	(7/2)			
~997.20 10	35.1 25	1470 62	(7/2)	100 00	$(5/2) 7/2 0/2)^+$			
999.J Z	20.4 20	14/9.03	(1/2)	400.09	$(3/2, 1/2, 9/2)^{\circ}$			

From ENSDF

²²⁵₈₇Fr₁₃₈-18

²²⁵₈₇Fr₁₃₈-18

$\gamma(^{225}\text{Fr})$ (continued)

Eγ	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^π	E_f	${\sf J}_f^\pi$
x1002.5 2	24.4 24				
^x 1011.1 2	13.0 23				
^x 1015.45 10	48 <i>3</i>				
1017.6 2	16.5 26	1577.88	$(5/2^+, 7/2)$	559.68	7/2-
1019.40 10	39 <i>3</i>	1655.35	$(5/2,7/2^+)$	635.60	$(3/2, 5/2, 7/2)^+$
1027.4 2	20 4	1226.03		198.23	$(7/2)^+$
1028.8 2	23 4	1749.84	$(5/2,7/2^+)$	721.06	$(5/2)^{-}$
1033.5 2	79 4	1185.18	$(5/2^-, 7/2)$	151.63	5/2+
1044.7 2	12.3 25	1226.03		181.66	$(9/2)^+$
1047.32 10	41.8 26	1047.44		0.0	3/2-
^x 1067.52 10	29.0 18				
1070.48 10	34.9 24	1479.63	(7/2)	409.04	$5/2,7/2^{(+)}$
1084.2 2	18.9 24	1749.84	$(5/2,7/2^+)$	665.18	$(7/2)^+$
x1093.3 2	13 <i>3</i>				
1095.1 2	16 <i>3</i>	1655.35	$(5/2,7/2^+)$	559.68	7/2-
^x 1099.2 2	14.1 21				
1102.55 10	32.3 26	1185.18	$(5/2^-, 7/2)$	82.515	7/2-
^x 1104.2 2	16.0 26				
1111.2 2	11 4	1614.26	$(5/2,7/2^+)$	502.96	$(5/2)^{-}$
^x 1115.8 2	18.5 18				
x1126.6 2	11.7 26				
^x 1129.6 2	26 5				
1130.9 2	15 5	1749.84	$(5/2,7/2^+)$	618.66	$(5/2,7/2,9/2)^+$
^x 1141.23 10	35.4 25				
1143.65 10	51 3	1226.03		82.515	7/2-
1169.2 2	25.9 24	1577.88	$(5/2^+, 7/2)$	409.04	$5/2,7/2^{(+)}$
1173.3 2	24 <i>3</i>	1519.42		346.03	$(9/2)^+$
1176.2 2	14.2 21	1479.63	(7/2)	303.25	7/2+,9/2+,11/2+
1194.1 2	32 <i>3</i>	1392.17	$(5/2,7/2^{-})$	198.23	$(7/2)^+$
1195.7 2	25 5	1526.13		330.10	$(5/2,7/2)^{-}$
x1215.2 2	34 <i>3</i>				
^x 1219.8 2	21.7 26				
1226.7 2	12.4 25	1519.42		293.23	$(7/2)^+$
1229.9 2	12.3 22	1655.35	$(5/2,7/2^+)$	424.97	$(5/2^{-},7/2^{-})$
1232.2 2	14.3 22	1577.88	$(5/2^+, 7/2)$	346.03	$(9/2)^+$
^x 1257.8 2	17.8 <i>21</i>				
^x 1261.5 2	12.7 17				
x1273.00 10	43 5				
1281.3 2	15.2 20	1479.63	(7/2)	198.23	$(7/2)^+$
^x 1291.8 2	31 3				
1298.03 10	74 4	1479.63	(7/2)	181.66	$(9/2)^+$
^x 1301.6 2	13.7 18				
~1308.42 <i>10</i>	33.7 26				
*1314.88 10	76 4				

19

					225 Rn β	⁻ decay 1997	Bu03 (con	tinued)			
						γ ⁽²²⁵ Fr) (con	tinued)				
E_{γ}	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Eγ	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
x1317.3 2	23.2 19					^x 1553.9 2	23 4				
1321.4 2	24.6 19	1519.42		198.23	$(7/2)^+$	^x 1555.6 2	17 4				
1328.1 ^{<i>d</i>} 2	75 ^d 10	1479.63	(7/2)	151.63	$5/2^{+}$	^x 1563.7 2	10.0 20				
1328.1 ^d 2	30 ^d 10	1526.13		198.23	$(7/2)^+$	1568.10 <i>10</i>	87 5	1749.84	$(5/2,7/2^+)$	181.66	$(9/2)^+$
1337.40 ^d 10	30 d 10	1479.63	(7/2)	142.59	$(3/2)^+$	x1582.90 10	37 4				
1337.40 ^d 10	50 d 10	1519.42		181.66	$(9/2)^+$	^x 1601.8 2	15.9 16				
1351.40 10	56 4	1479.63	(7/2)	128.06	9/2-	1607.3 <i>3</i>	10.6 11	1749.84	$(5/2,7/2^+)$	142.59	$(3/2)^+$
x1361.0 2	14.3 19					^x 1609.8 2	25.3 20				
1363.3 2	22.4 18	1392.17	$(5/2,7/2^{-})$	28.545	5/2-	^x 1623.5 2	7.2 19				
x1371.6 2	24.1 19				= /a+	1626.8 2	10.3 16	1655.35	$(5/2,7/2^+)$	28.545	5/2-
13/4.6 2	14.7 18	1526.13	(5/0+ 7/0)	151.63	5/2+	x1635.2 2	15.7 16				
13/4.0° 2	14./~ 18	1577.88	$(5/2^{+}, 1/2)$ $(5/2, 7/2^{+})$	203.40	(9/2)	x1642.4 2	27.2.20				
1303.3 2 x1380 3 2	10.9 19	1014.20	(3/2, 7/2)	228.30	(7/2,9/2)	x1654.3.2	8 / 15				
1392.0.2	11.3 22	1392.17	$(5/2,7/2^{-})$	0.0	3/2-	x1663.5.5	6.0 13				
1397.00 10	25.5 21	1479.63	(7/2)	82.515	$7/2^{-}$	1667.4 2	25.9 19	1749.84	$(5/2,7/2^+)$	82.515	$7/2^{-}$
1416.3 2	17.0 15	1614.26	$(5/2,7/2^+)$	198.23	$(7/2)^+$	^x 1672.5 2	14.9 15				
1421.0 [#] 2	16.2 <i>16</i>	1749.84	$(5/2,7/2^+)$	330.10	$(5/2,7/2)^{-}$	^x 1682.5 5	10.9 14				
^x 1423.2 2	18.4 16					^x 1692.0 2	8.1 19				
1443.2 2	14.6 22	1526.13		82.515	7/2-	^x 1694.5 2	27.0 20				
1451.16 10	89 <i>5</i>	1479.63	(7/2)	28.545	5/2-	^x 1698.2 5	9.1 <i>19</i>				
1457.10 10	24 3	1655.35	$(5/2,7/2^+)$	198.23	$(7/2)^+$	^x 1700.2 5	11.8 19				
x1466.5 2	28 3				(a. (a) ±	^x 1703.5 5	12.2 18				
1471.2 2	15.5 26	1614.26	$(5/2, 7/2^{+})$	142.59	$(3/2)^{+}$	x1734.1 5	8.9 19				
$^{14/8.2}$	19.1 22					$x_{1794.05}$	1.1 14				
x1485.10 10	39.0 22 23.8 20					x1809.7.5	0.5 12 7 6 15				
1495 30 10	23.8 20 72.4	1577 88	$(5/2^+, 7/2)$	82 515	7/2-	x1814 7 5	5 0 10				
1498.0 2	20.6 21	1526.13	(3/2, 7/2)	28.545	$5/2^{-}$	x1818.3.5	7.5 15				
x1502.1 2	20.2 21				-,-	^x 1828.6 5	7.8 17				
1504.4 2	23.1 21	1655.35	$(5/2,7/2^+)$	151.63	$5/2^{+}$	^x 1831.2 5	10.2 18				
1508.6 2	23.5 21	1749.84	$(5/2,7/2^+)$	241.37	$(5/2)^+$	^x 1842.9 5	9.0 19				
1512.8 2	24.7 22	1655.35	$(5/2,7/2^+)$	142.59	$(3/2)^+$	^x 1849.3 5	9.0 19				
x1522.83 10	47 3					^x 1859.7 5	6.0 12				
^1525.3 2	12.7 15	1577.00	(5/0+ 7/0)	00 545	5/2-	⁴ 1883.1 5	9.2 19				
1549.3 2	15.7 21	15//.88	$(5/2^+, 7/2)$	28.545	$\frac{5}{2}$	*1894.3 5 X1026.0 5	6.0 12				
1551.4 2	23.4 21	1/49.84	$(3/2, 1/2^+)$	198.23	$(1/2)^{-1}$	^{1920.0} 3	6.0 12				

[†] Additional information 1. [‡] From I γ and I(ce) data measured using systems with known absolute efficiency calibrations.

From ENSDF

²²⁵Rn β^- decay 1997Bu03 (continued)

 $\gamma(^{225}\text{Fr})$ (continued)

[#] E γ values for 136.0 γ , 668.05 γ and 1421.0 γ are at least 5 σ from expected least-squares adjusted value for placements indicated.

[@] Peak obscured or unresolved in singles spectrum; most of information was obtained from coincidence experiments.

[&] A multiscaling experiment indicates that this line has the correct half-life for ²²⁵Rn decay.

^{*a*} Transition not observed, but its existence and total intensity was deduced from coincidences between lines feeding the 182 level and those depopulating the 152 and 182 levels.

^{*b*} For absolute intensity per 100 decays, multiply by $0.00552 \ 25$.

^c Multiply placed with undivided intensity.

^d Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

 $^{225}_{87}$ Fr₁₃₈

Decay Scheme (continued)

Decay Scheme (continued)

 $^{225}_{87}$ Fr₁₃₈

Decay Scheme (continued)

²²⁵Rn β^- decay 1997Bu03

$\underline{\text{Decay Scheme (continued})}$ Intensities: I_(γ +ce) per 100 parent decays

 $^{225}_{87}$ Fr₁₃₈

Decay Scheme (continued)

 $^{225}_{87}$ Fr₁₃₈

²²⁵Rn β^- decay 1997Bu03

Decay Scheme (continued)

 $^{225}_{87}\mathrm{Fr}_{138}$

Decay Scheme (continued)

 $^{225}_{87}\mathrm{Fr}_{138}$

Decay Scheme (continued)

²²⁵Rn β^- decay 1997Bu03

Decay Scheme (continued)

 $^{225}_{87}$ Fr₁₃₈