	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. K. Jain (a), R. Raut (b), J. K. Tuli	NDS 110,1409 (2009)	1-Dec-2008

Q(β⁻)=1826 13; S(n)=6046 18; S(p)=5913 16; Q(α)=4613 19 2012Wa38

Note: Current evaluation has used the following Q record \$ 1820 30 5914 58 5915 syst 4576 syst 2003Au03.

Uncertainties in S(p) and Q(α) are 300 and 200, respectively (2003Au03).

Assignment: Th(600-MeV p) mass separation (1969Ha03,1975We23). For discussions of the nuclear structure of ²²⁵Fr see, for example, 1987Sh24, 1988Le13, 1991Cw01 and 2000Sh32.

²²⁵Fr Levels

Cross Reference (XREF) Flags

 225 Rn β^- decay A

 226 Ra(t, α) В

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0‡	3/2-	3.95 min <i>14</i>	AB	%β ⁻ =100 μ=1.07 2; Q=1.32 5 Δ <r<sup>2>(²¹²Fr,²²⁵Fr)=1.34862 22 (1987Co19); the uncertainty indicated is statistical only; a systematic uncertainty of the order of a few percent is expected (1987Co19). μ, Q: from atomic beam LASER spectroscopy (1985Co24,1989Ra17). Sternheimer correction applied for Q. See 1987Co19 for further discussion and analysis. See 1988Le13 for calculated μ and Q values. J^π: spin measured (atomic beam; 1985Co24). Nilsson orbital from cross section fingerprint in (t,α) for 0, 29, 83, 128 levels, supported by measured μ value. See 1986Ek02, 1997Bu03, and 1988Le13 for discussions. T_{1/2}: weighted average of 3.9 min 2 (1969Ha03), 4.0 min 2 (1983Nv01).</r<sup>
28.545 [‡] 23	5/2-		AB	J^{π} : from cross section fingerprint in (t, α) for 0, 29, 83, 128 levels; supported by M1+E2 29 γ to $3/2^{-}$ g.s.
82.515 [‡] 24	7/2-		AB	J ^{π} : from cross section fingerprint in (t, α) for 0, 29, 83, 128 levels; supported by E2 83 γ to 3/2 ⁻ g.s., M1+E2 54 γ to 5/2 ⁻ 29 level.
128.06 [‡] 4	9/2-		AB	J ^{π} : from cross section fingerprint in (t, α) for 0, 29, 83, 128 levels; supported by E2 99 γ to 5/2 ⁻ 29 level.
142.59 [#] 3	$(3/2)^+$		AB	J^{π} : E1 143 γ to 3/2 ⁻ ; E1 114 γ to 5/2 ⁻ 29 level.
151.63 [#] 3 181 3	5/2 ⁺ (1/2 ⁺)		A B	E1 152 γ to 3/2 ⁻ ; E1 69 γ to 7/2 ⁻ 83 level. J ^{π} : tentative value based on comparison of experimental σ (t, α) with DWBA calculation assuming this is the 1/2[400] bandhead. Assignment supported by comparison with (t, α) population of levels in neighboring odd-A Fr isotopes.
181.66 [#] 3	$(9/2)^+$		A	J^{π} : E1 99 γ to 7/2 ⁻ 83 level; 99 γ to 9/2 ⁻ 128 level; band assignment.
198.23 [#] 3	$(7/2)^+$		Α	J^{π} : E1 169.7 γ to 5/2 ⁻ 29 level; E1 115.8 γ to 7/2 ⁻ 83 level; band assignment.
203.40 [@] 4	(9/2)-		Ab	XREF: b(205). J^{π} : M1+E2 121 γ to 7/2 ⁻ 83 level; E2 175 γ to 5/2 ⁻ 29 level; band assignment.
205 ^{&} 3	$(3/2^+)$		В	XREF: B(205).
207.20 [@] 3	(5/2)-		Ab	XREF: b(205). J^{π} : M1+E2 179 γ to 5/2–29 level; M1+E2 207 γ to 3/2 ⁻ g.s.; band assignment.
228.36 5	(7/2,9/2)-		Α	J ^{π} : M1+E2 146 γ to 7/2 ⁻ 83 level; (E1) 47 γ to (9/2) ⁺ 182 level.
241.37 ^{&b} 3	$(5/2)^+$		AB	XREF: B(244). J ^{π} : M1 90 γ to 5/2 ⁺ 152 level; (E1) 241 γ to 3/2 ⁻ g.s.; band assignment.
293.23 ^{&} 4	$(7/2)^+$		AB	J^{π} : M1 95 γ to (7/2) ⁺ 198 level; E1 265 γ to 5/2 ⁻ 29 level; 165 γ to 9/2 ⁻ 128.

²²⁵Fr Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
303 25 5	7/2+ 9/2+ 11/2+	A	J^{π} · F1 175 γ to 9/2 ⁻ 128 level
330.10 4	$(5/2,7/2)^{-}$	AB	J^{π} : E1 131 γ to (7/2) ⁺ 198 level: 330 γ to 3/2 ⁻ g.s.
346 03 ^{&} 4	$(9/2)^+$	A	I^{π} · M1+E2 164 γ to 9/2 ⁺ 182 level: 264 γ to 7/2 ⁻ 83 level: hand assignment
401 3	()/2)	B	
409.04 4	$(5/2)^+$	A	J^{π} : M1(+E2) 210 γ to (7/2) ⁺ 198; M1+E2 257 γ to 5/2 ⁺ 152; 409 γ to 3/2 ⁻ g.s.
424.97 8	$(5/2^{-},7/2^{-})$	Α	J^{π} : gammas to $3/2^{-}$ g.s. and $9/2^{-}$ 128 level.
≈448		В	
480.09 6	$(5/2,7/2,9/2)^+$	Α	J^{π} : M1+E2 187 γ to $(7/2)^+$ 293 level.
502.96 ^b 5	(5/2)-	AB	XREF: B(500). I^{π} : M1 296 α to $(5/2)^{-}$ 207 level: 360 α to $(3/2)^{+}$ 143 level: 305 α to $(7/2)^{+}$ 198 level
550 68 [@] 1	7/2-	۵	I_{π}^{*} M1 531v to 5/2 ⁻ 20 level: M1 /31v to 0/2 ⁻ 28 level
57151b5	$(7/2)^{-}$		V DEE, D (570)
571.51 5	(7/2)	AD	J^{π} : M1 364 γ to (5/2) ⁻ 207 level; 390 γ to (9/2) ⁺ 182 level.
591 3		В	
618.66 6	$(5/2,7/2,9/2)^+$	A	J^{n} : M1 420 γ to $(7/2)^{+}$ 198 level.
≈630 635.60.5	$(2 2 5 2 7 2)^+$	N B	I^{π} , M1 4944, to 5/2 ⁺ 152 level, possible 6264, to 2/2 ⁻ as
655.3	(3/2, 3/2, 7/2)	R	J : 111 464 y to 5/2 152 rever, possible 050 y to 5/2 g.s.
665.18.4	$(7/2)^+$	A	I^{π} : M1 484 γ to (9/2) ⁺ 182 level: M1 423 γ to (5/2) ⁺ 241.
676 3	('/-)	B	
721.06 ^{<i>a</i>} 5	(5/2) ⁻	A	J^{π} : M1 721 γ to 3/2 ⁻ g.s.; M1 693 γ to 5/2 ⁻ 29; weak, doubly-placed M1 639 γ to 7/2 ⁻ 82 level disfavors J=3/2.
744.26 ^b 4	(5/2,7/2)+	AB	XREF: $B(741)$.
754.53 5		A	J^{π} : 602y to 5/2 ⁺ 152 level; possible 573y to (9/2) ⁺ 182 level; possible 551y to
778.64 ^a 4	7/2-	A	J^{π} : M1 750 γ to 5/2 ⁻ 29; M1 696 γ to 7/2 ⁻ 83 level; doubly-placed M1 651 γ to 9/2 ⁻ 128 level
799 3		В	120 10001.
832.18 7	$(5/2^+, 7/2, 9/2^+)$	A	J^{π} : 681 γ to 5/2 ⁺ 152 level; 651 γ to (9/2) ⁺ 182.
839.09 5	$(5/2,7/2,9/2)^+$	Α	J^{π} : M1 536 γ to 7/2 ⁺ ,9/2 ⁺ ,11/2 ⁺ 303 level.
845 <i>3</i>		В	
865.74 4	$(7/2)^{-}$	Α	J^{π} : M1 658 γ to (5/2) ⁻ 207 level; M1 738 γ 9/2 ⁻ 128 level.
885.95 ⁶ 5	$(3/2, 5/2)^+$	AB	XREF: B(882). $I^{T_{*}}$ M1(1 E2) 7/32 to $(3/2)^{+}$ 1/3 level: 8582 to $5/2^{-}$ 20
935 68 8	$(5/2^{-} 7/2 9/2^{+})$	Δ	J^{π} : 808 γ to 9/2 ⁻ 128 level: 784 γ to 5/2 ⁺ 152 level
974 <i>3</i>	(3/2 ,//2,)/2)	B	3 · 0007 to 3/2 · 120 level, 7017 to 3/2 · 132 level.
979.66 5	$(3/2^{-}, 5/2)$	Α	J^{π} : 980 γ to 3/2 ⁻ g.s.; 837 γ to (3/2) ⁺ 143; 408 γ to (7/2) ⁻ 572.
1028 <i>3</i>		В	
1047.44 5		AB	J^{π} : 1047 γ to 3/2 ⁻ g.s.; 896 γ to 5/2 ⁺ 152 level.
1063.03 5	(7/0.0/0.11/0)+	A	J^{π} : 881 γ to (9/2) ⁺ 182;
1101.84 8	(//2,9/2,11/2)*	A	J^{*} : M1 920 γ to (9/2) [*] 182 level.
1127 5	$(5/2^{-}, 7/2)$	A	I^{π} 1034 γ to 5/2 ⁺ 152 982 γ to (9/2) ⁻ 203 978 γ to (5/2) ⁻ 207
1226.03^{b} 7	(3/2, 7/2)		VDEE: $P(1220)$
1220.03 7		AD	$I^{\pi} \cdot 1144\gamma$ to $7/2^{-}$ 83: 1045γ to $(9/2)^{+}$ 182
≈1247		В	
1321 <i>3</i>		В	
1351 <i>3</i>		В	
1392.17 6	$(5/2,7/2^{-})$	A	J^{π} : 1392 γ to 3/2 ⁻ g.s.; 1194 γ to (7/2) ⁺ 198; 821 γ to (7/2) ⁻ 572.
1398 3		В	
1479.63 ⁰ 5	(7/2)	AB	XREF: B(1477). J ^{π} : 1451 γ to 5/2 ⁻ 29; 1351 γ to 9/2 ⁻ 128; 1298 γ to (9/2) ⁺ 182; 1070 γ to (5/2) ⁺ 409.
1519.42 ^b 6		AB	XREF: B(1516).

Continued on next page (footnotes at end of table)

²²⁵Fr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
			J^{π} : 1337 γ to (9/2) ⁺ 182; 960 γ to 7/2 ⁻ 560 level.
1526.13 10		Α	J^{π} : 1498 γ to 5/2 ⁻ 29.
≈1535		В	
1577.88 7	$(5/2^+, 7/2)$	Α	J^{π} : 1232 γ to $(9/2)^+$ 346 level; 1549 γ to $5/2^-$ 29 level; 1169 γ to $(5/2)^+$ 409 level.
1614.26 7	$(5/2,7/2^+)$	Α	J^{π} : 1471 γ to (3/2) ⁺ 143; 1416 γ to (7/2) ⁺ 198; 1385 γ to (7/2,9/2) ⁻ 228 level.
1655.35 5	$(5/2,7/2^+)$	Α	J^{π} : 1513 γ to $(3/2)^+$ 143; 1457 γ to $(7/2)^+$ 198; 1095 γ to $7/2^-$ 560 level.
1749.84 6	$(5/2,7/2^+)$	Α	J^{π} : 1667 γ to 7/2 ⁻ 83; 1607 γ to (3/2) ⁺ 143; 1551 γ to (7/2) ⁺ 198 level.

[†] From (t,α) for levels observed in (t,α) only; uncertainties vary between 1 and 3 keV, but evaluator has assigned 3 keV for all energies adopted from (t,α) . All other level energies are from least-squares adjustment of E γ , omitting 136.0 γ , 668.05 γ and 1421.0 γ , each of which fits its placement very poorly (at least 5 σ from least-squares adjusted value), and all unresolved or multiply-placed lines.

[‡] Band(A): π 3/2[532] band (1997Bu03). Coriolis mixed with 1/2[541] band (1997Bu03). Assignment based on (t, α) reaction cross section fingerprint.

[#] Band(B): π 3/2[651] band (1997Bu03). Coriolis mixed band with i13/2 orbital parentage. K=3/2 assignment based on relative E1 branching from J=5/2, 7/2, 9/2 band members to levels in g.s. band (Alaga rule).

[@] Band(C): possible π 1/2[541] mixed band (1997Bu03). Supported by γ decay patterns assuming a 3/2[532] band admixture.

& Band(D): possible π 3/2[402] band (1997Bu03). Coriolis mixed with J>1/2 members of 1/2[660] and 1/2[400] bands. Assignment supported by (t, α) cross section fingerprint.

^{*a*} Band(E): K^{π} =5/2⁻ band (1997Bu03). possible configuration: π 5/2[523]. K=5/2 assignment based on comparison between Alaga rules and observed branching ratios for strong M1 transitions from J=5/2 and 7/2 band members to g.s. band levels. Supported by strong β^- branch from 7/2[743] ²²⁵Rn parent to J=7/2 band member.

^b It is questionable whether the (t,α) reaction excites this level or a separate level with comparable energy.

$\gamma(^{225}{\rm Fr})$

E,RI,M,MR From ²²⁵Rn β^- decay.

4

E _i (level)	${ m J}^{\pi}_i$	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.	δ	α@	Comments
28.545	5/2-	28.51 5	100	0.0	3/2-	M1+E2	0.45 15	7.5×10 ² 27	$δ$: values measured in $β^-$ decay are 0.32 2 and 0.44 2, but intensity balance at the 28 level in $β^-$ decay implies δ≥0.6.
82.515	7/2-	53.93 5	100 6	28.545	5/2-	M1+E2	0.18 3	22.8	
		82.55 [‡] 5	38 [‡] 10	0.0	$3/2^{-}$	E2		22.1	
128.06	9/2-	45.5 <i>1</i>	21 3	82.515	$7/2^{-}$	[M1]		29.6	
		99.4 [‡] 1	100 [‡] <i>33</i>	28.545	$5/2^{-}$	E2		9.2	
142.59	$(3/2)^+$	114.03 5	28.7 15	28.545	$5/2^{-}$	E1		0.349	
		142.60 ^{<i>a</i>} 5	100 ^{<i>a</i>} 5	0.0	3/2-	E1		0.202	
151.63	5/2+	69.12 5	13.6 7	82.515	$7/2^{-}$	E1		0.291	
		123.06 5	45.3 23	28.545	5/2-	E1		0.290	
		151.65 5	100.0	0.0	3/2-	El		0.174	
181.66	$(9/2)^+$	30.0	0.0089#	151.63	$5/2^{+}$	[E2]		2.99×10^{3}	
		53.6 [‡] 1	2.0# 7	128.06	9/2-	[E1]		0.576	
		99.15 5	100 13	82.515	7/2-	E1		0.111	
198.23	$(7/2)^+$	46.6 ^{<i>a</i>} 1	$0.64^{u} 21$	151.63	5/2+	[M1]		27.6	
		70.15 5	5.8 3	128.06	$9/2^{-}$	[E1]		0.280	
		115.75 5	12.4 /	82.313	1/2 5/2-	EI E1		0.337	
203.40	$(0/2)^{-}$	21 72 10	88.10	28.343	$\frac{3}{2}$	E1 [E1]		0.132	
203.40	(9/2)	120.83.5	100 5	82 515	(9/2) $7/2^{-}$	M1+E2		6.4.24	
		120.00 ± 10	70 2 22	28 545	5/2-	E2		0.02	
207.20	$(5/2)^{-}$	64.6.1	275	142 59	$(3/2)^+$	IE2 IE11		0.92	
207.20	(3/2)	178.66.5	100.5	28.545	(3/2) $5/2^{-}$	M1+E2	1.47 +18-14	1.50.12	
		207.21 5	36.0 19	0.0	$3/2^{-}$	M1+E2	1.4 + 4 - 3	0.98 17	
228.36	$(7/2, 9/2)^{-}$	46.6 ^{<i>a</i>} 1	25.0 ^a 17	181.66	$(9/2)^+$	(E1)		0.84	
		145.80 5	100 5	82.515	7/2-	M1+E2		3.5 17	
241.37	$(5/2)^+$	89.7 [‡] 1	26 [‡] 3	151.63	$5/2^{+}$	M1		4.08	
		212.85 5	52 <i>3</i>	28.545	5/2-	(E1)		0.0766	
		241.34 5	100 5	0.0	3/2-	(E1)		0.0569	
293.23	$(7/2)^+$	94.9 [‡] 1	4.8 [‡] 10	198.23	$(7/2)^+$	M1		3.47	
		141.65 ^a 10	2.4 ^{<i>a</i>} 10	151.63	$5/2^{+}$	[M1]		5.61	
		165.20 5	87 4	128.06	9/2-	[E1]		0.141	
		264.67 5	100 5	28.545	5/2-	E1		0.0459	
303.25	$7/2^+, 9/2^+, 11/2^+$	175.17 5	100	128.06	9/2-	El		0.122	
330.10	$(5/2, 7/2)^{-1}$	126.80 10	35.4 19	203.40	$(9/2)^{-}$	[M1,E2]		5.5 22	

From ENSDF

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult.	α [@]	Comments
330.10	(5/2,7/2) ⁻	131.84 [‡] 10 247.60 5 301.5 2	100 [‡] 5 89 4 11.9 19	198.23 82.515 28.545	(7/2) ⁺ 7/2 ⁻ 5/2 ⁻	E1 [M1,E2] [M1,E2]	0.245 0.7 5 0.4 3	
346.03	(9/2)+	330.10 <i>10</i> 104.72 <i>10</i> 142.60 ^{<i>a</i>} <i>10</i> 147.96 <i>10</i> 164.41 5	$\begin{array}{c} 40.5 \ 20 \\ 10.5 \ 20 \\ 26^{a} \ 3 \\ 22 \ 4 \\ 52 \ 3 \end{array}$	0.0 241.37 203.40 198.23 181.66	$3/2^{-}$ (5/2) ⁺ (9/2) ⁻ (7/2) ⁺ (9/2) ⁺	[M1,E2] [E2] [E1] M1,E2 M1+F2	0.32 21 7.52 0.202 3.4 16 2 4 13	
409.04	$(5/2)^+$	263.56 5 202.02 5	100 5 78 4	82.515 207.20	$7/2^{-}$ (5/2) ⁻	[E1]	0.087	Measured multipolarity (β^- decay) is M1, inconsistent with this placement.
		210.70^{\ddagger} 10 257.385 $326.47^{\&}$ 10 409.12	24 [‡] 3 100 5 <84 ^{&} 28 4	198.23 151.63 82.515	$(7/2)^+$ 5/2 ⁺ 7/2 ⁻ 3/2 ⁻	M1(+E2) M1+E2	1.1 7 0.6 4	
424.97	$(5/2^-, 7/2^-)$	296.80 <i>10</i>	100 5	128.06	$9/2^{-}$ $3/2^{-}$	[M1+E2]	0.4 3	
480.09	(5/2,7/2,9/2)+	71.16 10	21.2 24	409.04	$(5/2)^+$	[M1]	8.01	
		186.6 [‡] 3 251.65 10	21 [‡] 4 12.6 <i>13</i>	293.23 228.36	$(7/2)^+$ $(7/2,9/2)^-$	M1+E2	1.6 10	
502.96	(5/2)-	298.35 <i>10</i> 295.55 <i>10</i> 299.6 2 304.7 2 351.3 [‡] 2	$ \begin{array}{c} 100 \ 5 \\ 100 \ 8 \\ 17 \ 3 \\ 19.2 \ 23 \\ 38^{\ddagger} \ 9 \end{array} $	181.66 207.20 203.40 198.23 151.63	$(9/2)^+$ $(5/2)^-$ $(9/2)^-$ $(7/2)^+$ $5/2^+$	[M1] M1 [E2]	0.696 0.714 0.148	
559.68	7/2-	360.45 <i>10</i> 503.00 ^{&} <i>10</i> 229.45 <i>5</i>	57 6 <52 ^{&} 16.8 8	142.59 0.0 330.10	$(3/2)^+$ $3/2^-$ $(5/2,7/2)^-$	M1	1.44	
		318.32 <i>10</i> 352.30 <i>10</i> 356.30 <i>10</i> 361.55 <i>10</i> 378.05 <i>10</i>	20.7 <i>10</i> 100 <i>5</i> 52.4 26 11.1 7 20.7 <i>10</i>	241.37 207.20 203.40 198.23 181.66	$(5/2)^+$ $(5/2)^-$ $(9/2)^-$ $(7/2)^+$ $(9/2)^+$ $(9/2)^+$	M1 M1	0.442 0.429	
		408.10 ⁴ 10 431.63 10	12.6 <i>13</i>	151.63	5/2* 9/2 ⁻	M1	0.255	
571.51	(7/2)-	476.9 ^{&} 2 531.10 <i>10</i> 364.10 <i>10</i> 368.2 2 373.40 <i>10</i>	<6.7 ^{&} 58 <i>3</i> 91 <i>5</i> 30 <i>3</i> 78 <i>4</i>	82.515 28.545 207.20 203.40 198.23	$7/2^{-}$ $5/2^{-}$ $(5/2)^{-}$ $(9/2)^{-}$ $(7/2)^{+}$	M1 M1 [M1]	0.147 0.404 0.392	

S

From ENSDF

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	E_f	J_f^π	Mult.	α [@]
571.51	$(7/2)^{-}$	389.90 10	44 3	181.66	$(9/2)^+$		
		419.8 [‡] 2	100 [‡] 11	151.63	5/2+		
		543.05 10	47 4	28.545	5/2-		
618.66	$(5/2,7/2,9/2)^+$	273.07 10	46 4	346.03	$(9/2)^+$	[M1,E2]	0.5 4
		288.80 10	100 6	330.10	$(5/2,7/2)^{-}$		
		420.15 [‡] 20	75 [‡] 18	198.23	$(7/2)^+$	M1	0.274
635.60	$(3/2, 5/2, 7/2)^+$	394.50 10	41 4	241.37	$(5/2)^+$		
		483.80 ^{<i>a</i>} 10	100 ^{<i>a</i>} 14	151.63	5/2+	M1	0.188
		635.60 ^{&} 10	<72	0.0	3/2-		
665.18	$(7/2)^+$	105.29 10	34 4	559.68	7/2-	[E1]	0.425
		256.20 10	20.9 21	409.04	$(5/2)^+$		0.0.00
		423.65 10	59 3	241.37	$(5/2)^+$	M1	0.268
		461.55 10	26.0 23	203.40	(9/2)	M1	0.207
		400.90 10 483 80 <mark>4</mark> 10	100^{a} 7	198.25	$(1/2)^{+}$	M1 M1	0.207
		537.15 10	<61 ^{&}	128.06	(9/2)	1011	0.100
721.06	$(5/2)^{-}$	240.6 2	1 2 1	120.00	$(5/2) = (2/2) + (2/2)^{+}$	[12:1]	0.0572
721.00	(3/2)	240.0° 3 514 2 2	1.5.4 10.5.17	400.09	(5/2, 7/2, 9/2) $(5/2)^{-}$	LE1] M1	0.0575
		517.8.2	2.0.5	207.20	$(9/2)^{-}$	1411	0.100
		63850° 10	$< 6.7 \frac{8}{2}$	82 515	(2/2)	M1	0.000
		692.60.10	42.5.21	28 545	5/2-	M1	0.0728
		721.10 10	100 5	0.0	$3/2^{-}$	M1	0.0655
744.26	$(5/2,7/2)^+$	335.45 10	52.0 26	409.04	$(5/2)^+$	M1	0.505
		398.5 2	23 5	346.03	$(9/2)^+$		
		414.1 <mark>&</mark> 2	<22 ^{&}	330.10	$(5/2,7/2)^{-}$		
		451.00 10	44 <i>3</i>	293.23	$(7/2)^+$		
		503.00 ^{&} 10	<54 <mark>&</mark>	241.37	$(5/2)^+$		
		537.15 ^{&} 10	<85 <mark>&</mark>	207.20	$(5/2)^{-}$		
		545.85 ^a 10	100 ^{<i>a</i>} 4	198.23	$(7/2)^+$	M1	0.137
		562.50 10	20 6	181.66	$(9/2)^+$		
		600.9 2	33 4	142.59	(3/2)+		
754.53		136.06 5	100 5	618.66	$(5/2,7/2,9/2)^+$		
		551.10 ^{&} 10	47 ^{&} 4	203.40	(9/2)-		
		572.70 ^{&} 10	97 <mark>&</mark> 11	181.66	$(9/2)^+$		
		602.2 2	25 4	151.63	5/2+		
778.64	7/2-	218.60 10	0.86 6	559.68	7/2-	[M1,E2]	1.0 7
		275.65 10	0.54 6	502.96	$(5/2)^{-}$	[M1]	0.87
		369.65 10	1.58 9	409.04	(5/2) ⁺		

6

E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	\mathbf{E}_{f}	J_f^π	Mult.	α [@]
778.64	7/2-	432.54 10	2.56 19	346.03	$(9/2)^+$		
		448.65 10	2.56 14	330.10	(5/2,7/2)-		
		537.15 ^{&} 10	<1.98 <mark>&</mark>	241.37	$(5/2)^+$		
		571.40 10	12.7 6	207.20	(5/2)-	M1	0.121
		627.10 10	4.37 23	151.63	5/2+		
		650.65 ^a 10	12.1 ^a 7	128.06	9/2-	M1	0.086
		696.20 10	70 <i>3</i>	82.515	7/2-	M1	0.0718
		750.15 10	100 5	28.545	5/2-	M1	0.0591
		778.70 10	5.9 3	0.0	3/2-		
832.18	$(5/2^+, 7/2, 9/2^+)$	486.1 2	93 27	346.03	$(9/2)^+$		
		590.6 2	38 7	241.37	$(5/2)^+$		
		634.0 2	41 0	198.23	$(1/2)^{+}$		
		650.65° 10	100 1/	181.60	$(9/2)^{+}$		
0.20.00		680.92	54 0	151.05	5/2		1.2.0
839.09	(5/2,7/2,9/2)	203.4 * 3	14+ 4	635.60	$(3/2, 5/2, 7/2)^{+}$	[M1,E2]	1.3 8
		414.1 ^{&} 2	<15.1 [°]	424.97	$(5/2^-, 7/2^-)$		
		535.80 10	100 6	303.25	7/2+,9/2+,11/2+	M1	0.144
		545.85 ^{<i>a</i>} 10	28 ^{<i>a</i>} 3	293.23	$(7/2)^+$	M1	0.137
		635.60 ^{&} 10	<37	203.40	(9/2)		
		640.8 2	21 7	198.23	$(7/2)^+$		
		711.0 2	23.5 24	128.06	9/2-		
		756.70 10	<36	82.515	7/2-		
		839.2 ^{X} 2	<55 ⁰⁰	0.0	3/2-		
865.74	$(7/2)^{-}$	362.75 10	5.2 4	502.96	(5/2)-	[M1]	0.408
		562.50 10	3.9 8	303.25	7/2+,9/2+,11/2+		
		572.70 ^{&} 10	<13.2	293.23	$(7/2)^+$		
		624.3 2	3.5 4	241.37	$(5/2)^+$		
		658.30 10	18.4 10	207.20	$(5/2)^{-}$	M1	0.0832
		662.30 10	20.7 13	203.40	$(9/2)^{-}$		
		668.05 [†] 10	8.2 4	198.23	$(7/2)^+$		
		683.9 2	4.4 5	181.66	$(9/2)^+$		
		714.00 10	7.7 4	151.63	5/2+		
		723.00 10	22.0 10	142.59	$(3/2)^+$		
		737.70 10	25.4 13	128.06	9/2-	M1	0.0617
		783.40 10	18.7 10	82.515	1/2 ⁻	MI	0.0527
		837.00" 10	100 6	28.545	5/2-	MI	0.0444
005.05		866.0 [°] 2	$<3.4^{\circ}$	0.0	3/2-		2 0 10
885.95	$(3/2, 5/2)^{+}$	141.65 [°] 10	8 ⁴⁴ 6	/44.26	$(5/2,7/2)^{+}$	[M1,E2]	3.9 18

7

 $^{225}_{87}\mathrm{Fr}_{138}\text{--}7$

$\gamma(^{225}\text{Fr})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult.	α [@]
885.95	$(3/2,5/2)^+$	326.47 ^{&} 10	<51 ^{&}	559.68	7/2-		
		405.6 2	44 5	480.09	$(5/2,7/2,9/2)^+$		
		476.9 <mark>&</mark> 2	<20.2 ^{&}	409.04	$(5/2)^+$		
		644.40 10	27.8 23	241.37	$(5/2)^+$		
		679.1 ^{&} 2	<13.1 ^{&}	207.20	$(5/2)^{-}$		
		734.40 10	55 <i>3</i>	151.63	5/2+		
		743.35 10	100 5	142.59	$(3/2)^+$	M1(+E2)	0.038 23
		857.5 2	23 <i>3</i>	28.545	5/2-		
		885.85 10	58 <i>3</i>	0.0	3/2-		
935.68	$(5/2^-, 7/2, 9/2^+)$	605.6 2	100 14	330.10	$(5/2,7/2)^{-}$		
		784.0 [‡] 2	‡	151.63	5/2+		
		808.0 2	79 11	128.06	9/2-		
979.66	$(3/2^{-}, 5/2)$	408.10 ^a 10	34 ^a 7	571.51	$(7/2)^{-}$		
		828.05 10	27 3	151.63	5/2+		
		837.00 ^{<i>a</i>} 10	100 ^{<i>a</i>} 25	142.59	$(3/2)^+$		
		951.00 10	55 3	28.545	5/2-		
1047 44		979.6 2	14.1 20	0.0	3/2-		
1047.44		292.80 10	13.0 19	754.53			
		326.47 ^{x} 10	<97 °	721.06	$(5/2)^{-}$		
		638.50 ^{&} 10	<59 ^{&}	409.04	$(5/2)^+$		
		806.2 2	40 3	241.37	$(5/2)^+$		
		866.0 ^{&} 2	<24 ^{&}	181.66	$(9/2)^+$		
		895.7 2	100 15	151.63	5/2+		
		1047.32 10	77 5	0.0	3/2-		
1063.03		127.31 ^{&} 10	<52 ^{&}	935.68	$(5/2^-, 7/2, 9/2^+)$		
		308.8 2	27 3	754.53			
		397.6 2	39 7	665.18	$(7/2)^+$		
		427.65 10	100 6	635.60	$(3/2, 5/2, 7/2)^+$		
		759.6 2	58 6	303.25	7/2+,9/2+,11/2+		
		834.6 2	47 8	228.36	$(7/2, 9/2)^{-}$		
		855.5 ^{&} 2	<35	207.20	$(5/2)^{-}$		
		859.2 2	35 5	203.40	$(9/2)^{-}$		
		864.5 2	86 6	198.23	$(7/2)^+$		
1101.04	$(7/2, 0, (2, 1, 1, 1))^+$	881.40 10	95 6	181.66	$(9/2)^+$		
1101.84	(7/2,9/2,11/2)	808.0 2	15717	293.23	$(1/2)^{-1}$		
		899.0 Z	15./ 1/	203.40	(9/2) $(7/2)^+$		
		903.2 2	10 5	190.23	(1/2) $(0/2)^+$	M1	0.0347
1185 18	(5/2 - 7/2)	920.30 <i>10</i> 310 61 <i>10</i>	37 5 10	101.00 865 74	(3/2) $(7/2)^{-}$	1111	0.0347
1100.10	(J/2, I/2)	519.01 10	51.5 17	005.74	(1/4)		

 ∞

²²⁵₈₇Fr₁₃₈-8

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^π
1185.18	$(5/2^-, 7/2)$	566.3 2	23 3	618.66	(5/2,7/2,9/2)+
		705.10 10	81 4	480.09	$(5/2,7/2,9/2)^+$
		839.2 ^{&} 2	<50 ^{&}	346.03	$(9/2)^+$
		855.5 <mark>&</mark> 2	14 & 3	330.10	$(5/2,7/2)^{-}$
		891.7 2	29.1 25	293.23	$(7/2)^+$
		978.1 2	16.0 25	207.20	$(5/2)^{-}$
		981.5 2	29 <i>3</i>	203.40	(9/2)-
		1033.5 2	100 5	151.63	5/2+
		1102.55 10	41 3	82.515	7/2-
1226.03		472.1 ^{&} 2	<27	754.53	
		801.0 2	39 4	424.97	$(5/2^-, 7/2^-)$
		1027.4 2	39 8	198.23	$(7/2)^+$
		1044.7 2	24 5	181.66	$(9/2)^+$
		1143.65 10	100 6	82.515	7/2-
1392.17	$(5/2,7/2^{-})$	412.30 10	65 6	979.66	$(3/2^{-}, 5/2)$
		727.4 2	44 6	665.18	$(1/2)^{+}$
		756.70 ^{&} 10	<79 ^{&}	635.60	$(3/2, 5/2, 7/2)^+$
		821.1 2	41 7	571.51	$(7/2)^{-}$
		1194.1 2	100 9	198.23	$(7/2)^+$
		1363.3 2	70.6	28.545	5/2-
1470 (2	(7/0)	1392.0 2	35 7	0.0	3/2
14/9.63	(7/2)	/58.5 2	16.7 23	/21.06	(5/2)
		814.1 2	20.9 25	665.18	$(1/2)^{+}$
		999.5 2	22.9 22	480.09	$(5/2, 1/2, 9/2)^{+}$
		1070.46 10	39 J 16 0 24	409.04	(3/2) $7/2^+ 0/2^+ 11/2^+$
		1281 3 2	17 1 23	198 23	$(7/2)^+$
		1298.03.10	83.4	181.66	$(9/2)^+$
		1328.1^{a} 2	84 ^{<i>a</i>} 11	151.63	5/2+
		1337.40 ^{<i>a</i>} 10	34 ^{<i>a</i>} 11	142.59	$(3/2)^+$
		1351.40 10	63 4	128.06	9/2-
		1397.00 10	28.7 24	82.515	7/2-
		1451.16 10	100 6	28.545	5/2-
1519.42		127.31 ^{&} 10	<40 ^{&}	1392.17	$(5/2,7/2^{-})$
		472.1 ^{&} 2	<26 <mark>&</mark>	1047.44	
		798.7 <mark>&</mark> 2	<40 ^{&}	721.06	$(5/2)^{-}$
		959.8 2	22.4	559.68	7/2-
		1173.3 2	48 6	346.03	$(9/2)^+$
		1226.7 2	25 5	293.23	$(7/2)^+$
					× 1 /

9

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
1519.42		1321.4 2	49 <i>4</i>	198.23	$(7/2)^+$
		1337.40 ^a 10	100 ^a 20	181.66	$(9/2)^+$
1526.13		1195.7 2	83 17	330.10	$(5/2,7/2)^{-}$
		1328.1 ^{<i>a</i>} 2	100 ^a 33	198.23	$(7/2)^+$
		1374.6 ^{&} 2	<55 <mark>&</mark>	151.63	5/2+
		1443.2 2	49 7	82.515	7/2-
		1498.0 2	69 7	28.545	5/2-
1577.88	$(5/2^+, 7/2)$	798.7 <mark>&</mark> 2	<28 ^{&}	778.64	7/2-
		942.8 2	14.6 25	635.60	$(3/2, 5/2, 7/2)^+$
		1017.6 2	23 4	559.68	7/2-
		1169.2 2	36 <i>3</i>	409.04	$(5/2)^+$
		1232.2 2	20 3	346.03	$(9/2)^+$
		1374.6 <mark>&</mark> 2	<22.9 <mark>&</mark>	203.40	$(9/2)^{-}$
		1495.30 10	100 6	82.515	7/2-
		1549.3 2	22 3	28.545	5/2-
1614.26	$(5/2,7/2^+)$	388.50 10	100 5	1226.03	
		551.10 ^{&} 10	<72 ^{&}	1063.03	
		679.1 ^{&} 2	<38 <mark>&</mark>	935.68	$(5/2^-, 7/2, 9/2^+)$
		948.9 <i>2</i>	62 6	665.18	$(7/2)^+$
		1111.2 2	32 12	502.96	$(5/2)^{-}$
		1385.3 2	55 6	228.36	$(7/2, 9/2)^{-}$
		1416.3 2	50 4	198.23	$(7/2)^+$
		1471.2 2	45 8	142.59	$(3/2)^+$
1655.35	$(5/2,7/2^+)$	470.2 2	27 6	1185.18	$(5/2^{-},7/2)$
		823.40 10	84 5	832.18	$(5/2^+, 7/2, 9/2^+)$
		876.7 2	43 6	778.64	7/2-
		901.8 2	38 10	754.53	
		990.0 2	35 4	665.18	$(7/2)^+$
		1019.40 10	100 8	635.60	$(3/2,5/2,7/2)^{+}$
		1095.1 2	41 8	559.68	1/2
		1229.9 2	32.0	424.97	(5/2, 1/2)
		1457.10 10	02 ð 50 5	198.23	$(1/2)^{-1}$
		1504.4 2	595	131.03	$\frac{3}{2}$
		1512.8 2	05 0 26 4	142.39	(3/2) $5/2^{-}$
17/0 8/	$(5/2 \ 7/2^+)$	702 40 10	20.4	20.545	512
1/47.04	(3/2, 7/2)	917 4 2	11 4 22	832.18	(5/2+7/29/2+)
		1028 8 2	26.5	721.06	$(5/2)^{-}$
		1020.0 2	20.5	665.18	$(7/2)^+$
		1130.9 2	17.6	618.66	$(5/2,7/2,9/2)^+$
					(-,=,-,=,-,=)

10

L

$\gamma(^{225}\text{Fr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^π
1749.84	(5/2,7/2 ⁺)	1421.0 [†] 2 1508.6 2 1551.4 2 1568.10 10 1607.3 3 1667.4 2	18.6 <i>18</i> 27.0 <i>24</i> 29.2 <i>24</i> 100 <i>6</i> 12.2 <i>13</i> 29.8 <i>22</i>	330.10 241.37 198.23 181.66 142.59 82.515	$(5/2,7/2)^{-} (5/2)^{+} (7/2)^{+} (9/2)^{+} (3/2)^{+} (3/2)^{+} 7/2^{-}$

[†] E γ values for 136.0 γ , 668.05 γ and 1421.0 γ are at least 5 σ from expected least-squares adjusted value for placements indicated.

[‡] Peak obscured or unresolved in singles spectrum; most of information was obtained from coincidence experiments.

[#] Transition not observed, but its existence and total intensity was deduced from coincidences between lines feeding the 182 level and those depopulating the 152 and 182 levels in β^- decay.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with undivided intensity.

^{*a*} Multiply placed with intensity suitably divided.

Level Scheme

Intensities: Relative photon branching from each level

 $^{225}_{87}\mathrm{Fr}_{138}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

0.0 3.95 min 14

 $^{225}_{87} {\rm Fr}_{138}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

3.95 min 14

 $^{225}_{87}\mathrm{Fr}_{138}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{225}_{87}\mathrm{Fr}_{138}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

3.95 min 14

 $^{225}_{87}\mathrm{Fr}_{138}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

	11. 11.	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0:0 E(1)34																
(7/2)+	532 483.15 46.90 1	461-0 451-55 2565 2 2562 1 2620 1		41 100 35	E2) 46														665 18
(2/2 5/2 7/2)+			یک کو بو او کو بو او	5 . 50 14 . 6	2.2. 														(25.00
$\frac{(3/2, 3/2, 1/2)}{(5/2, 7/2, 0/2)^+}$				-0.8%			<u></u>												635.60
(312,112,912)				ŤŤŤ	<u></u>	2200		2 4 0	©	2	1.8	-9°-							618.66
					2.05 10.05	5. 5. 8. 8 9. 9. 9. 9 9. 9. 9. 9	0. Å	640	2 2 2 2 2 2	222	2 2 2 0 2	Į,							
(7/2)-					ਅੱ∀`ਅੱ ਜਾਜਾ	്ന്ന്ന് പ്പ	5.6	£.\$.	6,6,6	ું જે જે	్సి_								571.51
7/2-		▼		- -			T T		ŤŤ	ŤŤ	Ť	%			&				559.68
						8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2													
5/2) [_]															502.96				
$(5/2,7/2,9/2)^+$														2	5.5	9	,	10	480.09
(e:=,::=)													- -		Π			9	400.09
																	20		
(510- 710-)																2	i Se		
$\frac{(5/2, 1/2)}{(5/2)^+}$									_ _ -	_ _ -		_ _ -	_ _			Ť	T		424.97
(5/2)		♥	_ _ - -	- -					_ -	_ _ -		— — -	_ _ -			*	_		409.04
(9/2) ⁺ (5/2,7/2) ⁻ (7/2) ⁺				¥				·											<u>346.03</u> <u>330.10</u> 293.23
$\begin{array}{c} (5/2)^+ \\ \hline (7/2,9/2)^- \\ \hline (5/2)^- \\ \hline (9/2)^- \\ \hline (9/2)^+ \\ \hline (9/2)^+ \\ \hline (9/2)^+ \\ \hline (3/2)^+ \\ \hline (3/2)^+ \\ \hline (3/2)^- \\ \hline (3/2)^-$				¥		¥							•	• • •	•				241.37 228.36 207.20 203.40 198.23 181.66 151.63 142.59 128.06
7/2-																			82.515
5/2-					•		↓												28.545
3/2-			<u> </u>																0.0

3.95 min 14

 $^{225}_{87}\mathrm{Fr}_{138}$

19

 $^{225}_{87}\mathrm{Fr}_{138}\text{--}19$

²²⁵₈₇Fr₁₃₈-19

From ENSDF

 $^{225}_{87}\mathrm{Fr}_{138}$

Band(E): K^π=5/2⁻ band (1997Bu03) <u>7/2⁻ 778.64</u>

(5/2)- 721.06

 $^{225}_{87}\mathrm{Fr}_{138}$