Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	25-Oct-2019				

 $Q(\beta^{-})=-673$ 7; S(n)=6668 6; S(p)=4478 5; $Q(\alpha)=5935.1$ 14

S(2n)=12331 8, S(2p)=11323 5 (2017Wa10).

1947En03, 1947Ha02: ²²⁵Ac identified from decay product of ²³³U series. 1950Ha52: chemical separation of ²²⁵Ac.

1972Ku26: fission isomer not observed in ²²⁶Ra(d,3n),E=11.3 MeV.

1988Le13: level energies were calculated for a deformed shell model (including octupole deformation) coupled to a reflection-asymmetric rotor core. The quadrupole deformation of β_2 =0.144 was used in calculations, and an octupole deformation of $\beta_3 \approx 0.1$ was suggested.

Theoretical studies: consult the NSR database at www.nndc.bnl.gov for 14 references dealing with theoretical calculations for structure (levels, J^{π} , transition probabilities, etc.), and 62 for radioactive decay modes, in particular about 14 C cluster emission. Additional information 1.

²²⁵Ac Levels

Cross Reference (XREF) Flags

 225 Ra β^{-} decay (14.9 d)

²²⁹Pa α decay (1.50 d)

E(level) [†]	$\mathtt{J}^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0#	(3/2-)	9.920 d <i>3</i>	AB	%α=100; % ¹⁴ C=5.3×10 ⁻¹⁰ <i>13</i> (2001Gu33,1993Bo26) T _{1/2} : from 2012Po14 (from decay curves for α counting using a planar silicon detector at a defined solid angle and in a nearly 2π geometry, 4πα+β counting using a windowless CsI spectrometer, and a pressurized proportional counter, gamma-ray counting with an HPGe detector and a NaI(TI) well detector, followed for 59-141 days; final result is deduced from six detection methods, with consideration of statistical and systematic uncertainties). Previous measurements: 10.0 d <i>I</i> (1950Ha52), 10 d (1947En03). 2001Gu33: ¹⁴ C decay mode measurement at the CERN-ISOLDE mass-separator at CERN and nuclear track detector technique; λ(¹⁴ C)/λ(α)=4.5×10 ⁻¹² 14 or partial T _{1/2} (¹⁴ C)=1.9×10 ¹⁷ s 6 (2001Gu33). 1993Bo26 measured λ(¹⁴ C)/λ(α)=6.0×10 ⁻¹⁰ 13 at CERN-ISOLDE. Hindrance factor as defined in 2001Gu33 is about unity for ¹⁴ C decay of ²²⁵ Ac, much lower than typical hindrance factor of 10-100 for other known cluster decays. This represents a case of a favored cluster decay. Adopted value of % ¹⁴ C decay is the average of the values from 2001Gu33 and 1993Bo26, with corresponding partial T _{1/2} =1.6×10 ¹⁷ s 4. J ^π : from analogy with neighboring nuclei, expected low-lying levels are 3/2[532] and 3/2[651]; negative parity from E1 character of the 40.09γ from (3/2 ⁺) level.
29.91 [#] 6	$(5/2^{-})$		В	J^{π} : γ to $(3/2^{-})$; γ transitions from $(5/2^{+})$ and $(7/2^{+})$.
40.10 [@] 4	$(3/2^+)$	0.72 ns <i>3</i>	AB	$T_{1/2}$: β (ce for 40γ)(t) in 225 Ra β^- decay (1985Is03). J^{π} : 115.55 γ , M1 from (5/2 ⁺); systematics of Nilsson orbitals.
64.69 [@] 5	$(5/2^+)$		В	J^{π} : gammas to (3/2 ⁻) and (5/2 ⁻); γ from (7/2 ⁺).
77.13 [#] 9	$(7/2^{-})$		В	J^{π} : gammas from $(7/2^{+})$ and $(9/2^{+})$.
105.01 [@] 7	$(7/2^+)$		В	J^{π} : gammas from $(7/2^{+})$ and $(9/2^{+})$.
120.81 ^{&} 4	(5/2-)		AB	XREF: A(?). J^{π} : 120.8 γ , M1(+E2) to (3/2 ⁻) g.s.; systematics of Nilsson orbitals.
144.96 <mark>@</mark> 9	$(9/2^+)$		В	J^{π} : γ to $(7/2^{-})$.
155.64 ^a 5	(5/2+)		AB	XREF: A(?). J^{π} : favored α transition from $(5/2^+)^{229}$ Pa g.s.

Adopted Levels, Gammas (continued)

²²⁵Ac Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
170.75 <mark>&</mark> 8	$(7/2^{-})$	В	J^{π} : γ transitions to $(5/2^-)$ and $(7/2^-)$.
199.86 ^a 6	$(7/2^+)$	В	J^{π} : γ to $(5/2^{-})$, favored α transition from $(5/2^{+})$ parent state.
221 7		В	
235.53 ^{&} 13	$(9/2^{-})$	В	J^{π} : γ to $(7/2^{-})$.
256.97 ^a 9	$(9/2^+)$	В	J^{π} : gammas to $(7/2^{-})$, $(7/2^{+})$ and $(9/2^{+})$; α hindrance factor.
≈318?		В	
327 7		В	
421? 7		В	

 $^{^{\}dagger}$ From $^{229}\mbox{Pa}~\alpha$ decay.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult. [†]	δ^{\dagger}	$\alpha^{\#}$	Comments
29.91	(3/2+)	30.0 <i>2</i> 40.09 <i>5</i>	100	0.0 (3/2 ⁻)	[M1] E1		1.293	E _γ : from $\alpha\gamma$ -coin (1973Ag01) in α decay. Note that 1987Ah05 interpreted this γ -ray peak as an escape line in their $\alpha\gamma$ -coin spectrum. B(E1)(W.u.)=0.00171 15 Mult.: from L-subshell ratios in
								225 Ra β^- decay.
64.69	$(5/2^+)$	24.6 <mark>&</mark>		40.10 (3/2+)				
		34.8 [@] 1	≈5 [@]	29.91 (5/2 ⁻)	[E1]		1.88	
		64.70 <i>5</i>	100 9	$0.0 (3/2^-)$	[E1]		0.362	
105.01	$(7/2^+)$	75.12 <i>5</i>	100 9	29.91 (5/2 ⁻)	[E1]		0.243	
120.81	$(5/2^{-})$	80.6 1	5.0 9	$40.10 \ (3/2^+)$	[E1]	0.5.5	0.202	
144.06	(0/2±)	120.80 5	100 <i>9</i> 100 <i>9</i>	$0.0 (3/2^{-})$	M1(+E2)	0.5 5	8.9 16	
144.96	$(9/2^+)$	67.80 5		77.13 (7/2 ⁻)	[E1]		0.319	
155.64	$(5/2^+)$	34.8 [@] 1	≈13 [@]	120.81 (5/2 ⁻)	[E1]		1.88	
		115.55 <i>5</i> 125.71 <i>7</i>	100 8 19.5 <i>19</i>	40.10 (3/2 ⁺) 29.91 (5/2 ⁻)	M1 [E1]		11.28 0.281	
		155.65 7	≈5	$0.0 (3/2^{-})$	[E1]		0.1680	
170.75	$(7/2^{-})$	93.6 1	47 7	77.13 (7/2 ⁻)	[M1+E2]		$6.2^{\ddagger} 30$	
170.75	(1/2)	140.85 7	100 12	77.13 (7/2) 29.91 (5/2 ⁻)	[M1+E2]		5.6^{\ddagger} 12	
199.86	$(7/2^+)$	79.00 7	50 5	120.81 (5/2 ⁻)	[E1]		0.213	
177.00	(1/2)	94.86 7	62 7	$105.01 (7/2^+)$	[M1]		4.00	
		122.8 <i>I</i>	24 3	77.13 (7/2 ⁻)	[E1]		0.297	
		135.20 7	100 10	64.69 (5/2+)	[M1]		7.22	
		169.9 <i>1</i>	56 7	29.91 (5/2-)	[E1]		0.1362	
235.53	$(9/2^{-})$	158.4 <i>I</i>	100	77.13 (7/2 ⁻)	[M1]		4.61	
256.97	$(9/2^+)$	111.9 <i>I</i>	100 17	144.96 (9/2+)	[M1]		12.33	
		152.0 <i>I</i>	92 17	$105.01 \ (7/2^+)$	[M1]		5.18	
		179.9 <i>1</i>	67 <i>17</i>	77.13 (7/2 ⁻)	[E1]		0.1187	

[‡] From probable band assignments, in addition to some other arguments.

[#] Band(A): π3/2[532] band. @ Band(B): π3/2[651] band. & Band(C): π5/2[523] band.

^a Band(D): $\pi 5/2[642]$ band.

Adopted Levels, Gammas (continued)

$\gamma(^{225}\text{Ac})$ (continued)

- † From 229 Pa lpha decay, unless otherwise stated. Only the 40.09-keV transition is seen in 225 Ra eta^- decay.
- [‡] For δ =0.5 5 in analogy with the mixing ratio for 120.80 γ .
- # Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- [®] Multiply placed with intensity suitably divided.
- & Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Adopted Levels, Gammas

Band(D): π5/2[642] band

(9/2⁺) 256.97

Band(C): *π*5/2[523] band

(9/2⁻) 235.53

