²²⁹Pa α decay (1.50 d) 1987Ah05,1973Ag01,1958Hi78

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	25-Oct-2019

Parent: ²²⁹Pa: E=0.0; J^{π} =(5/2⁺); $T_{1/2}$ =1.50 d 5; Q(α)=5835 4; % α decay=0.48 5

 229 Pa-J^{π}: From 229 Pa Adopted Levels in the ENSDF database, as of June 2008), with proposed configuration= $\pi 5/2[642]$.

²²⁹Pa-T_{1/2}: From ²²⁹Pa Adopted Levels in the ENSDF database, where the value is adopted from the measurement by 1987Ah05. A recent measurement by 2018Gr09 reports $T_{1/2}=1.55 \text{ d } I$ (weighted average of the following eight values deduced from decay curves for 117.2- and 119.0-keV γ rays at four different proton bombarding energies: 1.83 d 5, 1.49 d 2, 2.08 d 6, 1.60 d 2, 1.66 d 5, 1.47 d 2, 1.78 d 10, 1.43 d 3). Evaluator's analysis of this result: eight values from 2018Gr09 form a discrepant dataset, as regular weighted average gives 1.55 d 5 (not an uncertainty of 0.01 d as given in 2018Gr09), but reduced χ^2 of 24 is very large in comparison to critical $\chi^2=2.1$ at 95% confidence level. Weighted average by the method of limitation of relative statistical weights (LRSW) method gives 1.53 d 5, but still with reduced $\chi^2=14$, and rejecting the 2.08 d 6 value as an outlier. Weighted average by Normalized Residuals method (NRM), which adjusts uncertainties in data points considered as outliers, gives 1.50 d 3, with reduced $\chi^2=5$, still too large to be acceptable. It would seem that unweighted average, which gives a value of 1.67 d 8 is perhaps an appropriate way to deal with this dataset. Based on above problematic issues with these data, reported $T_{1/2}$ from 2018Gr09 is omitted in the adopted half-life of ²²⁹Pa decay.

²²⁹Pa-Q(α): From 2017Wa10.

²²⁹Pa-% α decay: % α =0.48 5 for ²²⁹Pa α decay (from ²²⁹Pa Adopted Levels in the ENSDF database, as of June 2008).

1987Ah05: measured E γ , I γ , E(x ray), I(x ray), ce, $\gamma\gamma$ -coin, $\alpha\gamma$ -coin.

1973Ag01: measured E α , E γ , I γ (in $\alpha\gamma$ -coin mode), $\alpha\gamma$ -coin.

1963Su10 (thesis): measured $E\alpha$, $I\alpha$, $E\gamma$, $\alpha\gamma$ -coin.

1958Hi78 (thesis): measured $E\alpha$, $I\alpha$.

²²⁵Ac Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0@	$(3/2^{-})$	9.920 d 3	
29.91 [@] 6	$(5/2^{-})$		
40.10 ^{&} 4	$(3/2^+)$		J^{π} : 3/2 ⁺ in 1987Ah05.
64.69 ^{&} 5	$(5/2^+)$	0.72 ns 3	J^{π} : 5/2 ⁺ in 1987Ah05.
77.13 [@] 9	$(7/2^{-})$		J^{π} : 7/2 ⁻ in 1987Ah05.
105.01 ^{&} 7	$(7/2^+)$		J^{π} : 7/2 ⁺ in 1987Ah05.
120.81 ^{<i>a</i>} 4	$(5/2^{-})$		J^{π} : 5/2 ⁻ in 1987Ah05.
144.96 <mark>&</mark> 9	$(9/2^+)$		J^{π} : 9/2 ⁺ in 1987Ah05.
155.64 ^b 5	$(5/2^+)$		J^{π} : 5/2 ⁺ in 1987Ah05.
170.75 ^a 8	$(7/2^{-})$		J^{π} : 7/2 ⁻ in 1987Ah05.
199.86 ⁶ 6	$(7/2^+)$		J^{π} : 7/2 ⁺ in 1987Ah05.
221 [#] 7			J^{π} : 11/2 ⁺ in 1973Ag01.
235.53 [@] 13	$(9/2^{-})$		J^{π} : 9/2 ⁻ in 1987Ah05.
256.97 <mark>b</mark> 9	$(9/2^+)$		J^{π} : 9/2 ⁺ in 1987Ah05.
≈318? [#]			J^{π} : (11/2 ⁻) in 1973Ag01.
327 # 7			J^{π} : 11/2 ⁺ in 1973Ag01.
421? [#] 7			

[†] From least-squares fit to $E\gamma$ data.

[‡] From the Adopted Levels. The J^{π} assignments in 1987Ah05 and 1973Ag01 are given without parentheses.

[#] Level not in 1987Ah05.

[@] Band(A): $\pi 3/2[532]$ band.

²²⁹Pa α decay (1.50 d) 1987Ah05,1973Ag01,1958Hi78 (continued)

²²⁵Ac Levels (continued)

[&] Band(B): $\pi 3/2[651]$ band.

^{*a*} Band(C): $\pi 5/2[523]$ band.

^{*b*} Band(D): $\pi 5/2[642]$ band.

α radiations

$E\alpha^{\dagger}$	E(level)	Ια ^{‡&}	HF [#]	Comments
5320 [@] 5	421?	0.05 4	53 43	
5413 5	327	0.1	90	I α : other: 0.15 (1958Hi78).
≈5422 [@]	≈318?	0.07 2	≈144	
5479 <i>5</i>	256.97	1.7	13	
5501 5	235.53	0.7	41	
5517 5	221	0.6	57	
5536 5	199.86	8.5	5.3	
5565 5	170.75	3.9	16	
5580 <i>5</i>	155.64	36.0	2.1	
5591 5	144.96	4.6	19	
5615 5	120.81	13.3	8.9	
5630 5	105.01	9.7	15	
5656 4	77.13	< 0.2	>887	E α : from Q(α)=5835 4 and level energy.
5670 <i>5</i>	64.69	18.5	13	
5695 <i>5</i>	40.10	0.2	1553	Ia: other: $\approx 1.5\%$ (1963Su10) is in disagreement.
5703 4	29.91	< 0.2	≥1557	E α : from Q(α)=5835 4 and level energy.
5733 4	0.0	<0.5	≥887	E α : from Q(α)=5835 4. This α group was assigned by 1958Hi78 and 1963Su10 to ²²⁵ Ac α decay. I α : $\approx 0.5\%$ (1963Su10)

[†] From 1958Hi78, except where noted otherwise. Original energies have been increased by 5 keV because of changes in calibration energies, as recommended by 1979Ry03. Other measurement: 1963Su10.

[‡] From 1973Ag01. Other measurements: 1958Hi78, 1963Su10; both are theses from Berkeley Laboratory.

[#] The nuclear radius parameter $r_0(^{225}Ac)=1.53293 \ 31$ is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides. Radius parameter used from 2019 updated table.

[@] Existence of this α group (reported by 1958Hi78) could not be confirmed by the measurements of 1973Ag01.

& For absolute intensity per 100 decays, multiply by 0.0048 5.

γ (²²⁵Ac)

I γ normalization: 1987Ah05 give I γ /100 decays.

Ac x-ray data from 1987Ah05:

Ac K α_2 : E(x ray)=87.68 5, %I(x ray)=15.5 12 (1987Ah05).

Ac K α_1 : E(x ray)=90.88 5, %I(x ray)=25.7 18 (1987Ah05).

Ac $K\beta_1'$: E(x ray)=102.9 *l*, %I(x ray)=8.5 7 (1987Ah05).

Ac $K\beta_2'$: E(x ray)=105.8 *l*, %I(x ray)=3.1 *3* (1987Ah05).

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
24.6 ^d	64.69	(5/2+)	40.10	(3/2+)	E_{γ} : from level scheme, transition was not observed. Existence is inferred from observation of 40.09 γ in coincidence with 5670 α populating the 64.70-keV level.
30.0 2	29.91	(5/2 ⁻)	0.0	(3/2 ⁻)	In level-scheme Fig. 4, 1973Ag01, $I(\gamma+ce)(24.6)/I(\gamma+ce)(64.7)=10/45$. E _{γ} : from $\alpha\gamma$ -coin (1973Ag01). This γ ray at 30.1 keV was interpreted by

				decay (1	l.50 d)	1987Ah05,	1973Ag01,1	1,1958Hi78 (continued)			
						γ ⁽²²⁵ Ac) (co	ntinued)				
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\alpha^{\boldsymbol{b}}$	Comments			
34.8 ^c 1	0.54 ^c	64.69	(5/2+)	29.91	(5/2-)	[E1]	1.88	1987Ah05 as an escape peak in their $\alpha\gamma$ -coin spectrum Fig. 2. A general uncertainty of 0.2 keV for E γ was assigned by 1973Ag01. α (L)=1.415 23; α (M)=0.353 6			
								α (N)=0.0912 <i>15</i> ; α (O)=0.0193 <i>3</i> ; α (P)=0.00288 <i>5</i> ; α (Q)=0.0001062 <i>16</i> I _{γ} : total I γ (34.8 γ)=1.04 <i>9</i> (1987Ah05) was measured. I γ (34.8 γ) deexciting the 64.7-keV level was determined by 1987Ah05 from γ spectrum in coincidence with the 5670 α populating the 64.70-keV level.			
34.8 ^c 1	0.5 ^c	155.64	(5/2+)	120.81	(5/2-)	[E1]	1.88	α(L)=1.415 23; α(M)=0.353 6 α(N)=0.0912 15; α(O)=0.0193 3; α(P)=0.00288 5; α(Q)=0.0001062 16 Iγ: obtained by 1987Ah05 from subtraction of the component from the 64.7 level determined from αγ-coin gated with α to the 64.7 level.			
39.9 ^{@d}		144.96	$(9/2^+)$	105.01	$(7/2^+)$			In level-scheme Fig. 4, 1973Ag01, $I(\gamma+ce)(39.9)/I(\gamma+ce)(67.8)=70/30$			
40.09 5	21.6 <i>18</i>	40.10	(3/2 ⁺)	0.0	(3/2 ⁻)	E1	1.293	$\begin{aligned} &\alpha(L) = 0.974 \ 14; \ \alpha(M) = 0.241 \ 4 \\ &\alpha(N) = 0.0624 \ 9; \ \alpha(O) = 0.01336 \ 20; \\ &\alpha(P) = 0.00203 \ 3; \ \alpha(Q) = 7.96 \times 10^{-5} \ 12 \\ &\text{Mult.: from the Adopted Gammas, based on} \\ &L\text{-subshell data in} \ ^{225}\text{Ra} \ \beta^ \end{aligned}$			
40.1 ^{@d}		105.01	(7/2+)	64.69	(5/2+)			In level-scheme Fig. 4, 1973Ag01, I(γ +ce)(40.1)/I(γ +ce)(75.1)=45/55.			
44.2 ^{@d}		199.86	$(7/2^+)$	155.64	$(5/2^+)$						
50.6 ^{@d}		155.64	$(5/2^+)$	105.01	$(7/2^+)$						
54.9 ^{@d}		199.86	$(7/2^+)$	144.96	$(9/2^+)$						
64.70 <i>5</i>	9.4 8	64.69	(5/2 ⁺)	0.0	(3/2 ⁻)	[E1]	0.362	α (L)=0.273 4; α (M)=0.0667 10 α (N)=0.01735 25; α (O)=0.00380 6; α (P)=0.000613 0; α (O)=2.00×10 ⁻⁵ 4			
67.80 5	1.35 12	144.96	(9/2+)	77.13	(7/2 ⁻)	[E1]	0.319	$\alpha(L)=0.000153, \alpha(Q)=2.00\times10^{-4}$ $\alpha(L)=0.2414; \alpha(M)=0.05889$ $\alpha(N)=0.0153122; \alpha(O)=0.003365;$ $\alpha(P)=0.0005458; \alpha(O)=2.62\times10^{-5}4$			
75.12 5	7.2 6	105.01	(7/2 ⁺)	29.91	(5/2 ⁻)	[E1]	0.243	α (L)=0.184 3; α (M)=0.0447 7 α (N)=0.01165 17; α (O)=0.00257 4; α (P)=0.000420 6; α (O)=2.10×10 ⁻⁵ 3			
79.00 7	0.36 3	199.86	(7/2+)	120.81	(5/2-)	[E1]	0.213	α (L)=0.1608 23; α (M)=0.0391 6 α (N)=0.01019 15; α (O)=0.00225 4; α (P)=0.000370 6; α (O)=1.88×10 ⁻⁵ 3			
80.6 1	0.12 2	120.81	(5/2 ⁻)	40.10	(3/2+)	[E1]	0.202	α (L)=0.1524 22; α (M)=0.0370 6 α (N)=0.00966 14; α (O)=0.00213 3; α (P)=0.000351 5; α (Q)=1.80×10 ⁻⁵ 3			
90.9 ^{@d}		155.64	(5/2 ⁺)	64.69	(5/2+)			In level-scheme Fig. 4, 1973Ag01, I(γ +ce)(90.9)/I(γ +ce)(115.5)=5/92.			
93.6 1	0.21 3	170.75	(7/2 ⁻)	77.13	(7/2 ⁻)	[M1+E2]	6.2 ^{&} 30	α (L)=4.6 22; α (M)=1.17 63 α (N)=0.31 17; α (O)=0.070 36; α (P)=0.0120 52: α (O)=6 3×10 ⁻⁴ 20			
94.86 7	0.45 5	199.86	(7/2 ⁺)	105.01	(7/2 ⁺)	[M1]	4.00	$\begin{array}{l} \alpha(\text{L})=3.03 \ 5; \ \alpha(\text{M})=0.726 \ 11 \\ \alpha(\text{N})=0.193 \ 3; \ \alpha(\text{O})=0.0448 \ 7; \ \alpha(\text{P})=0.00829 \\ 12; \ \alpha(\text{Q})=0.000736 \ 11 \end{array}$			

Continued on next page (footnotes at end of table)

²²⁵₈₉Ac₁₃₆-4

			229 Pa α	decay (1.5	50 d)	1987Ah05,1	973Ag01	l,1958Hi78 (continued)
γ ⁽²²⁵ Ac) (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ	$\alpha^{\boldsymbol{b}}$	Comments
111.9 <i>1</i>	0.12 2	256.97	(9/2+)	144.96	(9/2+)	[M1]		12.33	$\alpha(K)=9.85 \ 14; \ \alpha(L)=1.88 \ 3; \\ \alpha(M)=0.451 \ 7 \\ \alpha(N)=0.1195 \ 17; \ \alpha(O)=0.0278 \ 4; \\ \alpha(P)=0.00514 \ 8; \ \alpha(Q)=0.000456 \ 7 $
115.55 5	3.8 3	155.64	(5/2+)	40.10	(3/2 ⁺)	M1		11.28	α (K)exp=9.5 7 (1987Ah05) α (K)=9.02 <i>13</i> ; α (L)=1.713 <i>24</i> ; α (M)=0.411 <i>6</i> α (N)=0.1090 <i>16</i> ; α (O)=0.0253 <i>4</i> ; α (P)=0.00469 <i>7</i> ; α (Q)=0.000416 <i>6</i> Mult.: from I[(40 γ)(K x-ray)-coin]/I[(40 γ)(115 γ)-coin] (1987Ab05)
120.80 <i>5</i>	2.4 2	120.81	(5/2 ⁻)	0.0	(3/2 ⁻)	M1(+E2)	0.5 5	8.9 <i>16</i>	$\alpha(K)=6.4 \ 23; \ \alpha(L)=1.84 \ 50; \alpha(M)=0.46 \ 16 \alpha(N)=0.123 \ 41; \ \alpha(O)=0.0279 \ 84; \alpha(P)=0.0049 \ 12; \ \alpha(Q)=3.01\times10^{-4} 98 Mult.: multipolarity was deduced from I(K x-ray)/I(121\gamma)=7 \ 2$
122.8 <i>I</i>	0.17 2	199.86	(7/2 ⁺)	77.13	(7/2 ⁻)	[E1]		0.297	(1973Ag01) in $\alpha\gamma$ spectrum. $\alpha(K)=0.231$ 4; $\alpha(L)=0.0502$ 8; $\alpha(M)=0.01213$ 18 $\alpha(N)=0.00318$ 5; $\alpha(O)=0.000711$ 10; $\alpha(P)=0.0001208$ 17; (Ω) 7.05 ± 10 = 0.0001208
125.71 7	0.74 7	155.64	(5/2 ⁺)	29.91	(5/2 ⁻)	[E1]		0.281	$\alpha(Q) = 7.05 \times 10^{-6} I0$ $\alpha(K) = 0.218 3; \ \alpha(L) = 0.0473 7;$ $\alpha(M) = 0.01141 I6$ $\alpha(N) = 0.00299 5; \ \alpha(O) = 0.000669 I0;$ $\alpha(P) = 0.0001139 I6;$ $\alpha(Q) = 6.60 \times 10^{-6} I0$
135.20 7	0.72 7	199.86	(7/2+)	64.69	(5/2+)	[M1]		7.22	$\alpha(K) = 5.78 \ 9; \ \alpha(L) = 1.091 \ 16; \alpha(M) = 0.262 \ 4 \alpha(N) = 0.0694 \ 10; \ \alpha(O) = 0.01613 \ 23; \alpha(P) = 0.00298 \ 5; \ \alpha(Q) = 0.000265 \ 4$
140.85 7	0.45 5	170.75	(7/2 ⁻)	29.91	(5/2 ⁻)	[M1+E2]		5.6 ^{&} 12	$\alpha(K)=4.2 \ 15; \ \alpha(L)=1.09 \ 19; \\ \alpha(M)=0.27 \ 6 \\ \alpha(N)=0.072 \ 16; \ \alpha(O)=0.016 \ 4; \\ \alpha(P)=0.0029 \ 4; \ \alpha(Q)=1.93 \times 10^{-4} \\ 63 \\ \alpha(Q)=0.0029 \ 4; \ \alpha(Q)=0.016 \ 4; \\ \alpha(Q)=0.0029 \ 4; \ \alpha(Q)=0.0029 \ 4; \ \alpha(Q)=0.016 \ 4; \\ \alpha(Q)=0.0029 \ 4; \ \alpha(Q)=0.0029 \ 4; $
152.0 <i>1</i>	0.11 2	256.97	(9/2+)	105.01	(7/2+)	[M1]		5.18	$\alpha(M)=4.15\ 6;\ \alpha(L)=0.780\ 11;$ $\alpha(M)=0.187\ 3$ $\alpha(N)=0.0496\ 7;\ \alpha(O)=0.01154\ 17;$ $\alpha(D)=0.00113\ 2;\ \alpha(O)=0.000180\ 3$
155.65 7	≈0.2	155.64	(5/2+)	0.0	(3/2 ⁻)	[E1]		0.1680	$\alpha(\mathbf{r}) = 0.00213 \text{ s}, \ \alpha(\mathbf{Q}) = 0.000189 \text{ s}$ $\alpha(\mathbf{K}) = 0.1321 \ 19; \ \alpha(\mathbf{L}) = 0.0272 \ 4; $ $\alpha(\mathbf{M}) = 0.00655 \ 10 $ $\alpha(\mathbf{N}) = 0.001717 \ 25; \ \alpha(\mathbf{O}) = 0.000387 $ $6; \ \alpha(\mathbf{P}) = 6.66 \times 10^{-5} \ 10; $ $\alpha(\mathbf{O}) = 4.15 \times 10^{-6} \ 6$
158.4 <i>I</i>	0.05 1	235.53	(9/2 ⁻)	77.13	(7/2 ⁻)	[M1]		4.61	$\begin{array}{l} \alpha(Q) = 4.13 \times 10^{-6} & 0 \\ \alpha(K) = 3.69 & 6; \ \alpha(L) = 0.694 \ 10; \\ \alpha(M) = 0.1663 \ 24 \\ \alpha(N) = 0.0441 \ 7; \ \alpha(O) = 0.01026 \ 15; \\ \alpha(P) = 0.00190 \ 3; \ \alpha(Q) = 0.0001682 \\ 24 \end{array}$
169.90 <i>10</i>	0.40 5	199.86	(7/2 ⁺)	29.91	(5/2 ⁻)	[E1]		0.1362	α (K)=0.1075 <i>16</i> ; α (L)=0.0217 <i>3</i> ; α (M)=0.00523 <i>8</i> α (N)=0.001372 <i>20</i> ; α (O)=0.000310

Continued on next page (footnotes at end of table)

²²⁹Pa α decay (1.50 d) 1987Ah05,1973Ag01,1958Hi78 (continued)

$\gamma(^{225}Ac)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	$\alpha^{\boldsymbol{b}}$	Comments
179.90 <i>10</i>	0.08 2	256.97	(9/2+)	77.13	(7/2 ⁻)	[E1]	0.1187	5; $\alpha(P)=5.36\times10^{-5}$ 8; $\alpha(Q)=3.42\times10^{-6}$ 5 $\alpha(K)=0.0939$ 14; $\alpha(L)=0.0188$ 3; $\alpha(M)=0.00452$ 7 $\alpha(N)=0.001186$ 17; $\alpha(O)=0.000268$ 4; $\alpha(P)=4.65\times10^{-5}$ 7; $\alpha(Q)=3.01\times10^{-6}$ 5

[†] From 1987Ah05 unless otherwise stated. Other measurements: 1973Ag01, 1963Su10, 1958Hi78.

[‡] Absolute intensities per 100 α decays, measured by 1987Ah05. Intensities from $\alpha\gamma$ -coincidences are given by 1973Ag01.

[#] Multipolarities in square brackets assumed from ΔJ^{π} .

[@] Transition not seen but shown in level-scheme Fig. 4 of 1973Ag01 without any explanation. This transition is not included in the Adopted dataset.

& For $\delta = 0.5$ 5 in analogy with the mixing ratio for 120.80 γ .

^{*a*} For absolute intensity per 100 decays, multiply by 0.0048 5.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Multiply placed with intensity suitably divided.

^d Placement of transition in the level scheme is uncertain.

Decay Scheme Legend Intensities: $I_{(\gamma+ce)}$ per 100 parent decays @ Multiply placed: intensity suitably divided $\begin{array}{l} I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \end{array}$ - $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ γ Decay (Uncertain) $(5/2^+)$ 0.0 1.50 d 5 Coincidence Q_α=5835 4 %α=0.48 ²²⁹₉₁Pa₁₃₈ <u>Εα</u> <u>Ια</u> <u>HF</u> 421 5320 0.00024 53 5413 0.00048 90 327 <u>~31</u>8 \approx 5422 0.00034 ≈ 144 11,000 1110 0000 • 179.90 (E1) + 138,4 (AU) 0.0013 $(9/2^+)$ 256.97 5479 0.0082 13 $(9/2^{-})$ 235.53 5501 0.0034 41 È. 221 5517 0.0029 57 Â 10,00 10 $(7/2^+)$ 199.86 5536 0.041 5.3 140 88 141, $\begin{bmatrix} -1 & 4^{2,5}, & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & &$ + 93.6 Mart 20.0° • 07 | • 07 00 (E) | 0085 E \mathcal{F}_{I} $(7/2^{-})$ 1551 170.75 5565 0.0187 16 11:0(234)/14 3 $(5/2^+)$ 155.64 5580 0.173 2.1 $(9/2^+)$ $\stackrel{\Phi^{2_{5}}}{\stackrel{1}{\xrightarrow{}}}_{q_{0,I}}|_{l\in I_{I}}|_{q_{0q_{3}}}$ 144.96 5591 0.0221 19 150.80 1 $(5/2^{-})$ 120.81 5615 0.064 8.9 1 $(7/2^+)$ 105.01 5630 0.047 15 $(7/2^{-})$ 77.13 5656 < 0.00096 >887 E10:24 $(5/2^+)$ 64.69 0.72 ns 3 0.089 5670 13 \$0.00 $(3/2^+)$ 40.10 5695 0.00096 1553 30.0 $(5/2^{-})$ 29.91 $\geq \! 1557$ < 0.00096 5703 $(3/2^{-})$ 0.0 9.920 d 3 5733 < 0.0024 ≥ 887

²²⁹Pa α decay (1.50 d) 1987Ah05,1973Ag01,1958Hi78

 $^{225}_{89}\mathrm{Ac}_{136}$

²²⁹Pa α decay (1.50 d) 1987Ah05,1973Ag01,1958Hi78

²²⁵₈₉Ac₁₃₆