²²⁸Pu α decay (1.1 s) 2003Ni10,1994An02

Type Author Citation Literature Cutoff Date

Balraj Singh, Sukhjeet Singh ENSDF 08-Mar-2022

Parent: 228 Pu: E=0; J^{π} =0+; $T_{1/2}$ =1.1 s +20-5; $Q(\alpha)$ =7940 18; % α decay=100.0

2003Ni10: ²²⁸Pu produced in ¹⁹⁸Pt(³⁴S,4n),E=170,172 MeV; measured E α , T_{1/2}.

1994An02, 1994Ye08: 208 Pb(24 Mg,4n) at beam energy E=5.50 MeV/nucleon, genetic correlations with the α decay of 224 U and its daughter products; measured E α . Half-life could not be measured in this work.

²²⁴U Levels

 $\frac{E(level)}{0}$ $\frac{J^{\pi}}{0^{+}}$

 α radiations

Eα E(level) HF^{\dagger} Comments

7810 20 0 1.0 $E\alpha$: from 1994An02. Other: 7772 35 (2003Ni10).

²²⁸Pu-T_{1/2}: From ²²⁸Pu Adopted Levels in the ENSDF database (Dec 2012 update, value taken from 2003Ni10, no new references after this evaluation).

²²⁸Pu-Q(α): From 2021Wa16.

²²⁸Pu- $\frac{\alpha}{\alpha}$ decay: $\frac{\alpha}{100}$, based on $\frac{\beta}{100}$ + $\frac{\beta}{100}$ +<0.5 from Gross theory of $\frac{\beta}{100}$ decay (1973Ta30); <0.03% from theoretical calculations in 2019Mo01.

[†] For HF(7810 α)=1.0, deduced r₀=1.480 fm 6 for T_{1/2}=1.1 s, 1.435 fm 6 for T_{1/2}=3.1 s, 1.506 fm 6 for T_{1/2}=0.6 s; with an average r₀=1.474 20 for ²²⁴U. In 2020Si16 evaluation, r₀=1.480 42.