Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh, Sukhjeet Singh	ENSDF	08-Mar-2022				

 $Q(\beta^{-}) = -3867 \ 12$; $S(n) = 7461 \ 12$; $S(p) = 5118 \ 12$; $Q(\alpha) = 7299 \ 6$ 2021Wa16 S(2n)=13350 14, S(2p)=8903 10 (2021Wa16).

²²⁴Th isotope identified and produced by 1949Me54 in Th(α ,X) at E(α)=100-120 MeV, with an estimated half-life of ≈ 1 s. Later studies of ²²⁴Th decay: 1958To25, 1961Ru06, 1970Va13, 1978IbZZ, 1989An13, 2000He17.

2020Cs01: theoretical structure calculations for levels, J^{π} , low-lying bandheads using pseudo- and proxy-SU(3) semimicroscopic algebraic quartet model (SAQM).

Theoretical calculations: 109 references extracted from the NSR database are listed in document records. Additional information 1.

²²⁴Th Levels

D₀/Q₀=electric dipole moment to electric quadrupole moment ratio deduced by 1993Ac02 from B(E1)/B(E2) ratios determined in $(\alpha, 6n\gamma)$ reaction.

Cross Reference (XREF) Flags

A	²²⁸ U	α	decav	(9.1	min)
11	0	u	uccuy	().1	mm

- 208 Pb(16 O,F γ):GDR 208 Pb(18 O,2n γ) В
- С
- 226 Ra(α ,6n γ) D

E(level) [†]	$J^{\pi #}$	T _{1/2}	XREF	Comments
0.0 [@]	0+	1.04 s 2	A CD	%α=100
				T _{1/2} : weighted average of 0.812 s 99 (2000He17 from α decay), 1.05 s 2 (1978IbZZ), 1.03 s 5 (1970Va13, from α decay curve), 1.05 s 5 (1958To25, detection of integral α particles with pulsed beam).
98.1 [@] 3	2+	0.590 ns 40	A CD	J^{π} : E2 γ to 0 ⁺ . T _{1/2} : (186 ce(L2))(98 ce(L2))(t) in ²²⁶ Ra(α ,6n γ) (1986Sc18).
251.0? ^{&} 3	(1 ⁻)		A D	XREF: D(?). J ^{π} : possible member of $K^{\pi}=0^{-}$ band.
284.1 [@] 5	4+		A CD	J^{π} : stretched E2 γ to 2 ⁺ .
305.3 ^{&} 5	(3 ⁻)		CD	
464.5 <mark>&</mark> 5	(5 ⁻)		CD	
534.7 [@] 5	6+		CD	$D_0/Q_0=7.3\times10^{-4} \text{ fm}^{-1}$ 11.
699.5 <mark>&</mark> 5	(7-)		CD	
833.9 [@] 6	8+		CD	$D_0/Q_0=6.7 \times 10^{-4} \text{ fm}^{-1}$ 7.
997.7 <mark>&</mark> 6	(9 ⁻)		CD	
1173.8 [@] 6	10^{+}		CD	$D_0/Q_0 = 7.3 \times 10^{-4} \text{ fm}^{-1} 4.$
1347.3 ^{&} 6	(11 ⁻)		CD	XREF: C(?).
				$D_0/Q_0 = 8.8 \times 10^{-4} \text{ fm}^{-1} 6.$
1549.8 [@] 6	12^{+}		D	$D_0/Q_0 = 8.4 \times 10^{-4} \text{ fm}^{-1} 4.$
1738.7 6	(13 ⁻)		D	$D_0/Q_0 = 8.0 \times 10^{-4} \text{ fm}^{-1} 4.$
1958.9 [@] 7	14^{+}		D	$D_0/Q_0 = 9.3 \times 10^{-4} \text{ fm}^{-1} 5.$
2164.7 <mark>&</mark> 7	(15 ⁻)		D	$D_0/Q_0=8.9\times10^{-4} \text{ fm}^{-1} 6.$
2398.0 [@] 7	16+		D	

Adopted Levels, Gammas (continued)

²²⁴Th Levels (continued)

E(level) [†]	J ^{π#}	T _{1/2}	XREF	Comments
2620.2? ^{&} 7	(17 ⁻)		D	$D_0/Q_0 = 10.0 \times 10^{-4} \text{ fm}^{-1}$ 13.
2864? [@]	18^{+}		D	
$10.8 \times 10^{3 \ddagger} 3$		4.4 MeV 6	В	
$14.1 \times 10^{3 \ddagger} 6$		5.9 MeV 10	В	

[†] From least squares fit to $E\gamma$ data.

[‡] GDR.

[#] Based on multipolarities for selected transitions in in-beam γ -ray studies, band structures and systematics of neighboring nuclides, unless specific arguments are given.

^(a) Band(A): $K^{\pi} = 0^+$ g.s. band.

[&] Band(B): $K^{\pi} = 0^{-}$ band.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α [@]	Comments
98.1	2+	98.1 <i>3</i>	100	0.0 0+	E2 #	12.33 25	B(E2)(W.u.)=96 7
251.0?	(1^{-})	152.9 <i>3</i>	50 13	98.1 2+	[E1]	0.179	I_{γ} : from ²²⁸ U α decay.
		246.3	100 25	$0.0 0^+$	IE1	0.059	E_{α} , I_{α} : γ seen in ²²⁸ U α decay only.
284.1	4+	186.0.3	100	98.1 2 ⁺	E2 [#]	0.863	
305.3	(3^{-})	207.2.3	100	$98.1 2^+$	(E1)	0.0868	
464.5	(5^{-})	180.4 3	100	$284.1 4^+$	(E1)	0.1204	
534.7	6+	70.2 3	85 25	$464.5(5^{-})$	[E1]	0.299 6	
		250.6 3	100	284.1 4+	(E2)	0.299	
699.5	(7^{-})	164.8 <i>3</i>		534.7 6+	(E1)	0.151	
		235.0 3		$464.5(5^{-})$			
833.9	8+	134.4 3	100	$699.5(7^{-})$	(E1)	0.243	
		299.2 <i>3</i>	50 10	534.7 6+	[E2]	0.170	
997.7	(9-)	163.8 <i>3</i>		833.9 8+			
		298.2 <i>3</i>		$699.5 (7^{-})$			
1173.8	10^{+}	176.1 <i>3</i>	100	997.7 (9-)	(E1)	0.1276	
		339.9 <i>3</i>	36 4	833.9 8+	[E2]	0.1166	
1347.3	(11^{-})	173.4 <i>3</i>	100	1173.8 10+	(E1)	0.1323	
		349.6 <i>3</i>	30 4	997.7 (9 ⁻)	[E2]	0.1076	
1549.8	12^{+}	202.5 3	100	1347.3 (11-)	[E1]	0.0916	
		376.0 <i>3</i>	29 <i>3</i>	1173.8 10+	[E2]	0.0880	
1738.7	(13^{-})	188.9 <i>3</i>	100	1549.8 12+	[E1]	0.1080	
		391.4 <i>3</i>	50 5	1347.3 (11-)	[E2]	0.0790	
1958.9	14^{+}	220.2 3	100	1738.7 (13 ⁻)	[E1]	0.0753	
		409.0 <i>3</i>	29 <i>3</i>	1549.8 12+	[E2]	0.0703	
2164.7	(15^{-})	205.8 <i>3</i>	100	1958.9 14+	[E1]	0.0882	
		426.1 3	45 6	1738.7 (13 ⁻)	[E2]	0.0633	
2398.0	16^{+}	233.3 <i>3</i>		2164.7 (15 ⁻)			
		439.1 <i>3</i>		1958.9 14+			
2620.2?	(17 ⁻)	222.3 <mark>&</mark>	100	2398.0 16+	[E1]	0.0737	
		455.4 <mark>&</mark> <i>3</i>	42 11	2164.7 (15 ⁻)	[E2]	0.0535	
2864?	18^{+}	466 <mark>&</mark>		2398.0 16+			

 $\gamma(^{224}\text{Th})$

[†] From ²²⁶Ra(α ,6n γ), where data are more extensive and generally given with uncertainties. The E γ and γ branching ratios

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{224}\text{Th})$ (continued)

available from ${}^{208}\text{Pb}({}^{18}\text{O},2n\gamma)$ are in agreement with those from $(\alpha,6n\gamma)$ reaction but are less complete. The only exception is $251,(1^-)$ level, where energy of one γ ray and intensities are taken from α decay.

[±] From $\gamma(\theta)$ data in (¹⁸O,2n γ), unless otherwise stated.

[#] Intensities of L1, and L2+L3 peaks in ($^{18}O,2n\gamma$) displayed in spectral figure 1 of 1986Sc12 are consistent with E2.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

& Placement of transition in the level scheme is uncertain.

 $^{224}_{90}{\rm Th}_{134}$

4

Adopted Levels, Gammas

 $^{224}_{90}{
m Th}_{134}$