208 Pb(18 O,2n γ) 1986Sc12

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh, Sukhjeet Singh	ENSDF	08-Mar-2022					

1986Sc12: E(¹⁸O)=78,79 MeV; target=140 μ g/cm² placed between thin carbon foils. Measured $\gamma\gamma$ (recoil)- and (ce) γ (recoil)-coin, $\gamma(\theta)$ at 145° and 90°.

Additional information 1.

The level scheme is constructed on the basis of coincidence data, energy sums and systematics.

²²⁴Th Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0#	0^{+}	
98.8 [#] 5	2+	
251.0? [@] 3	1-	E(level), J^{π} : from Adopted Levels. 1986Sc12 list 246 keV 5, but this level is probably not populated in this reaction.
284.5 [#] 7	4+	
305.7 [@] 7	3-	
464.9 [@] 9	5-	
534.9 [#] 9	6+	
699.6 [@] 10	7-	
834.0 [#] 10	8+	
996.9 [@] 11	9-	
1172.8 [#] 12	10^{+}	
1346.2? [@] 13	11-	

 † From least-squares fit to $E\gamma$ data, assuming 0.5 keV uncertainty for each $E\gamma.$

[±] From 1986Sc12 based on band structures. [#] Band(A): $K^{\pi}=0^+$ g.s. band.

[@] Band(B): $K^{\pi} = 0^{-}$ band.

$\gamma(^{224}\text{Th})$

E_{γ}^{\dagger}	Iγ‡	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	α &	$I_{(\gamma+ce)}^{\dagger}$	Comments
70.1	15	534.9	6+	464.9 5-	[E1]	0.300	19	$\begin{array}{l} (ce(L)/(\gamma+ce)=0.1743\ 21;\ ce(M)/(\gamma+ce)=0.0426\ 6\\ ce(N)/(\gamma+ce)=0.01117\ 16;\ ce(O)/(\gamma+ce)=0.00251\ 4;\\ ce(P)/(\gamma+ce)=0.000429\ 7;\ ce(Q)/(\gamma+ce)=2.19\times10^{-5}\ 4\\ \alpha(L)=0.227\ 4;\ \alpha(M)=0.0554\ 8\\ \alpha(N)=0.01452\ 21;\ \alpha(O)=0.00326\ 5;\ \alpha(P)=0.000558\ 8;\\ \alpha(Q)=2.85\times10^{-5}\ 4 \end{array}$
98.8	10	98.8	2+	0 0+	E2 [@]	11.92	135	ce(L)/(γ +ce)=0.675 7; ce(M)/(γ +ce)=0.185 4 ce(N)/(γ +ce)=0.0497 10; ce(O)/(γ +ce)=0.01107 21; ce(P)/(γ +ce)=0.00184 4; ce(Q)/(γ +ce)=7.99×10 ⁻⁶ 16 α (L)=8.72 13; α (M)=2.40 4 α (N)=0.642 9; α (O)=0.1431 20; α (P)=0.0237 4; α (O)=0.0001032 15
134.5	16	834.0	8+	699.6 7-	(E1)	0.243	20	$ce(K)/(\gamma+ce)=0.1518 \ 19; \ ce(L)/(\gamma+ce)=0.0329 \ 5; \ ce(M)/(\gamma+ce)=0.00796 \ 12$

208 Pb(18 O,2n γ) 1986Sc12 (continued) γ ⁽²²⁴Th) (continued) α**&** Mult.# E_{γ}^{\dagger} I_{γ}^{\ddagger} $I_{(\gamma+ce)}$ E_i (level) \mathbf{J}_i^{π} \mathbf{E}_{f} J^{π}_{L} Comments $ce(N)/(\gamma+ce)=0.00210 3; ce(O)/(\gamma+ce)=0.000480$ 7; ce(P)/(γ +ce)=8.64×10⁻⁵ 13; $ce(Q)/(\gamma+ce)=5.45\times10^{-6} 8$ $\alpha(K)=0.189 3; \alpha(L)=0.0409 6; \alpha(M)=0.00990 14$ $\alpha(N)=0.00261 4; \alpha(O)=0.000597 9;$ $\alpha(P)=0.0001073$ 15; $\alpha(Q)=6.78\times10^{-6}$ 10 $ce(K)/(\gamma+ce)=0.1045$ 14; $ce(L)/(\gamma+ce)=0.0217$ 3; 162.9 10 996.9 9-834.0 8+ [E1] 0.1536 12 $ce(M)/(\gamma+ce)=0.00523 8$ $ce(N)/(\gamma+ce)=0.001381\ 20;$ $ce(O)/(\gamma+ce)=0.000317$ 5; $ce(P)/(\gamma+ce)=5.77\times10^{-5}$ 9; $ce(Q)/(\gamma+ce)=3.84\times10^{-6} 6$ $\alpha(K)=0.1205\ 17;\ \alpha(L)=0.0250\ 4;\ \alpha(M)=0.00604$ 9 α (N)=0.001593 23; α (O)=0.000366 6; $\alpha(P)=6.65\times10^{-5}$ 10; $\alpha(Q)=4.43\times10^{-6}$ 7 164.8 26 699.6 7-534.9 6+ (E1) 0.1494 30 $ce(K)/(\gamma+ce)=0.1020 \ 13; \ ce(L)/(\gamma+ce)=0.0211 \ 3;$ $ce(M)/(\gamma+ce)=0.00510 8$ $ce(N)/(\gamma+ce)=0.001345$ 19; $ce(O)/(\gamma+ce)=0.000309 5;$ $ce(P)/(\gamma+ce)=5.62\times10^{-5} 8;$ $ce(Q)/(\gamma+ce)=3.76\times10^{-6} 6$ α(K)=0.1173 17; α(L)=0.0243 4; α(M)=0.00586 9 α (N)=0.001546 22; α (O)=0.000356 5; $\alpha(P)=6.46\times10^{-5}$ 9; $\alpha(Q)=4.32\times10^{-6}$ 6 $ce(K)/(\gamma+ce)=0.0919$ 12; $ce(L)/(\gamma+ce)=0.0188$ 3; 173.4^{*a*} 3.5 1346.2? 11^{-} 1172.8 10+ (E1) 0.1323 4 $ce(M)/(\gamma+ce)=0.00455$ 7 $ce(N)/(\gamma+ce)=0.001200$ 17; $ce(O)/(\gamma+ce)=0.000276$ 4; $ce(P)/(\gamma+ce)=5.03\times10^{-5}$ 7; $ce(Q)/(\gamma+ce)=3.41\times10^{-6}$ 5 $\alpha(K)=0.1041$ 15; $\alpha(L)=0.0213$ 3; $\alpha(M)=0.00515$ 8 α (N)=0.001359 *19*; α (O)=0.000313 *5*; $\alpha(P)=5.70\times10^{-5} 8; \alpha(Q)=3.86\times10^{-6} 6$ 175.9 1172.8 996.9 9-0.1279 $ce(K)/(\gamma+ce)=0.0893$ 12; $ce(L)/(\gamma+ce)=0.0182$ 3; 5 10^{+} (E1) 6 $ce(M)/(\gamma+ce)=0.00440$ 7 $ce(N)/(\gamma+ce)=0.001162$ 17; $ce(O)/(\gamma+ce)=0.000267 4;$ $ce(P)/(\gamma+ce)=4.88\times10^{-5}$ 7; $ce(Q)/(\gamma+ce)=3.31\times10^{-6}$ 5 $\alpha(K)=0.1007 \ 14; \ \alpha(L)=0.0206 \ 3; \ \alpha(M)=0.00496$ α (N)=0.001310 *19*; α (O)=0.000302 *5*; $\alpha(P)=5.50\times10^{-5} 8; \alpha(Q)=3.74\times10^{-6} 6$ 180.4 5-284.5 4+ (E1) 0.1204 $ce(K)/(\gamma+ce)=0.0847$ 11; $ce(L)/(\gamma+ce)=0.01723$ 28 464.9 31 24; ce(M)/(γ +ce)=0.00415 6 $ce(N)/(\gamma+ce)=0.001097$ 16; $ce(O)/(\gamma+ce)=0.000253 4;$ $ce(P)/(\gamma+ce)=4.62\times10^{-5}$ 7; $ce(Q)/(\gamma+ce)=3.16\times10^{-6}$ 5 $\alpha(K)=0.0949$ 14; $\alpha(L)=0.0193$ 3; $\alpha(M)=0.00466$ 7

Continued on next page (footnotes at end of table)

208 Pb(18 O,2n γ) 1986Sc12 (continued)

$\gamma(^{224}\text{Th})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α &	$I_{(\gamma+ce)}^{\dagger}$	Comments
									$\begin{array}{c} ce(Q)/(\gamma+ce)=3.16\times10^{-6} \ 5\\ \alpha(K)=0.0949 \ 14; \ \alpha(L)=0.0193 \ 3; \ \alpha(M)=0.00466 \ 7\\ \alpha(N)=0.001229 \ 18; \ \alpha(O)=0.000283 \ 4; \\ \alpha(P)=5.17\times10^{-5} \ 8; \ \alpha(Q)=3.54\times10^{-6} \ 5 \end{array}$
185.7	54	284.5	4+	98.8	2+	E2 [@]	0.868	100	$ce(K)/(\gamma+ce)=0.0962 \ 14; \ ce(L)/(\gamma+ce)=0.270 \ 4; ce(M)/(\gamma+ce)=0.0737 \ 11 ce(N)/(\gamma+ce)=0.0197 \ 3; \ ce(O)/(\gamma+ce)=0.00442 \ 7; ce(P)/(\gamma+ce)=0.000745 \ 12; ce(Q)/(\gamma+ce)=7.97\times10^{-6} \ 13 \alpha(K)=0.180 \ 3; \ \alpha(L)=0.504 \ 7; \ \alpha(M)=0.1377 \ 20 $
206.9	23	305.7	3-	98.8	2+	(E1)	0.0871	25	$\begin{aligned} \alpha(N) = 0.0369 \ 6; \ \alpha(O) = 0.00827 \ 12; \ \alpha(P) = 0.001392 \\ 20; \ \alpha(Q) = 1.488 \times 10^{-5} \ 21 \\ ce(K)/(\gamma + ce) = 0.0635 \ 9; \ ce(L)/(\gamma + ce) = 0.01261 \ 18; \\ ce(M)/(\gamma + ce) = 0.00303 \ 5 \\ ce(N)/(\gamma + ce) = 0.000802 \ 12; \end{aligned}$
									ce(O)/(γ +ce)=0.000185 3; ce(P)/(γ +ce)=3.40×10 ⁻⁵ 5; ce(Q)/(γ +ce)=2.41×10 ⁻⁶ 4 α (K)=0.0690 10; α (L)=0.01370 20; α (M)=0.00330 5
250.4	18	534.9	6+	284.5	4+	(E2)	0.300	23	$\alpha(N)=0.000872 \ 13; \ \alpha(O)=0.000201 \ 3; \alpha(P)=3.70\times10^{-5} \ 6; \ \alpha(Q)=2.62\times10^{-6} \ 4 ce(K)/(\gamma+ce)=0.0800 \ 11; \ ce(L)/(\gamma+ce)=0.1107 \ 15; ce(M)/(\gamma+ce)=0.0300 \ 5 ce(N)/(\gamma+ce)=0.00803 \ 12; \ ce(O)/(\gamma+ce)=0.00181 3; \ ce(P)/(\gamma+ce)=0.000308 \ 5; $
									$ce(Q)/(\gamma+ce)=5.37\times10^{-6} 8$ $\alpha(K)=0.1040 \ 15; \ \alpha(L)=0.1440 \ 21; \ \alpha(M)=0.0389 \ 6$ $\alpha(N)=0.01043 \ 15; \ \alpha(O)=0.00235 \ 4; \ \alpha(P)=0.000401$ $6; \ \alpha(Q)=6.98\times10^{-6} \ 10$
297.3 ⁴	3.4	996.9	9-	699.6	7-	[E2]	0.1734	4	$ce(K)/(\gamma+ce)=0.0632 \ 9; \ ce(L)/(\gamma+ce)=0.0622 \ 9; ce(M)/(\gamma+ce)=0.01669 \ 24 ce(N)/(\gamma+ce)=0.00447 \ 7; \ ce(O)/(\gamma+ce)=0.001009 I5; \ ce(P)/(\gamma+ce)=0.0001738 \ 25; ce(Q)/(\gamma+ce)=3.96 \times 10^{-6} \ 6$
298.9	10	834.0	8+	534.9	6+	[E2]	0.1706	12	$\alpha(K)=0.0742 \ 11; \ \alpha(L)=0.0730 \ 11; \ \alpha(M)=0.0196 \ 3$ $\alpha(N)=0.00524 \ 8; \ \alpha(O)=0.001185 \ 17; $ $\alpha(P)=0.000204 \ 3; \ \alpha(Q)=4.64\times10^{-6} \ 7 $ $ce(K)/(\gamma+ce)=0.0627 \ 9; \ ce(L)/(\gamma+ce)=0.0610 \ 9; $ $ce(M)/(\gamma+ce)=0.01638 \ 23$
									ce(N)/(γ +ce)=0.00439 7; ce(O)/(γ +ce)=0.000991 <i>14</i> ; ce(P)/(γ +ce)=0.0001707 25; ce(Q)/(γ +ce)=3.92×10 ⁻⁶ 6 α (K)=0.0734 <i>11</i> ; α (L)=0.0715 <i>10</i> ; α (M)=0.0192 3 (D)=0.00514 α (C)=0.001160 47
339 ^a		1172.8	10+	834.0	8+	[E2]	0.1175		$\alpha(N)=0.00514 \ 8; \ \alpha(O)=0.001160 \ 1/;$ $\alpha(P)=0.000200 \ 3; \ \alpha(Q)=4.59\times10^{-6} \ 7$ $\alpha(K)=0.0572 \ 8; \ \alpha(L)=0.0444 \ 7; \ \alpha(M)=0.01183 \ 17$ $\alpha(N)=0.00317 \ 5; \ \alpha(O)=0.000718 \ 10;$ $\alpha(P)=0.0001246 \ 18; \ \alpha(Q)=3.44\times10^{-6} \ 5$

[†] From level scheme figure 3 in 1986Sc12. [‡] Deduced by evaluators from $I\gamma$ +ce and conversion coefficients.

²⁰⁸Pb(¹⁸O,2nγ) **1986Sc12** (continued)

$\gamma(^{224}\text{Th})$ (continued)

[#] From $I\gamma(145^\circ)/I\gamma(90^\circ)$ ratios displayed in figure 2 of 1986Sc12, and interpreted as stretched quadrupoles and stretched dipoles, unless otherwise noted. Based on band structures stretched quadrupoles are assumed as E2 and stretched dipoles as E1.

[@] Intensities of L1, and L2+L3 peaks displayed in spectral figure 1 of 1986Sc12 are consistent with E2.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{224}_{90}\text{Th}_{134}\text{-}5$

 $^{224}_{90}{
m Th}_{134}$

 $^{224}_{90}{\rm Th}_{134}$