120 Sn(224 Rn, 224 Rn' γ) **2020Bu20,2019Bu29**

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh, Sukhjeet Singh ENSDF 08-Mar-2022

2020Bu20, 2019Bu29: E(224 Rn)=5.08 MeV/nucleon produced in bombardment of thorium carbide with 1.4-GeV protons from CERN PS Booster, followed by separation of ions of interest according to A/Q, and delivered to a Penning trap, REXTRAP, where the singly-charged ions were accumulated and cooled before being allowed to into an electron beam ion source, REXEBIS. The ions were then confined in a high-density electron beam that stripped more electrons to produce a charge state of 52^+ for 224 Rn beam, extracted as 1 ms pulses before being mass-selected again according to A/q, and injected into the HIE-ISOLDE linear post-accelerator. 120 Sn target was about 2 mg/cm² thick. Measured E γ , I γ , $\gamma\gamma$ -coin using Miniball array of 24 HPGe detectors. Scattered particles and target recoils were detected in a highly segmented silicon detector. Deduced levels, J^{π} , g.s. band and an octupole band. Authors conclude that while octupole vibrations exist, but with no static pear-shapes (or static octupole deformation) in the ground state.

²²⁴Rn Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0#	0+	650.6 [@] 8	(3-)	1277.2 [@] 10	(9-)
135.6 [#] 5	2+	790.8 [@] 8	(5^{-})	1327.8 [#] <i>10</i>	
357.6 [#] 6		969.2 [#] 9		1588.3 [@] 13	
641.4 [#] 8	6+	1006.4 [@] 10	(7^{-})	1706.8 [#] <i>11</i>	12+
				2098.7? [#] <i>13</i>	(14^{+})

[†] From 2020Bu20, based on their Eγ data.

$\gamma(^{224}Rn)$

E_{γ}^{\dagger}	E_i (level)	J_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}
135.6 5	135.6	2+	$0.0 0^{+}$	311‡	1588.3	(11^{-})	1277.2 (9-)
140 ^{‡#}	790.8	(5^{-})	650.6 (3-)	327.8 5	969.2	8+	641.4 6+
216 ^{‡#}	1006.4	(7^{-})	790.8 (5-)	358.6 5	1327.8	10+	969.2 8+
222.0 5	357.6	4+	$135.6 \ 2^{+}$	365.0 <i>5</i>	1006.4	(7^{-})	641.4 6 ⁺
260.5 8	1588.3	(11^{-})	1327.8 10 ⁺	379.1 5	1706.8	12+	1327.8 10+
271 ^{‡#}	1277.2	(9^{-})	$1006.4 (7^{-})$	391.8 [#] 6	2098.7?	(14^{+})	1706.8 12+
283.8 5	641.4	6+	357.6 4 ⁺	433.2 5	790.8	(5^{-})	357.6 4 ⁺
308.0 5	1277.2	(9-)	969.2 8+	515.0 6	650.6	(3^{-})	135.6 2+

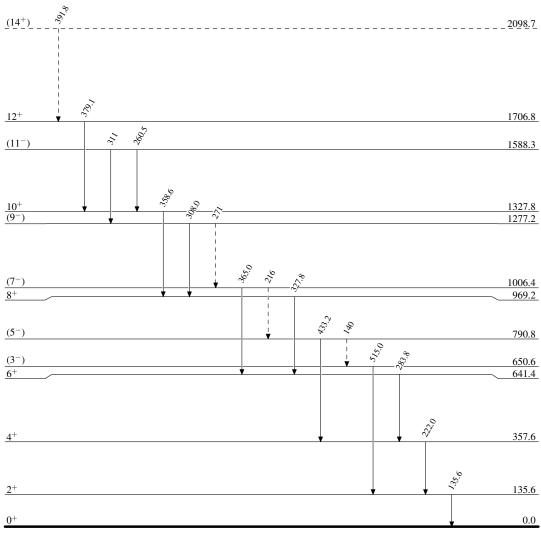
[†] From 2020Bu20.

[‡] As proposed by 2020Bu20, based on population of an even-even nucleus in Coulomb excitation process with E2 excitations, and band structures.

[#] Band(A): g.s. band.

[@] Band(B): Octupole band based on (3⁻).

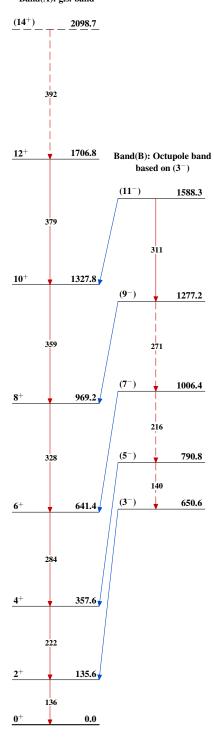
[‡] From Fig. 3 in 2020Bu20.


[#] Placement of transition in the level scheme is uncertain.

120 Sn(224 Rn, 224 Rn' γ) 2020Bu20,2019Bu29

Legend

Level Scheme


---- → γ Decay (Uncertain)

 $^{224}_{86}\mathrm{Rn}_{138}$

120 Sn(224 Rn, 224 Rn' γ) 2020Bu20,2019Bu29

Band(A): g.s. band

$$^{224}_{\,86}\rm{Rn}_{138}$$