²²⁸Th α decay (1.9125 y) 1977Ku15,1984Ge07

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Sukhjeet Singh	ENSDF	08-Mar-2022

Parent: ²²⁸Th: E=0; $J^{\pi}=0^+$; $T_{1/2}=1.9125$ y 9; $Q(\alpha)=5520.15$ 22; % α decay=100 ²²⁸Th- $Q(\alpha)$: From 2021Wa16.

²²⁸Th-T_{1/2}: 698.53 d *32* or 1.9125 y *9* (using 1 tropical year=365.2422 d). This value is the weighted average of 698.4 d *4* (from Erratum in Applied Rad. Isot. 159, 108976 (2020) to 2014Un01 which was revision of their previous values reported in 2002Un02 and 1992Un01); 698.77 d *32* (1971Jo14, also 1964Ei01), 697.8 d 7 (1956Ki16). Others: 1964Ei01 give $T_{1/2}$ =1.91313 y *44*, a value also quoted in 1971Jo14 with an internal uncertainty of 0.00044 y but with a final uncertainty of 0.00088 y; 1956Ki16, 1964Ei03 and 1971Jo14 are from the same laboratory; 696.9 d *15*, 703 d 7 (1962Ma57), 695.8 d *70* (1918Me01, uncertainty of 1% mentioned by 1956Ki16).

²²⁸Th-Additional information 1.

²²⁸Th- $\%\alpha$ decay: $\%\alpha$ =100. Cluster decay: measured $\%^{20}$ O=1.13×10⁻¹¹ 22 (1993Bo20).

1977Ku15 (also 1977Ku25): measured E γ , I γ , $\gamma\gamma$ -coin using Ge(Li) detectors. Deduced levels, J, π , half-life, α hindrance factors.

1984Ge07: measured I γ , absolute I γ using $4\pi\alpha$ - γ counting system. Precise E γ values were not measured in this work.

1970Ba20: measured E α , I α using a magnetic spectrograph. Deduced levels, J, π . See also 1976BaZZ.

1989Po19: measured $\gamma\gamma$ -coin, $\alpha\gamma(\theta)$, ce, total-conversion coefficients from $\alpha\gamma$ -coin data.

Others:

1973He13: measured g factor of first 2⁺ state.

1970SpZW: measured subshell ratios.

1968Du06, 1966Co40: measured total-conversion coefficient from $\alpha\gamma$ -coin data.

 α measurements: 1971Gr17, 1953As31, 1949Ro02. Evaluation: 1991Ry01.

 γ ray measurements: 1982Sa36, 1974HeYW, 1973Ta25, 1972DaYV, 1957St92, 1954Ne01, 1953Ri23, 1953Bo45.

 $\alpha\gamma(\theta)$ measurements: 1954St02, 1953Ba07, 1951Be42.

1982Sa36: measured I γ for four γ rays. The values are systematically lower than in 1977Ku15 and 1984Ge07, thus not used here. The decay scheme is from 1977Ku15.

²²⁴Ra Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0	0^{+}	3.6319 d 23	
84.373 <i>3</i>	2+	0.748 ns <i>19</i>	g=+0.46 11 (1973He13) g: $\alpha\gamma(\theta,H)$ (1973He13). T _{1/2} : weighted average of (α)(ce)(t) values: 0.748 ns 20 (1970To08), 0.744 ns 19 (1965Ne03), 0.76 ns 3 (1960Be25).
215.985 4	1-		
250.783 5	4+	0.181 ns 9	J^{π} : 4 ⁺ from $\alpha \gamma(\theta)$ from 0 ⁺ parent (1989Po19). T _{1/2} : (α)(ce)(t) (1965Ne03).
290.32 5	3-		
432.89 19	(5)-		
479.28 20	(6^{+})		
916.39 <i>19</i>	0^{+}		
992.50 10	(2 ⁺)		

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

²²⁸Th α decay (1.9125 y) 1977Ku15,1984Ge07 (continued)

α radiations

$\mathrm{E}\alpha^{\dagger}$	E(level)	Ια ^{‡@}	HF [#]	Comments
4430	992.50	≈4.6×10 ⁻⁶	≈7.1	
4507	916.39	1.7×10 ⁻⁵ 3	71	
4944	479.28	2.4×10^{-5} 5	4.6×10 ³ 10	
4990	432.89	$1.0 \times 10^{-5} 3$	2.1×10^4 7	
5138	290.32	0.036 6	44 8	$E\alpha$: 5136.1 (1970Ba20). Iα: ≈0.05 (1970Ba20).
5173	250.783	0.218 8	12.5 5	E α : 5171.5 (1970Ba20). E α : other: 5173 (1953As31). I α : 0.2 (1953As31), 0.18 (1970Ba20).
5211	215.985	0.408 14	10.7 4	E α : 5208.9 (1970Ba20). E α : other: 5208 (1953As31). I α : 0.4 (1953As31), 0.36 (1970Ba20).
5340.36 15	84.373	26.0 10	0.96 4	 Eα: measured values: 5339.2 10 (1976BaZZ), 5340.54 15 (1971Gr17), 5338.6 (1970Ba20), 5338.5 10 (1953As31), 5338 (1949Ro02). Iα: 26.7 2 (1969Pe17), 26.7 (1970Ba20), 28 (1953As31), 28 (1949Ro02). 1976BaZZ and 1970Ba20 are from the same lab.
5423.15 22	0	73.4 5	1.0	 Iα: from DDEP evaluation (published in 2013BeZP); based on measurements by 1976BaZZ and 1993Ba72. Eα: measured values: 5420.6 10 (1976BaZZ), 5423.33 22 (1971Gr17), 5420.0 (1970Ba20), 5421 1 (1953As31), 5423 (1949Ro02). Iα: others: 74.0 6 (1993Ba72), 72.4 10 (1976BaZZ), 72.7 (1970Ba20) 71 (1953As31), 72 (1949Ro02).

[†] Data for the ground-state and 84-level branches are from 1991Ry01 evaluation. Others are from 1970Ba20, but increased by 2 keV by the evaluators to account for changes in calibration as deduced from a comparison of authors' values for the two strong branches with those of 1991Ry01 evaluation.

[‡] From I(γ +ce) imbalance at each level, unless stated otherwise.

[#] HF(5423.15 α)=1.0 yields r₀(²²⁴Ra)=1.53389 fm 32, same r₀ in 2020Si16 evaluation.

[@] Absolute intensity per 100 decays.

 $\gamma(^{224}\text{Ra})$

I γ normalization: From absolute I α =73.4 5 (2013BeZP evaluation based on measured values in 1976BaZZ and 1993Ba72), and summed γ transition intensity to g.s.=100-73.4 5. Others: measured values: 0.0121 6(1969Pe17), 0.01248 29 (1984Ge07), 0.019 1 (1982Sa36, this value is discrepant). Evaluation: 0.0122 2 (1991BaZS and 1986LoZT).

E_{γ}^{\dagger}	Ι _γ #&	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α^{a}	Comments
74.4 1	0.033 12	290.32	3-	215.985 1-	[E2]	38.5	$ \begin{array}{l} \alpha(\text{L}) = 28.3 \ 5; \ \alpha(\text{M}) = 7.70 \ 12 \\ \alpha(\text{N}) = 2.03 \ 4; \ \alpha(\text{O}) = 0.431 \ 7; \ \alpha(\text{P}) = 0.0621 \ 10; \\ \alpha(\text{Q}) = 0.0001645 \ 25 \end{array} $
84.373 [‡] <i>3</i>	100.0 <i>16</i>	84.373	2+	0 0+	E2	21.2	$\begin{array}{l} \alpha(\mathrm{L}){=}15.57\ 22;\ \alpha(\mathrm{M}){=}4.24\ 6\\ \alpha(\mathrm{N}){=}1.119\ 16;\ \alpha(\mathrm{O}){=}0.238\ 4;\ \alpha(\mathrm{P}){=}0.0343\ 5;\\ \alpha(\mathrm{Q}){=}0.0001015\ 15\\ \mathrm{E}\gamma{=}84.371\ 3\ (1977\mathrm{Ku25}).\\ \mathrm{Mult.:}\ \mathrm{L1:L2:L3}{=}5.19\ 21{:}134.3\ 10{:}100;\\ \mathrm{M1:M2:M3}{=}5.7\ 6{:}121.9\ 9{:}100\ (1970\mathrm{SpZW});\\ \mathrm{theory}(\mathrm{E2}){:}\ \mathrm{L1:L2:L3}{=}4.8{:}129.7{:}100.\ \mathrm{From}\ \alpha\gamma;\\ \alpha(\mathrm{exp}){=}21.4\ 9\ (1969\mathrm{Pe17}),\ 19.6\ 14\ (1968\mathrm{Du06}),\\ 18\ 4\ (1966\mathrm{Co40}).\\ \end{array}$
131.613 [‡] 4	10.70 15	215.985	1-	84.373 2+	E1 [@]	0.247	$ \alpha({\rm K}){=}0.194\; 3;\; \alpha({\rm L}){=}0.0406\; 6;\; \alpha({\rm M}){=}0.00977\; 14 \\ \alpha({\rm N}){=}0.00254\; 4;\; \alpha({\rm O}){=}0.000559\; 8; $

Continued on next page (footnotes at end of table)

908.10 10

≈0.00014

992.50

 (2^{+})

84.373 2+

1977Ku15,1984Ge07 (continued)

²²⁸Th α decay (1.9125 y)

γ (²²⁴Ra) (continued) I_{ν} ^{#&} α^{a} E_{γ}^{\dagger} E_i (level) \mathbf{J}_i^{π} \mathbf{J}_{f}^{π} Mult. Comments E_f $\alpha(P)=8.92\times10^{-5}$ 13; $\alpha(Q)=4.80\times10^{-6}$ 7 Eγ=131.610 4 (1977Ku25). 2.18 5 α(K)=0.280 4; α(L)=1.40 3; α(M)=0.380 8 142.0 5 0.00011 4 432.89 $(5)^{-}$ 290.32 3-[E2] $\alpha(N)=0.1004\ 22;\ \alpha(O)=0.0214\ 5;$ $\alpha(P)=0.00313$ 7; $\alpha(Q)=1.86\times10^{-5}$ 4 I_{γ} : Ig(142.0)/I γ (182.2)=0.26 *10* is in disagreement with 0.56 13 from Adopted Gammas. $166.410^{\ddagger} 4$ 8.49 12 84.373 2+ 250.783 4^{+} E2 1.164 $\alpha(K)=0.225 4; \alpha(L)=0.691 10;$ $\alpha(M) = 0.187 3$ α (N)=0.0495 7; α (O)=0.01056 15; $\alpha(P)=0.001553\ 22;\ \alpha(Q)=1.200\times10^{-5}\ 17$ $\alpha \gamma(\theta)$: A₂=+0.55 6, A₄=-0.48 18 (1989Po19). Eγ=166.407 4 (1977Ku25). Mult.: from $I(\gamma + ce)(161\gamma) = I\alpha(5173) = 0.18$ (1970Ba20), $\alpha(\exp)(166\gamma)=0.73$. 182.2 2 0.00043 15 432.89 $(5)^{-}$ 250.783 4+ [E1] 0.1127 $\alpha(K)=0.0895 \ 13; \ \alpha(L)=0.0176 \ 3;$ $\alpha(M) = 0.004216$ α (N)=0.001100 *16*; α (O)=0.000244 *4*; $\alpha(P)=3.97\times10^{-5}$ 6; $\alpha(Q)=2.31\times10^{-6}$ 4 I_{γ} : see comment for 142.0 γ . 205.93 5 1.61 5 290.32 3-84.373 2+ E1 0.0842 $\alpha(K)=0.0671 \ 10; \ \alpha(L)=0.01293 \ 19;$ $\alpha(M) = 0.003095$ $\alpha(N)=0.000807 \ 12; \ \alpha(O)=0.000179 \ 3;$ $\alpha(P)=2.94\times10^{-5}$ 5; $\alpha(Q)=1.763\times10^{-6}$ 25 Mult.: $\alpha(K)\exp<0.19$, $\alpha(L)\exp<0.05$, α(M)exp<0.014 (1989Po19). E1[@] 215.983[‡] 5 0^{+} 20.78 25 215.985 1^{-} 0 0.0752 $\alpha(K)=0.0600 9; \alpha(L)=0.01148 16;$ $\alpha(M) = 0.00274 \ 4$ *α*(N)=0.000717 *10*; *α*(O)=0.0001593 *23*; $\alpha(P)=2.62\times10^{-5}$ 4; $\alpha(Q)=1.587\times10^{-6}$ 23 I_{γ} : absolute $I_{\gamma}/100$ decays=0.261 3 (1984Ge07). Eγ=215.979 5 (1977Ku25). 228.5 2 0.0015 3 479.28 (6^{+}) 250.783 4+ [E2] 0.366 $\alpha(K)=0.1243 \ 18; \ \alpha(L)=0.178 \ 3;$ $\alpha(M) = 0.0478$ 7 $\alpha(N)=0.01264$ 19; $\alpha(O)=0.00272$ 4; α (P)=0.000406 6; α (Q)=5.36×10⁻⁶ 8 700.5 5 ≈0.00025 916.39 0^{+} 215.985 1-0.00611 $\alpha(K)=0.00501$ 7; $\alpha(L)=0.000833$ 12; [E1] α(M)=0.000196 3 $\alpha(N)=5.15\times10^{-5} 8$; $\alpha(O)=1.165\times10^{-5} 17$; $\alpha(P)=2.00\times10^{-6}$ 3; $\alpha(Q)=1.472\times10^{-7}$ 21 $\alpha(K)=0.01195 \ 17; \ \alpha(L)=0.00322 \ 5;$ 742.2 5 0.00012 4 992.50 (2^{+}) 250.783 4+ [E2] 0.01624 $\alpha(M) = 0.000802 \ 12$ $\alpha(N)=0.000211 \ 3; \ \alpha(O)=4.71\times10^{-5} \ 7;$ $\alpha(P)=7.76\times10^{-6}$ 11; $\alpha(Q)=4.18\times10^{-7}$ 6 $\alpha(K)=0.00970$ 14; $\alpha(L)=0.00240$ 4; 832.0 2 0.0012 2 916.39 0^{+} 84.373 2+ [E2] 0.01289 $\alpha(M) = 0.000594 \ 9$ α (N)=0.0001565 22; α (O)=3.50×10⁻⁵ 5; $\alpha(P)=5.81\times10^{-6}$ 9; $\alpha(Q)=3.35\times10^{-7}$ 5

Continued on next page (footnotes at end of table)

0.024 13

 $\alpha(K)=0.019$ 11; $\alpha(L)=0.0036$ 17;

 $\alpha(M)=0.0009~4$

[M1,E2]

From ENSDF

²²⁸Th α decay (1.9125 y) 1977Ku15,1984Ge07 (continued)

γ (²²⁴Ra) (continued)

E_{γ}^{\dagger}	Ι _γ #&	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α^{a}	Comments
992.9 10	≈0.00012	992.50	(2+)	0 0+	[E2]	0.00913	α(N)=0.00023 II; α(O)=5.2×10-5 24; α(P)=9.E-6 5; α(Q)=7.E-7 4 Eγ, Iγ: from Iγ/I(742γ)=1.14 26 in 224Fr β- decay in later work of these authors (1981Ku02). Spectrum in present work shows 911.2γ labeled as a background peak. α(K)=0.00705 I0; α(L)=0.001568 23; α(M)=0.000383 6 α(N)=0.0001010 I5; α(O)=2.27×10-5 4; α(P)=3.81×10-6 6; α(Q)=2.40×10-7 4

[†] From 1977Ku15 unless otherwise noted.

[‡] The value in 1977Ku25 has been adjusted by the evaluators for change in calibration of ¹⁹⁸Au line from 411.794 keV 7 (used by 1977Ku25) to 411.80205 keV *17* recommended by 2000He14.

[#] Relative to 100 for the 84 γ . Values for the strong lines (>1) are from 1984Ge07. Others are from 1977Ku15.

[@] From an intensity balance at the 216 level, using $I\alpha(5211\alpha)=0.36$ (1970Ba20), both the 131 γ and 216 γ must be E1.

& For absolute intensity per 100 decays, multiply by 0.01188 34.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

²²⁸Th α decay (1.9125 y) 1977Ku15,1984Ge07

Decay Scheme

²²⁴₈₈Ra₁₃₆

5