

Adopted Levels

Type	Author	History	
		Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Sukhjeet Singh	ENSDF	08-Mar-2022

$S(n)=6700\ 90$; $S(p)=1300\ 70$; $Q(\alpha)=9329\ 30$ [2021Wa16](#)

$S(2n)=15390\ 50$, $S(2p)=4610\ 90$, $Q(\varepsilon)=6290\ 30$, $Q(ep)=2410\ 80$ ([2021Wa16](#)).

[2018Hu13](#): production and identification of ^{224}Np nuclide in $^{187}\text{Re}(^{40}\text{Ar},3n)$, $E=188$ MeV reaction, and the observation of six correlated α -decay chains, starting from ^{224}Np : $^{224}\text{Np} \rightarrow ^{220}\text{Pa} \rightarrow ^{216}\text{Ac} \rightarrow ^{212}\text{Fr}$. The ^{40}Ar beam from the Sector-Focusing Cyclotron (SFC) of the Heavy Ion Research Facility in Lanzhou (HIRFL). Target=enriched ^{187}Re , $460-\mu\text{g}/\text{cm}^2$ thick. Evaporation residues (Er) were identified and separated using SHANS separator, and implanted into a $300-\mu\text{m}$ double-sided silicon strip detector (DSSD). Measured ERs, E_α , I_α , Er- α correlated events, and half-life of the decay of ^{224}Np g.s. FWHM=22 keV for non-pileup α events, and 55 or 70 keV for overlapping α signals.

Theoretical calculations: two references extracted from the NSR database are listed in document records.

[Additional information 1.](#)

History of decay chains observed by [2018Hu13](#):

ER=Evaporation residues. Part=partial α energy deposit.

Event #1: $E(\text{ER})=12566$ keV.

$E_{\alpha 1}=9144$ keV 23, $\Delta t_1=0.66\ \mu\text{s}$, assigned to ^{224}Np .

$E_{\alpha 2}=9522$ keV 45, $\Delta t_2=580$ ns, assigned to ^{220}Pa .

$E_{\alpha 3}=9058$ keV 9, $\Delta t_3=310.78\ \mu\text{s}$, assigned to ^{216}Ac .

Event #2: $E(\text{ER})=14138$ keV.

$E_{\alpha 1}=9154$ keV 23, $\Delta t_1=160.71\ \mu\text{s}$, assigned to ^{224}Np .

$E_{\alpha 2}=9587$ keV 23, $\Delta t_2=680$ ns, assigned to ^{220}Pa .

$E_{\alpha 3}=1912$ keV 9 (part), $\Delta t_3=600.43\ \mu\text{s}$, assigned to ^{216}Ac .

Event #3: $E(\text{ER})=13704$ keV.

$E_{\alpha 1}=9144$ keV 60, $\Delta t_1=24.07\ \mu\text{s}$, assigned to ^{224}Np .

$E_{\alpha 2}=9531$ keV 60, $\Delta t_2=220$ ns, assigned to ^{220}Pa .

$E_{\alpha 3}$: escaped α .

Event #4: $E(\text{ER})=13233$ keV.

$E_{\alpha 1}=9104$ keV 60, $\Delta t_1=68.93\ \mu\text{s}$, assigned to ^{224}Np .

$E_{\alpha 2}=644$ keV 60 (part), $\Delta t_2=240$ ns, assigned to ^{220}Pa .

$E_{\alpha 3}=9082$ keV 9, $\Delta t_3=166.08\ \mu\text{s}$, assigned to ^{216}Ac .

Event #5: $E(\text{ER})=12579$ keV.

$E_{\alpha 1}=479$ keV 30 (part), $\Delta t_1=70.81\ \mu\text{s}$, assigned to ^{224}Np .

$E_{\alpha 2}=9572$ keV 30, $\Delta t_2=500$ ns, assigned to ^{220}Pa .

$E_{\alpha 3}=8976$ keV 9, $\Delta t_3=527.34\ \mu\text{s}$, assigned to ^{216}Ac .

Event #6: $E(\text{ER})=13144$ keV.

$E_{\alpha 1}=8868$ keV 60, $\Delta t_1=4.89\ \mu\text{s}$, assigned to ^{224}Np .

$E_{\alpha 2}=9811$ keV 60, $\Delta t_2=100$ ns, assigned to ^{220}Pa .

$E_{\alpha 3}=9067$ keV 9, $\Delta t_3=431.74\ \mu\text{s}$, assigned to ^{216}Ac .

Adopted Levels (continued) ^{224}Np Levels

E(level)	T _{1/2}	Comments
0	$38 \mu\text{s} +26-11$	<p>Only α decay has been detected. From theoretical $T_{1/2}(\beta)=5.4$ s and $T_{1/2}(\alpha)=2$ ms in 2019Mo01, only α decay is expected.</p> <p>Production $\sigma=0.38$ nb $+26-11$ (2018Hu13), uncertainty is statistical only.</p> <p>E(level): assumed that the observed α activity is emanated from the decay of the ground state of ^{224}Np, and feeds two isomeric states in ^{220}Pa.</p> <p>J^π: 2^- from systematic trend (2021Ko07). From $\Omega(p)=7/2$ and $\Omega(n)=5/2$ in theoretical calculations by 2019Mo01, $J=(1,6)$.</p> <p>$T_{1/2}$: measured by 2018Hu13, from (evaporation residues)α-correlated decays.</p> <p>Emitted $E\alpha=9137$ keV 20 with $I\alpha=83$ 51, and $E\alpha=8868$ keV 62 with $I\alpha=17$ 18 (2018Hu13), feeding excited states at 34 keV 26 and 297 keV 65 in ^{220}Pa, respectively. Note that no decay branch to the g.s. of ^{220}Pa is indicated by 2018Hu13.</p>