224 Rn β^- decay (107 min) 1979Va20

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Sukhjeet Singh	ENSDF	08-Mar-2022

Parent: ²²⁴Rn: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=107 \text{ min } 3$; $Q(\beta^-)=696 \ 15$; % β^- decay=100.0

²²⁴Rn-T_{1/2}: From ²²⁴Rn Adopted Levels.

²²⁴Rn-Q(β^{-}): From 2021Wa16.

1979Va20: ²²⁴Rn source produced in Th(p,X),E=660 MeV protons followed by mass separation. Measured E γ , I γ , conversion electrons using Ge detectors for γ rays and magnetic toroidal β spectrometer for electrons. 1973AfZY is an earlier report from many of the same authors.

Decay scheme is unknown. Evaluators note that a 202.21 γ and 63.55 γ cascade with 265.76 γ as a crossover transition is suggested by 202.21 5 + 63.55 10=265.76 11 consistent with the observed γ of 265.806 keV 17. Also, almost equal intensities of 260.581 γ and 265.806 γ suggest a cascade of these two gamma rays.

²²⁴Fr Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments						
0.0	1 ⁽⁻⁾	3.33 min 10	$J^{\pi}, T_{1/2}$: from Adopted Levels.						

$\gamma(^{224}\text{Fr})$

E_{γ}^{\dagger}	I _γ ‡	E _i (level)	Mult. [#]	δ [#]	α [@]	Comments
^x 63.55 10	1.4 3		M1(+E2)	< 0.10	10.9 4	$\alpha(L)=8.2 3; \alpha(M)=1.97 8$
						$\alpha(N)=0.518\ 19;\ \alpha(O)=0.115\ 4;\ \alpha(P)=0.0184\ 5;$ $\alpha(O)=0.001001\ 16$
						$\alpha(L) \exp{-\alpha(L2)} \exp{-5.7 21}$.
						$Ice(L1+L2)=8.1\ 24.$
*108.44 8	1.5 2		M1(+E2)	<1.8	9.4 20	$\alpha(K)=6.4; \alpha(L)=2.7.11; \alpha(M)=0.7.3$
						α (N)=0.19 8; α (O)=0.040 16; α (P)=0.0056 18; α (Q)=0.00014 8
						$\alpha(L1)\exp+\alpha(L2)\exp=1.98$ 48.
<i>x</i> 113 35 7	2 35 25		M1(+F2)	<16	8318	$\alpha(K) = 5 3$: $\alpha(L) = 2 3 8$: $\alpha(M) = 0.58 23$
115.557	2.35 25		WII(+L2)	<1.0	0.5 10	$\alpha(\mathbf{N})=0.15$ 6; $\alpha(\mathbf{O})=0.032$ 12; $\alpha(\mathbf{P})=0.0046$ 13; $\alpha(\mathbf{O})=0.00013$
						6
						α (L1)exp+ α (L2)exp=1.64 30.
X						lce(L1+L2)=3.96.
*156.17 3	1.45 10		M1(+E2)	<0.4	3.85 19	$\alpha(K) \exp = 5.0 II$
						$\alpha(\mathbf{K}) = 5.04 \ 21; \ \alpha(\mathbf{L}) = 0.012 \ 20; \ \alpha(\mathbf{M}) = 0.148 \ 7$
						$\alpha(Q)=0.058717, \alpha(Q)=0.00805, \alpha(P)=0.001555, \alpha(Q)=7.0\times10^{-5}5$
						Ice(K)=7.4 15.
^x 202.21 5	4.7 5		M1(+E2)	<1.9	1.4 6	$\alpha(K)=1.0\ 6;\ \alpha(L)=0.282\ 7;\ \alpha(M)=0.0703\ 24$
						α (N)=0.0184 7; α (O)=0.00401 6; α (P)=0.00060 5; α (Q)=2.3×10 ⁻⁵ 13
						α (L1)exp+ α (L2)exp=0.44 17.
						Ice(L1+L2)=2.1 8.
^x 209.78 10	2.1 3		M1(+E2)	<1.5	1.3 5	α (K)=1.0 5; α (L)=0.250 9; α (M)=0.0620 10
						$\alpha(N)=0.0163 \ 3; \ \alpha(O)=0.00355 \ 8; \ \alpha(P)=0.00054 \ 5; \ \alpha(O)=2.2\times 10^{-5} \ 10$
						$\alpha(Q)=2.2\times10^{-10}$ for $\alpha(L_1)\exp(20.4)$
						$Ice(L1+L2)\approx 0.8.$
						δ : 50% uncertainty assumed in Ice(L1+L2).
^x 256.84 4	2.9 <i>3</i>		M1(+E2)	< 0.5	0.92 8	α (K)exp=1.40 37

224 Rn β^{-} decay (107 min) 1979Va20 (continued)

γ (²²⁴Fr) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	Mult. [#]	δ#	α@	Comments
						$\begin{aligned} \alpha(\mathbf{K}) &= 0.74 \ 8; \ \alpha(\mathbf{L}) = 0.142 \ 5; \ \alpha(\mathbf{M}) = 0.0341 \ 9 \\ \alpha(\mathbf{N}) &= 0.00894 \ 24; \ \alpha(\mathbf{O}) = 0.00199 \ 7; \ \alpha(\mathbf{P}) = 0.000315 \ 14; \\ \alpha(\mathbf{Q}) &= 1.67 \times 10^{-5} \ 16 \\ \alpha(\mathbf{L}) \exp + \alpha(\mathbf{L}2) \exp = 0.27. \\ \mathrm{Ice}(\mathbf{K}) &= 4.1 \ 10, \ \mathrm{Ice}(\mathbf{L}1 + \mathbf{L}2) = 0.8. \end{aligned}$
^x 260.581 <i>17</i>	21.5 10		M1(+E2)	<0.20	0.946 20	δ: 50% uncertainty assumed in Ice(L1+L2). α (K)exp=0.92 <i>10</i> α (K)=0.761 <i>17</i> ; α (L)=0.1399 <i>22</i> ; α (M)=0.0334 <i>5</i> α (N)=0.00874 <i>13</i> ; α (O)=0.00195 <i>3</i> ; α (P)=0.000313 <i>5</i> ;
^x 265.806 17	20.1 10		M1(+E2)	<0.25	0.888 24	$\alpha(Q)=1.73\times10^{-5} 4$ $\alpha(L1)\exp+\alpha(L2)\exp=0.20 4.$ Ice(K)=20 2, Ice(L1+L2)=4.3 8. $\alpha(K)\exp=0.88 11$ $\alpha(K)=0.714 22; \ \alpha(L)=0.1319 23; \ \alpha(M)=0.0315 5$ $\alpha(N)=0.00825 14; \ \alpha(O)=0.00184 3; \ \alpha(P)=0.000294 6;$
^x 328.331 <i>21</i>	3.7 3		M1(+E2)	<1.2	0.39 12	$\begin{aligned} &\alpha(Q) = 1.62 \times 10^{-5} 5 \\ &\alpha(L1) \exp + \alpha(L2) \exp = 0.13 2. \\ &\text{Ice}(K) = 18 2, \text{ Ice}(L1 + L2) = 2.7 5. \\ &\alpha(K) \exp = 0.43 22 \\ &\alpha(K) = 0.31 11; \ \alpha(L) = 0.064 11; \ \alpha(M) = 0.0155 22 \\ &\alpha(N) = 0.0041 6; \ \alpha(O) = 0.00090 14; \ \alpha(P) = 0.00014 3; \\ &\alpha(Q) = 6.9 \times 10^{-6} 24 \\ &\text{Ice}(K) = 1.6 8. \end{aligned}$

[†] From 1979Va20.

[‡] From 1979Va20, values are relative to 100 4 for 131.6 γ in ²²⁴Ra from ²²⁴Fr decay.

[#] M1 assigned to all the γ rays in 1979Va20. Mixing ratios have been deduced by evaluators from I γ and I(ce) data in 1970Va20 for ²²⁴Rn-²²⁴Fr equilibrium source and normalized to α (K)(theory,E1)=0.0601 9 for 216 γ , E1 in ²²⁴Ra from ²²⁴Fr decay.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.