Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh, Sukhjeet Singh	ENSDF	08-Mar-2022					

 $Q(\beta^-)=239 \ 10$; $S(n)=5662 \ 8$; $S(p)=4288 \ 4$; $Q(\alpha)=6326.9 \ 7$ 2021Wa16 $S(2n)=12530 \ 6$, $S(2p)=10722 \ 8 \ (2021Wa16)$.

Theoretical calculations: 24 references extracted from the NSR database are listed in document records.

Additional information 1. All data are from ²²⁸Pa α decay.

In this evaluation, the level scheme is essentially that proposed by 1994Ah03 with some modifications suggested in 2004Sh25. The band structures are taken essentially from 2004Sh25, but considered tentative at this stage. As pointed out in 1994Ah03 and 2004Sh25, the level scheme of ²²⁴Ac is very complex and many additional levels are expected. Thus the level scheme presented here is considered as incomplete. Information about confirmed multipolarities, mixing ratios and other spectroscopic details is lacking. Further experiments on the decay of ²²⁸Pa, and involving nuclear reactions are needed to confirm and elucidate the structure of this nucleus.

2004Sh25 suggest five other bands, not listed here, for which only one or two levels each are known.

²²⁴Ac Levels

Cross Reference (XREF) Flags

A 228 Pa α decay (19.5 h)

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0‡	(0 ⁻)	2.78 h 16	A	%ε=90.9 +14-20; %α=9.1 +20-14 (1951Me10) %ε,%α: from ε/α=10 2 (1951Me10). %β ⁻ : No β ⁻ branch observed; %β ⁻ <1.6 from log <i>ft</i> >5.9 expected for a 0 ⁻ to 0 ⁺ ²²⁴ Th g.s. β ⁻ transition. J ^π : log <i>ft</i> =5.9 (1976MiZR) to 1 ⁻ level in ²²⁴ Ra suggest probable allowed β ⁻ transition; large hindrance factors (or non-observation) of α transitions to levels in ²²⁰ Fr which are connected by γ transitions implying change of one or two units of spin between these levels; possible K^{π} =0 ⁻ bandhead of an octupole band. See also several arguments given in previous Nuclear Data Sheets evaluation (1986Ma45; same arguments in 1997Ar05) where J ^π =0 ⁻ was assigned. Based on theoretical considerations 1988Sh01 deduce J ^π =0 ⁻ or 3 ⁻ for 3/2 proton and 3/2 neutron coupling with octupole deformation, and 2 ⁺ or (2 ⁻) with quadrupole deformation only. T _{1/2} : weighted average of 2.55 h 28 (1987Mi10) and 2.9 h 2 (1951Me10; their previous value ≈2.5 h reported in 1948Gh01).
17.60 [‡] 15	(1^{-})		A	
$23.40\ 11$	(2)		A	$I\pi$, $E1 \text{ so to } (0^{-})$
34.2? 8	(1)		A	$\mathbf{J} \cdot \mathbf{E} \mathbf{I} \neq \mathbf{I} 0 \ (0 \).$
37.17 [‡] 9	(2 ⁻)		Α	
44.2? 3	(=)		A	
45.8 <i>? 4</i> 47.4?.4	()		A A	
49.08 13	(3 ⁻)		A	
52.20 [#] 11	(2^+)		Α	
64.47 14	(3+)		Α	
65.2? 6			Α	

Continued on next page (footnotes at end of table)

²²⁴Ac identified and produced by 1948Gh01 in Th(d,X) at 80 MeV, with an estimated half-life of ≈2.5 h. Later studies of ²²⁴Ac decay: 1951Me10, 1958Hi78, 1968Le17, 1976MiZR, 1987Mi10, 1992Li31.

Adopted Levels, Gammas (continued)

²²⁴Ac Levels (continued)

E(level)	J^{π}^{\dagger}	XREF	Comments
75.9? 6		Α	
78.51 [‡] <i>12</i>	(3^{-})	А	A 48.6 γ is omitted here due to unlikely M2 multipolarity implied from assigned J^{π} values.
80 49 [#] 10	(3^+)	Α	
84.1? 4	(5)	A	
90.56 13	$(^{+})$	Α	
92.6? 4		Α	
100.44? 23		Α	
103.31 13	(4^{+})	Α	
105.1? 6		Α	
109.33 17	(4 ⁻)	Α	
110.53 15	(*)	Α	
116.46 ⁴ 13	(4 ⁻)	Α	
130.30 [#] 11	(4^{+})	Α	
133.4? 4		Α	
142.5 3	(5^{+})	Α	
146.6 4		Α	E(level): this level may be the same as 142.4 level, but the energy matching is poor.
159.3 4		Α	
169 2		Α	
176.72 [#] 14	(5^{+})	Α	
183.40 [‡] <i>13</i>	(5 ⁻)	Α	
212 2		Α	
219.7 4		Α	
236.5 [‡] 4	(6 ⁻)	Α	
252.68 [#] 17	(6^{+})	Α	
283.48 13	(3 ⁻)	Α	
300 2		Α	
317.2 5		Α	
333.04 12	(3^{+})	Α	
353.89 [@] 11	(3 ⁻)	Α	
360.25 ^{&} 11	(3^{+})	Α	
380.80 16	(+)	Α	
395.84 [@] 19	(4 ⁻)	Α	
402.92 ^{&} 16	(4^{+})	A	
448.08 [@] 20	(5-)	A	
452.1 ^{&} 4	(5 ⁺)	A	

[†] Assignments are mainly from 2004Sh25 based on interpretation of parity-doublets (reflection asymmetric) structures in ²²⁴Ac. Some of the assignments are supported by transition multipolarities from conversion electron data for high energy transitions and E1 assignments from I(K-x ray)/I_γ ratios. For the K^{π} =0 and 1 bands, two scenarios are presented in their figures 4 and 5 of 2004Sh25. See detailed discussion by the authors. Assignments given here are arbitrarily taken from figure 4 in 2004Sh25.

 $K^{\pi}=3^+$ and 3^- parity- doublet bands are also supported by 1994Ah03 with minor differences in level assignments at high energy. [‡] Band(A): Band based on (0⁻). Mixture of $K^{\pi}=0^-$ and $K^{\pi}=1^-$ bands from $\pi 3/2 \otimes v 3/2$ and $\pi 5/2 \otimes v 3/2$ configurations (2004Sh25).

Band(B): Band based on (6°). Writting of $K^{\pi}=0^+$ and $K^{\pi}=1^+$ bands from $\pi 3/2 \otimes \nu 3/2$ and $\pi 5/2 \otimes \nu 3/2$ configurations (2004Sh25).

[@] Band(C): Band based on (3⁻). Mixture of $K^{\pi}=2^{-}$ and $K^{\pi}=3^{-}$ bands from $\pi 5/2 \otimes \nu 1/2$ configuration (2004Sh25).

& Band(D): Band based on (3⁺). Mixture of $K^{\pi}=2^+$ and $K^{\pi}=3^+$ bands from $\pi 5/2 \otimes \nu 1/2$ configuration (2004Sh25).

Adopted Levels, Gammas (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
29.83	(1^{+})	29.8 1	100	0	(0^{-})	E1		2.83 5	
37.17	(2^{-})	37.2 [#] 1	100	0	(0^{-})	[E2]		1200 24	
52.20	(2^+)	(22)	100	29.83	(1^+)	[]		1200 27	
		28.8 1	42 7	23.40	(2^{-})	E1		3.10 6	
		34.6 1	100 11	17.60	(1 ⁻)	E1		1.91	A 52.1 γ is omitted here due to unlikely M2 multipolarity implied from assigned J^{π} values.
64.47	(3 ⁺)	41.1 <i>1</i>	100	23.40	(2 ⁻)				Mult.: (M1) listed in 1993Sh07, but no argument given.
78.51	(3 ⁻)	26.3 1	100 14	52.20	(2^{+})	E1		3.93 7	
80.49	(3^{+})	28.3 1	≈4.2	52.20	(2^+)	F1		1 054 17	
00 56	(\pm)	43.3 1	100 13	37.17	(2)	EI (E1)		1.054 1/	
90.30	()	54.2.1	100	23.40 40.08	(2) (3^{-})	(E1)		0.527	
100.22	(4^{-})	54.21	100	49.00	(3^{-})	(L1)		0.580	
109.55	(4)	$60.3^{\circ} 2$	100*	49.08	(3)				
116.35	(4^{-})	36.0.1	100 15	49.08	(3^+)	(F1)		1 72 3	
110.10	(1)	52.0 2	87 15	64.47	(3^+)	(L1)		1.72.5	
130.30	(4^{+})	49.8 1	20 4	80.49	(3^+)				
		51.8 <i>1</i>	100 11	78.51	(3-)	(E1)		0.654	
		78.6 [#] 3	84	52.20	(2^{+})				
		81.2 <i>1</i>	89 15	49.08	(3-)				
146.6		62.5 [#] 1	100 17	84.1?					
159.3		66.3 [#] 3	≈50	92.6?					
		75.5 [#] 3	≈100	84.1?					
176.72	(5^{+})	46.5 2	≈30	130.30	(4^{+})				
		$60.3^{\ddagger} 2$	<125 [‡]	116.46	(4^{-})	(E1)		0.436 8	
		67.4 2	100 15	109.33	(4-)				
		73.4 2	21 9	103.31	(4^{+})				
183.40	(5 ⁻)	53.1 <i>1</i>	100 15	130.30	(4^{+})	(E1)		0.612	
		74.1 3	38 10	109.33	(4^{-})			0.005	
210.7		80.1 1	85 IS ~100	103.31	(4^+)	(EI)		0.205	
219.7		11.2 2 96 2 [#] 2	~100	142.3	(5)				
236 5	(6^{-})	80.3" Z	≈07 100	133.4?	(5^{+})				
252.68	(6^+)	6932	100 17	183 40	(5^{-})	(E1)		0 301	
202.00	(0)	76.0 2	43 12	176.72	(5^+)	(21)		0.001	
		110.3 4	86 17	142.5	(5+)				
		122.5 5	≈23	130.30	(4^{+})				
283.48	(3-)	140.8 4	20 5	142.5	(5+)				
		193.0 2	11 4	90.56	$(^{+})$				
		237.7# 3	26 5	45.8?	(-)	(M1)		1.473	
		246.2 2	36.8	37.17	(2)				
317.2		200.1 1	$\sim 100 II$ ~ 100	25.40	(2^{-})				
517.2		280.05	~ 100	24.22	(2)				
333.04	(3^{+})	283.0° 3 202 7 1	≈100 88.13	54.2? 130.30	(4^{+})	$M1(\pm F2)$	<0.6	2 07 23	
555.04	(5)	202.7 1	≈16	110 53	(+) (+)	MII(TE2)	\U.U	2.07 23	
		232 6# 2	50 0	100 449					
		242.6 2	47 8	90.56	$(^{+})$	(M1)		1.392	
		252.6 2	63 13	80.49	(3+)	(M1)		1.244	
		267.8 <mark>#</mark> 5	33 11	65.2?	. ,				

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

γ ⁽²²⁴Ac) (continued)</sup>

E _i (level)	J_i^{π}	Eγ	Iγ	E _f	J_f^{π}	Mult.	δ	α^{\dagger}
333.04	(3^{+})	280.8 4	≈31 ≈47	52.20	(2^+)			
		205.44	~47	49.00	(5)			
		283.8° 3	≈10	47.47				
		288.9" 5	≈47 ≈21	44.2?	(2-)			
		295.5 4	≈31 100 <i>18</i>	20.83	(2)			
353.80	(3^{-})	237 5 2	18 9 23	116.46	(1^{-})	(M1)		1 476
555.07	(5)	244.7 5	9.6 23	109.33	(4^{-})	(M1)		1.359
		248.8 [#] .5	7.7 27	105.1?	(.)	()		
		269.1 [#] 4	13 3	84.1?				
		278.0 [#] 5	≈9	75.9?				
		290.0 5	≈23	64.47	(3^{+})			
		309.6 [#] 3	≈23	44.2?				
		316.8 <i>1</i>	100 14	37.17	(2^{-})	(M1)		0.666
		330.4 [‡] 1	<50 [‡]	23.40	(2^{-})	(M1)		0.593
360.25	(3^{+})	230.0 1	45 8	130.30	(4^+)	M1(+E2)	< 0.7	1.41 21
		268.7 [#] 5	92	90.56	$(^{+})$			
		279.5 4	9.3 23	80.49	(3^{+})			
		308.0 1	100 10	52.20	(2^{+})	M1(+E2)	< 0.4	0.68 4
		312.8 [#] 4	≈5.0	47.4?				
		330.4 [‡] 1	<28 [‡]	29.83	(1^{+})			
380.80	$(^{+})$	250.5 2	59 12	130.30	(4^{+})	(M1)		1.273
		300.3 <i>3</i>	≈17	80.49	(3+)			
		328.6 2	100 14	52.20	(2^{+})			
		351.0 4	≈17	29.83	(1^{+})			
395.84	(4 ⁻)	212.5 5	≈42	183.40	(5 ⁻)			
		253.4 5	≈67	142.5	(5^{+})			
		317.2.2	≈580	78.51	(3^{-})			
402.02	$(4\pm)$	347.03	$100 \ 42$	49.08	(3)			
402.92	(4.)	220.5 2	≈ 17 ~ 33	1/0./2	(3^+)			
		299.3 3	≈33 ~17	00.56	(4)			
		322.4.2	100.13	80.49	(3^+)	M1(+E2)	< 0.7	0.55.9
448.08	(5^{-})	195.5 2	100 30	252.68	(6^+)	(122)		0.00 /
	(-)	317.8 3	≈300	130.30	(4^+)			
		344.3 4	≈100	103.31	(4^+)			
452.1	(5^+)	335.6 <i>3</i>	100	116.46	(4 ⁻)			

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
[‡] Multiply placed with undivided intensity.
[#] Placement of transition in the level scheme is uncertain.

 $\frac{(5^+)}{(5^-)}$

 (4^{+})

(4-)

 $(^+)$

(3+)

(3-)

(3⁺)

 (6^{+})

Adopted Levels, Gammas

0 2.78 h 16

²²⁴₈₉Ac₁₃₅

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given γ Decay (Uncertain) • _ _ _ _ _ $\frac{1}{2^{8_{3,0}}} e_{2^{8_{0,0}}} e_{2^{8_{0,0}}} e_{2^{8_{0,0}}}$ 317.2 260, 245, 100 255, 25 237, 35 193, 041, 26 19, 041, 26 19, 8, 20 (3⁻) 283.48 $\frac{1}{100}$ (6^{+}) 252.68 1 39.8 100 1 (6^{-}) 236.5 -<u>6</u>-6 T T ૾ૢૺૢૺ 219.7 $\left(+ \frac{3 \alpha_{1}}{3 \alpha_{1}} , \frac{3 \alpha_{2}}{6 \beta_{1}} , \frac{3 \alpha_{2}}{3 \beta_{2}} , \frac{3 \alpha_{2}}{3 \beta_{2}} , \frac{3 \alpha_{2}}{6 \beta_{1}} , \frac{3 \alpha_{2}}{10} \right)$ 7/3¢ Т (5^{-}) 183.40 $\frac{1}{1} \frac{3}{6_{0,3}} \frac{3}{2} \frac{3}{2} \frac{9}{6_{0,3}} \frac{1}{2} \frac{3}{2} \frac{3}{2} \frac{9}{6_{0,3}} \frac{1}{2} \frac{$ 1 (5+) 176.72 i T 159.3 8 ' *Q*. 1 i T T T ŝ 146.6 (5+) 50 87 1 _|_ 142.5 i _|_ 133.4 ₹_ (4+) 1 61.5 100 130.30 | 3007 (1) (100 | 55.0° i T (4-) 116.46 . 03 $(^{+})$ 110.53 -1-¥ $\frac{(-)}{(4^{-})}$ ¥ 109.33 à 103.31 ¥. <u>6</u>-8 1 92.6 ŵ (+) 90.56 ŵ _ _ _ _ + _ _ + \$. \$. . L. . _ _ 84.1 (3+) 80.49 6 $\frac{(3^{-})}{(3^{+})}$ E100 1.14 78.51 64.47 ***** 8 (2+) i 52.20 ÷ Ľ 49.08 (3⁻) ŝ Ý. -<u>~</u>; $(\bar{2})$ -1 --_4<u>5.8</u> 4 L 37.17 Т - ನಿ: ¥__ . ▼ <u>34.2</u> 29.83 (1^{+}) (2^{-}) 23.40 (1^{-}) 17.60 (0^-) 0 2.78 h 16

²²⁴₈₉Ac₁₃₅

6

Adopted Levels, Gammas

²²⁴₈₉Ac₁₃₅