	History								
	Туре	Author	Citation NDS 93,846 (2001)		Literature Cutoff Date				
	Full Evaluation	E. Browne			1-May-2001				
$Q(\beta^{-}) = -2.93 \times 10^{3} \ 8$; $S(n) = 5889$ Note: Current evaluation has use	<i>16</i> ; S(p)=4525 <i>1</i> . d the following Q	<i>l</i> ; $Q(\alpha) = 7567$ record \$ -29	4 2012Wa3 50 705891	8 164526	107567	4	1995Au04		

²²³Th Levels

The K=5/2 rotational bands of opposite parity (parity-doublet bands), which lie close to each other and are connected by strong E1 transitions, suggest stable quadrupole and octupole deformations for ²²³Th. The experimental band member energies are consistent with values calculated by 1988Le13 for the octupole single-particle assigned configurations. See 208 Pb(18 O,3n γ) for two possible additional levels at 1757 $(J^{\pi}=(31/2^+))$ and 1953 $(J^{\pi}=(33/2^+))$.

Cross Reference (XREF) Flags

	208 01 (18 0 2
Α	200 Pb(100,3n)
В	227 U α decay

 $^{208}\text{Pb}(^{18}\text{O},3n\gamma)$ $^{227}\text{U} \alpha \text{ decay}$

E(level) [@]	$J^{\pi^{\dagger}}$	T _{1/2}	XREF	Comments
0.0	(5/2)+&	0.60 s 2	AB	$\% \alpha = 100$ T _{1/2} : from ²²³ Th α decay (1987El02). Other values: 0.66 s <i>l</i> (1970Va13), 0.9 s <i>l</i> (1958To25).
	. P-			J^{π} : favored α decay (HF=2.3) to 140 level ($J^{\pi}=(5/2)^+$) in ²¹⁹ Ra. $J^{\pi}=5/2^+$, theoretically predicted in 1987Sh24 using a static quadrupole-octupole deformation.
51.3 5	$(7/2)^{+\infty}$		AB	J^{π} : exp $\delta(51.3\gamma)=0.21 I$ agrees with a calculated value of 0.21 for $J^{\pi}=7/2^+$ and the octupole single-particle assigned configuration (1988Le13).
118.9 [‡] 6	$(9/2)^+$		Α	
180.5 [#] 5	(9/2 ⁻)		Α	
209 1	$(7/2)^+$ &		В	
212.3 [‡] 6	$(11/2)^+$		Α	
243.0 [#] 6	$(11/2^{-})$		Α	
247 1	$(3/2)^+$ &		В	
310 <i>1</i>	(5/2)+ ^{&}		В	
320.0 [‡] 6	$(13/2^+)$		Α	
324.1 [#] 6	$(13/2)^{-}$		Α	
412.4 [#] 6	$(15/2^{-})$		Α	
428.7 [‡] 6	$(15/2)^+$		Α	
547.3 [#] 6	$(17/2)^{-}$		Α	
569.6 [‡] 6	$(17/2)^+$		Α	
657.0 [#] 6	$(19/2^{-})$		Α	
706.0 [‡] 6	$(19/2)^+$		Α	
838.1 [#] 6	$(21/2)^{-}$		Α	
858.1 [‡] 6	$(21/2)^+$		Α	
962.1 [#] 6	$(23/2^{-})$		Α	
1021.6 [‡] 6	$(23/2)^+$		Α	
1179.4 [#] 6	$(25/2)^{-}$		Α	
1185.4 [‡] 6	$(25/2)^+$		Α	

Adopted Levels, Gammas (continued)

²²³Th Levels (continued)

E(level)@	$J^{\pi \dagger}$	XREF
1313.8 [#] 6	$(27/2)^{-}$	A
1370.6 [‡] 6	$(27/2)^+$	Α
1551.7 [‡] 6	$(29/2)^+$	Α
1558.4 [#] 6	$(29/2)^{-}$	Α
1702.5 [#] 7	$(31/2)^{-}$	Α

[†] J^{π} assignments to levels from ²⁰⁸Pb(¹⁸O,3n γ) are based on rotational structure, and on γ -ray multipolarities and decay patterns. [±] Band(A): 5/2(633) parity doublet rotational band. Rotational parameter: A=7.3 (1990Ja11).

[#] Band(B): 5/2-(752) parity doublet rotational band. Rotational parameter: A=5.7 (1990Ja11). ^(a) From ²⁰⁸Pb(¹⁸O,3n γ) and ²²⁷U α decay.

[&] Based also on the similarity of the level structure, γ -ray decay pattern, and relative α -decay hindrance factors in the isotone ²²¹Ra (1991Ho05).

$\gamma(^{223}\text{Th})$

E_i (level)	\mathbf{J}_i^{π}	Ε _γ #	$I_{\gamma}^{\#}$	E _f	\mathbf{J}_f^{π}	Mult. [#]	δ#	α@	Comments
51.3	$(7/2)^+$	51.3 5	100	0.0 ($(5/2)^+$	M1+E2	0.214 10	39.2 10	
118.9	$(9/2)^+$	67.5 3	100	51.3 ($(7/2)^+$	M1+E2	≈0.2	15 3	
190.5	$(0/2^{-})$	119.0 5	45 25	0.0 ($(5/2)^+$	E2		5.40	
160.5	$(9/2)^+$	129.5 2	100 26	51.5 ((1/2)	M1 . E2	12 17 1	204	
209	(1/2)	200	$100^{+} 30$	31.3 ((1/2) (5/2)+	$M1 + E2^{\dagger}$	$1.3^{+} + 7 - 4$	5.0 4 1 07 05	
212.3	$(11/2)^+$	209*	100, 30	180.5 ($(9/2^{-})$	MI+E2*	1.5* +14-5	1.27 23	
212.5	(11/2)	93.4 2	58 16	118.9 ($(9/2)^+$	M1+E2	0.27 6	5.7 3	
		161.0 [†] 5	79 [†] 26	51.3 ($(7/2)^{+}$				
243.0	$(11/2^{-})$	124.1 2	100	118.9 ($9/2)^+$				
247	$(3/2)^+$	247 [‡]	100 [‡]	0.0 ($(5/2)^+$	M1 [‡]	‡	1.53	
310	$(5/2)^+$	259 [‡]	83 [‡] <i>33</i>	51.3 ($(7/2)^+$	(M1) [‡]	‡	1.34	
		310 [‡]	100 [‡] 33	0.0 ($(5/2)^+$	M1 [‡]	‡	0.815	
320.0	$(13/2^+)$	76.8 2	98 19	243.0 ($(11/2^{-})$				
		108.6 2	56 5	212.3 ($(11/2)^+$				I_{γ} : Th K x ray + ²²³ Th.
224.1	(10)0)-	200.9 2	100 2 5	118.9 ($(9/2)^+$	51		0.007	
324.1	(13/2) $(15/2^{-})$	111.4 2 87 <mark>0</mark>	100	212.3 ($(11/2)^{-1}$	EI		0.387	
412.4	(13/2)	92.3 2	100 13	320.0 ((13/2) $(13/2^+)$				
		170.0 2	10 5	243.0 ($11/2^{-}$)				
428.7	$(15/2)^+$	104.8 [†] 5	t	324.1 (13/2)-				
		109 ^a		320.0 ($(13/2^+)$				
517 2	(17/2) =	216.6 3	65 15	212.3 ($(11/2)^+$	E2		0.504	
347.5	(17/2)	116.72	$\frac{03}{22}$	420.7 ($(15/2)^{-1}$	E1		0.555	
		$130.0^{-1} 2$	100 & 6	412.4 ((13/2)	E2		0.452	
569.6	$(17/2)^+$	$140.9^{a}.2$	<4	324.1 (428.7 ($(15/2)^+$	E2		0.455	
507.0	(17/2)	$157.1^{\dagger}.3$	$100^{\dagger} 4$	412.4 ($(15/2^{-})$	E1		0.170	
		$2495^{\dagger}3$	30^{\dagger} 5	320.0 ($(13/2^+)$	21		0.170	
657.0	$(19/2^{-})$	87.4 2	100 9	569.6 ($(17/2)^+$				
		109 ^a		547.3 (17/2)-				
		244.6 [†] 2	33 [†] 14	412.4 (15/2-)				
706.0	$(19/2)^+$	136.0 <mark>&a</mark> 2	19 <mark>&</mark> 8	569.6 ($(17/2)^+$				
		158.6 [†] 2	100 [†] 5	547.3 (17/2)-	E1		0.166	
		277.4 [†] 2	17 [†] 3	428.7 ($(15/2)^+$	E2		0.219	
838.1	$(21/2)^{-}$	131.9 2	100 13	706.0 ($(19/2)^+$	E1		0.258	
I									

ω

γ (²²³Th) (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	α [@]
838.1	$(21/2)^{-}$	290.9 2	41 5	547.3 (17/2)-	- E2	0.189
858.1	$(21/2)^+$	200.9 ^{&} 2 288.5 2	100 ^{&} 5 6 1	657.0 (19/2 ⁻ 569.6 (17/2) ⁻) ⁺ E2	0.194
962.1	(23/2 ⁻)	103.8 [†] 5 305.2 2	100 [†] <i>10</i> 13 <i>1</i>	858.1 (21/2) ⁻ 657.0 (19/2 ⁻	⊦) E2	0.163
1021.6	(23/2)+	183.3 [†] <i>3</i> 315.7 2	$100^{\dagger} 24 \\ 13 2$	838.1 (21/2) ⁻ 706.0 (19/2) ⁻	E1 E2	0.117 0.147
1179.4	(25/2)-	157.6 [†] <i>3</i> 341.4 2	100 [†] 4 8 3	1021.6 (23/2) ⁻ 838.1 (21/2) ⁻	+ E1 - E2	0.168 0.117
1185.4	$(25/2)^+$	223.2 ^{&} 2	675 ^{&} 38	962.1 (23/2-)	
1313.8	(27/2)-	326.8 [†] 5 128.1 <i>3</i> 351.9 2	100 [†] 27 70 <i>10</i> 100 25	858.1 (21/2) ⁻ 1185.4 (25/2) ⁻ 962.1 (23/2 ⁻	+ E2 + E1	0.133 0.276
1370.6	$(27/2)^+$	191.3 2 349.0 2	100 8 29 <i>11</i>	1179.4 (25/2) 1021.6 (23/2)	É E1	0.106
1551.7	(29/2)+	237.8 2 366.3 2	100 <i>10</i> 30 <i>10</i>	$1313.8 (27/2)^{-1}$ 1185.4 (25/2)^{-1}	- E1 + E2	0.0635 0.0962
1558.4	$(29/2)^{-}$	187.8 2	100 6	1370.6 (27/2)	+ E1	0.111
1702.5	(31/2)-	378.9 [†] 5 150.7 3 388.8 2	24 [†] 6 100 22 61 <i>17</i>	1179.4 (25/2) ⁻¹ 1551.7 (29/2) ⁻¹ 1313.8 (27/2) ⁻¹	- E2 + E1 - E2	0.0877 0.187 0.0818

4

[†] Doublet. [‡] From 227 U α decay. [#] From 208 Pb(18 O,3n γ), unless otherwise specified.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with undivided intensity.

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{223}_{90}{\rm Th}_{133}$

 $^{223}_{90}{\rm Th}_{133}$

 $^{223}_{90}\text{Th}_{133}$