## $^{208}$ Pb( $^{18}$ O,3n $\gamma$ ) 1988Da15

|                 |           | History            |                        |
|-----------------|-----------|--------------------|------------------------|
| Туре            | Author    | Citation           | Literature Cutoff Date |
| Full Evaluation | E. Browne | NDS 93, 846 (2001) | 1-May-2001             |

Others: 1984Bu21, 1984Bu38.

### <sup>223</sup>Th Levels

Authors have interpreted the level structure of <sup>223</sup>Th in terms of a nucleus with stable quadrupole and octupole ( $\varepsilon_3 \approx 0.1$ ) deformations, based mainly on the observed octupole parity doublet bands connected by strong E1 transitions. Measured g.s. nuclear moments for <sup>223</sup>Th are not available. However, the excellent agreement between the experimental mixing ratio  $\delta$ =0.21 *I* of 51.3 $\gamma$  (M1+E2) with a calculated value of  $\delta$ =0.21 provides additional evidence for a stable octupole deformation in this nucleus (1988Le13).

| E(level) <sup>#</sup> | Jπ @         | T <sub>1/2</sub> | Comments                                 |
|-----------------------|--------------|------------------|------------------------------------------|
| 0.0 <sup>†</sup>      | $(5/2)^+$    | 0.60 s 2         | $T_{1/2}$ : from Adopted Levels, gammas. |
| 51.3 <sup>†</sup> 5   | $(7/2)^+$    |                  |                                          |
| 118.9 <sup>†</sup> 6  | $(9/2)^+$    |                  |                                          |
| 180.5 <sup>‡</sup> 5  | $(9/2^{-})$  |                  |                                          |
| 212.3 <sup>†</sup> 6  | $(11/2)^+$   |                  |                                          |
| 243.0 <sup>‡</sup> 6  | $(11/2^{-})$ |                  |                                          |
| 320.0 <sup>†</sup> 6  | $(13/2^+)$   |                  |                                          |
| 324.1 <sup>‡</sup> 6  | $(13/2)^{-}$ |                  |                                          |
| 412.4 <sup>‡</sup> 6  | $(15/2^{-})$ |                  |                                          |
| 428.7 6               | $(15/2)^+$   |                  |                                          |
| 547.3 <sup>‡</sup> 6  | $(17/2)^{-}$ |                  |                                          |
| 569.6 6               | $(17/2)^+$   |                  |                                          |
| 657.0 <sup>‡</sup> 6  | $(19/2^{-})$ |                  |                                          |
| 706.0 6               | $(19/2)^+$   |                  |                                          |
| 838.1 <sup>‡</sup> 6  | $(21/2)^{-}$ |                  |                                          |
| 858.1 6               | $(21/2)^+$   |                  |                                          |
| 962.1 <sup>‡</sup> 6  | $(23/2^{-})$ |                  |                                          |
| 1021.6 6              | $(23/2)^+$   |                  |                                          |
| 1179.4 <sup>‡</sup> 6 | $(25/2)^{-}$ |                  |                                          |
| 1185.4 6              | $(25/2)^+$   |                  |                                          |
| 1313.8+ 6             | $(27/2)^{-}$ |                  |                                          |
| 1370.6 6              | $(27/2)^+$   |                  |                                          |
| 1551.7 6              | $(29/2)^+$   |                  |                                          |
| 1558.4+ 6             | $(29/2)^{-}$ |                  |                                          |
| 1702.5+ 7             | $(31/2)^{-}$ |                  |                                          |
| 1756.8? 6             | $(31/2^+)$   |                  |                                          |
| 1952.7?! 7            | $(33/2^+)$   |                  |                                          |

 $^\dagger$  Band(A): 5/2(633) parity doublet rotational band.

<sup>‡</sup> Band(B): 5/2(752) parity doublet rotational band.

<sup>#</sup> Deduced by evaluator from a least-squares fit of  $\gamma$ -ray energies.

<sup>(a)</sup> From Adopted Levels, gammas, based on rotational structure,  $\gamma$ -ray multipolarities, and on the relationship between  $\gamma$ -ray multiplicities and spins.

### <sup>208</sup>**Pb**(<sup>18</sup>**O**,3nγ) **1988Da15** (continued)

# $\gamma(^{223}\text{Th})$

Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$  coin, ce  $\gamma$  coin, ce-ce coin,  $\gamma(\theta)$ ,  $\gamma$ -ray multiplicities. Deduced multipolarities. Detectors: high-purity germanium, Si(Li) in a magnetic solenoid spectrometer, NaI crystal ball (151 NaI detectors and 6 Compton-suppressed high-purity germanium detectors).

| $E_{\gamma}$                | $I_{\gamma}^{\ddagger}$ | $E_i$ (level)  | $\mathbf{J}_i^{\pi}$         | $E_f$          | $\mathbf{J}_f^\pi$  | Mult. <sup>†</sup> | $\delta^{\dagger}$ | $\alpha^{@}$ | Comments                                                                                                                                                                                         |
|-----------------------------|-------------------------|----------------|------------------------------|----------------|---------------------|--------------------|--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x23.0 <i>3</i>              | 35                      |                |                              |                |                     |                    |                    |              |                                                                                                                                                                                                  |
| <sup>x</sup> 28.1 3         | 21                      |                |                              |                |                     |                    |                    |              |                                                                                                                                                                                                  |
| 31.9 3                      | 19 9                    | 212.3          | $(11/2)^+$                   | 180.5          | (9/2 <sup>-</sup> ) |                    |                    |              |                                                                                                                                                                                                  |
| <sup>x</sup> 34.8 3         | 9                       |                |                              |                |                     |                    |                    |              |                                                                                                                                                                                                  |
| ^49.7 3                     | 9                       | 51.2           | (7/2)+                       | 0.0            | (5/2)+              | M1 + E2            | 0.214.10           | 20.2.10      | x(1) = 20.2.7, $x(M) =$                                                                                                                                                                          |
| 51.5 5                      | 0.8 19                  | 51.5           | (7/2)*                       | 0.0            | (3/2)               | MIT+E2             | 0.214 10           | 39.2 10      | $\alpha(L) = 29.27, \alpha(M) = 7.32 \ 18; \alpha(N+) = 2.69 \ 7$                                                                                                                                |
| <sup>x</sup> 61.8 3         | 5                       |                |                              |                |                     |                    |                    |              |                                                                                                                                                                                                  |
| 67.5 3                      | 12 3                    | 118.9          | (9/2)+                       | 51.3           | (1/2)+              | M1+E2              | ≈0.2               | 15 3         | $\begin{array}{ll} \alpha(L) = & 11.2 \ 17; \ \alpha(M) = \\ & 2.8 \ 4; \ \alpha(N+) = & 1.01 \\ & 20 \end{array}$                                                                               |
| 76.8 2                      | 63 12                   | 320.0          | $(13/2^+)$                   | 243.0          | $(11/2^{-})$        |                    |                    |              |                                                                                                                                                                                                  |
| 87 <b>a</b>                 |                         | 412.4          | $(15/2^{-})$                 | 324.1          | $(13/2)^{-}$        |                    |                    |              |                                                                                                                                                                                                  |
| 87.4 2                      | 43 4                    | 657.0          | $(19/2^{-})$                 | 569.6          | $(17/2)^+$          |                    |                    |              |                                                                                                                                                                                                  |
| 92.3 2                      | 83 11                   | 412.4          | $(15/2^{-})$                 | 320.0          | $(13/2^{+})$        | M1 + E2            | 0.27.6             | 573          | · (L) 4.22.25. · (M)                                                                                                                                                                             |
| 95.4 2                      | 11.5                    | 212.3          | (11/2)*                      | 118.9          | (9/2)*              | MIT+E2             | 0.27 0             | 5.7 5        | $\begin{array}{ccc} \alpha(L) = & 4.25 \ 25; \ \alpha(M) = \\ 1.04 \ 7; \ \alpha(N+) = & 0.39 \\ 3 \end{array}$                                                                                  |
| x98 <sup><i>a</i></sup> 1   | 24.2                    |                |                              |                |                     |                    |                    |              |                                                                                                                                                                                                  |
| *103.1 2                    | 24 <i>3</i>             |                |                              |                |                     |                    |                    |              |                                                                                                                                                                                                  |
| 103.8 <sup>#</sup> 5        | 150" 15                 | 962.1          | $(23/2^{-})$                 | 858.1          | $(21/2)^+$          |                    |                    |              | $I_{\gamma}$ : $I_{\gamma}(103.8\gamma + 104.8\gamma)$ .                                                                                                                                         |
| 104.8 <sup>#</sup> 5        | 150 <sup>#</sup> 15     | 428.7          | $(15/2)^+$                   | 324.1          | $(13/2)^{-}$        |                    |                    |              | $I_{\gamma}$ : $I_{\gamma}(104.8\gamma + 103.8\gamma)$ .                                                                                                                                         |
| 107.12                      | $15^{-15}$              | 220.0          | (12/2+)                      | 010.0          | (11/0) +            |                    |                    |              |                                                                                                                                                                                                  |
| 108.6'' 2                   | 30" 3                   | 320.0<br>428 7 | $(13/2^{+})$<br>$(15/2)^{+}$ | 212.3          | $(11/2)^{+}$        |                    |                    |              | $I_{\gamma}$ : In K x ray + 225 In.                                                                                                                                                              |
| 109 <sup>a</sup>            |                         | 428.7<br>657.0 | (13/2)<br>$(10/2^{-})$       | 520.0<br>547.3 | $(15/2)^{-}$        |                    |                    |              |                                                                                                                                                                                                  |
| 111.4 2                     | 76 4                    | 324.1          | $(13/2)^{-}$                 | 212.3          | $(11/2)^+$          | E1                 |                    | 0.387        | $\alpha(K) = 0.298; \alpha(L) =$                                                                                                                                                                 |
|                             |                         | 02111          | (10/=)                       |                | (11/=)              | 21                 |                    | 0.007        | $\begin{array}{c} 0.0675; \ \alpha(M) = & 0.0163; \\ \alpha(N+) = & 0.00579 \end{array}$                                                                                                         |
| 118.7 2                     | 35 8                    | 547.3          | (17/2) <sup>-</sup>          | 428.7          | (15/2)+             | E1                 |                    | 0.333        | $\alpha(K) = 0.257; \ \alpha(L) = 0.0572; \ \alpha(M) = 0.0138; \\ \alpha(N+) = 0.00401$                                                                                                         |
| 119.0.5                     | 5.5.31                  | 118.9          | $(9/2)^+$                    | 0.0            | $(5/2)^+$           | E2                 |                    | 5.40         | $\alpha(K) = 0.258; \alpha(L) =$                                                                                                                                                                 |
|                             |                         |                | (-1-)                        |                |                     |                    |                    |              | $\begin{array}{c} 3.73; \ \alpha(M) = & 1.03; \\ \alpha(N+) = & 0.382 \end{array}$                                                                                                               |
| 124.1 2                     | 77                      | 243.0          | $(11/2^{-})$                 | 118.9          | $(9/2)^+$           |                    |                    | 0.05(        |                                                                                                                                                                                                  |
| 128.1 3                     | 14 2                    | 1313.8         | (27/2)-                      | 1185.4         | (25/2)+             | EI                 |                    | 0.276        | $\begin{array}{ll} \alpha(\mathbf{K}) = & 0.214; \ \alpha(\mathbf{L}) = \\ & 0.0469; \ \alpha(\mathbf{M}) = & 0.0113; \\ & \alpha(\mathbf{N} +) = & 0.00402 \end{array}$                         |
| 129.3 2                     | 50 <i>3</i>             | 180.5          | $(9/2^{-})$                  | 51.3           | $(7/2)^+$           |                    |                    | 0.050        |                                                                                                                                                                                                  |
| 131.9 2                     | 37.8                    | 838.1          | (21/2)                       | 706.0          | (19/2)              | EI                 |                    | 0.258        | $\alpha(\mathbf{K}) = 0.200; \ \alpha(\mathbf{L}) = 0.0435; \ \alpha(\mathbf{M}) = 0.0105; \ \alpha(\mathbf{N}+) = 0.00373 \ \mathbf{L}_{*} \cdot \frac{223}{\text{Th}} + \frac{222}{\text{Th}}$ |
| <sup>x</sup> 133 <i>1</i>   | <6                      |                |                              |                |                     |                    |                    |              | -,                                                                                                                                                                                               |
| 136.0 <mark>&amp;a</mark> 2 | 12 <sup>&amp;</sup> 5   | 547.3          | $(17/2)^{-}$                 | 412.4          | $(15/2^{-})$        |                    |                    |              |                                                                                                                                                                                                  |
| 136.0 <sup>&amp;a</sup> 2   | $12^{\& 5}$             | 706.0          | $(19/2)^+$                   | 569.6          | $(17/2)^+$          |                    |                    |              |                                                                                                                                                                                                  |
|                             |                         |                | < · / /                      |                | × · / /             |                    |                    |              |                                                                                                                                                                                                  |

Continued on next page (footnotes at end of table)

1988Da15 (continued)

 $^{208}$ Pb( $^{18}$ O,3n $\gamma$ )

| $\gamma$ ( <sup>223</sup> Th) (continued)                                                                             |                                   |                        |                                            |                  |                                             |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|--------------------------------------------|------------------|---------------------------------------------|--------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Eγ                                                                                                                    | $I_{\gamma}$                      | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                         | $\mathbf{E}_{f}$ | $\mathrm{J}_f^\pi$                          | Mult. <sup>†</sup> | α <sup>@</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 140.9 <sup><i>a</i></sup> 2                                                                                           | <4                                | 569.6                  | $(17/2)^+$                                 | 428.7            | $(15/2)^+$                                  |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| x 146.6 2<br>150.7 3                                                                                                  | 25 2<br>18 4                      | 1702.5                 | (31/2) <sup>-</sup>                        | 1551.7           | (29/2)+                                     | E1                 | 0.187          | $\alpha(K) = 0.146; \alpha(L) = 0.0309; \alpha(M) = 0.00743; \alpha(N+) = 0.00264$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $x^{152.0\# 3}$<br>157.1 <sup>#</sup> 3                                                                               | 16# 3<br>104 <sup>#</sup> 4       | 569.6                  | (17/2)+                                    | 412.4            | (15/2 <sup>-</sup> )                        | E1                 | 0.170          | <sup>223</sup> Th + <sup>220</sup> Ra.<br>$\alpha(K) = 0.133; \ \alpha(L) = 0.0278; \ \alpha(M) = 0.00668; \ \alpha(N+) = 0.00237$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 157.6 <sup>#</sup> 3                                                                                                  | 104 <sup>#</sup> 4                | 1179.4                 | (25/2) <sup>-</sup>                        | 1021.6           | (23/2)+                                     | E1                 | 0.168          | $I_{\gamma}: I_{\gamma}(157.1\gamma + 157.6\gamma).$<br>$\alpha(K) = 0.132; \ \alpha(L) = 0.0275; \ \alpha(M) = 0.00662; \ \alpha(N+) = 0.00235$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 158.6 <sup>#</sup> 2                                                                                                  | 64 <sup><b>#</b></sup> 3          | 706.0                  | (19/2)+                                    | 547.3            | (17/2)-                                     | E1                 | 0.166          | $\alpha(K) = 0.130; \ \alpha(L) = 0.0271; \ \alpha(M) = 0.00652; \ \alpha(N+) = 0.00231$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $161.0^{\#} 5$<br>x164 1<br>x166 3 2                                                                                  | 15 <sup>#</sup> 5<br>13 3         | 212.3                  | $(11/2)^+$                                 | 51.3             | $(7/2)^+$                                   |                    |                | 0.00052, a(1(1)- 0.00251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 170.0 2<br>x176.1 2<br>x181.1 2                                                                                       | <11<br>8 4<br>10 3<br>23 2        | 412.4                  | (15/2 <sup>-</sup> )                       | 243.0            | (11/2 <sup>-</sup> )                        |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 183.3 <sup>#</sup> 3                                                                                                  | 38 <sup>#</sup> 9                 | 1021.6                 | $(23/2)^+$                                 | 838.1            | $(21/2)^{-}$                                | E1                 | 0.117          | $\alpha(K) = 0.0923; \ \alpha(L) = 0.0187; \ \alpha(M) = 0.00150; \\alpha(M) = 0.00150; \\alpha(M) = 0.00150; \\alpha(M) = 0.00150;$                                    |  |
| 187.8 2                                                                                                               | 49 <i>3</i>                       | 1558.4                 | (29/2)-                                    | 1370.6           | $(27/2)^+$                                  | E1                 | 0.111          | $\alpha(K) = 0.0872; \ \alpha(L) = 0.00160$<br>$\alpha(K) = 0.0872; \ \alpha(L) = 0.0176; \ \alpha(M) = 0.00150$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 191.3 2                                                                                                               | 38 <i>3</i>                       | 1370.6                 | $(27/2)^+$                                 | 1179.4           | (25/2)-                                     | E1                 | 0.106          | $\alpha(K) = 0.0835; \alpha(L) = 0.0168; \alpha(M) = 0.00425; \alpha(N+1) = 0.00142$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| <sup>x</sup> 194.0 5<br>198.4 <sup>a</sup> 2                                                                          | 8 2<br>23 2                       | 1756.8?                | (31/2 <sup>+</sup> )                       | 1558.4           | (29/2)-                                     | E1                 | 0.0971         | $\alpha(K) = 0.0767; \ \alpha(L) = 0.0154; \ \alpha(M) = 0.00370; \ \alpha(N+) = 0.00131$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 200.9 <sup>&amp;</sup> 2                                                                                              | 64 <sup>&amp;</sup> 3             | 320.0                  | (13/2+)                                    | 118.9            | $(9/2)^+$                                   |                    |                | 0.00370, u(((1.))- 0.00131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| $\begin{array}{c} 200.9^{\&} 2 \\ x 203.0 5 \\ x 205.0 3 \\ x 212 7 2 \end{array}$                                    | 64 <sup>&amp;</sup> 3<br>18<br>16 | 858.1                  | (21/2)+                                    | 657.0            | (19/2 <sup>-</sup> )                        |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 216.6 <i>3</i><br><i>x</i> 217.9 <i>2</i><br><i>x</i> 219.6 <i>2</i>                                                  | 20 3<br><7<br>20 3                | 428.7                  | (15/2)+                                    | 212.3            | (11/2)+                                     | E2                 | 0.504          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 223.2 <sup>&amp;</sup> 2                                                                                              | 54 <sup>&amp;</sup> 3             | 547.3                  | (17/2)-                                    | 324.1            | (13/2)-                                     | E2                 | 0.453          | $\alpha(K) = 0.131; \ \alpha(L) = 0.234; \ \alpha(M) = 0.0637; \ \alpha(N+) = 0.0235$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 223.2 <sup>&amp;</sup> 2<br>237.8 2                                                                                   | 54 <sup>&amp;</sup> 3<br>30 3     | 1185.4<br>1551.7       | (25/2) <sup>+</sup><br>(29/2) <sup>+</sup> | 962.1<br>1313.8  | (23/2 <sup>-</sup> )<br>(27/2) <sup>-</sup> | E1                 | 0.0635         | $\alpha(K) = 0.0505; \ \alpha(L) = 0.00982; \ \alpha(M) = 0.00236; \ \alpha(N+) = 0.000832$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| <sup>x</sup> 240.9 2                                                                                                  | 20 2                              |                        |                                            |                  |                                             |                    |                | 0.00230, a(1(+)-0.000032)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 244.6 <sup>#</sup> 2                                                                                                  | 14 <b>#</b> 6                     | 657.0                  | $(19/2^{-})$                               | 412.4            | $(15/2^{-})$                                |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 249.5" 3                                                                                                              | 31'' 5<br>$21^{\#} 5$             | 569.6                  | $(17/2)^{+}$                               | 320.0            | $(13/2^{+})$<br>$(21/2)^{-}$                |                    |                | $I_{\gamma}$ : $I_{\gamma}(249.5\gamma + 250.2\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 250.2 <sup>nd</sup> 3<br><sup>x</sup> 260.0 2<br><sup>x</sup> 262.0 2<br><sup>x</sup> 265.0 2<br><sup>x</sup> 270.3 2 | 31" 5<br>9<br>6<br>3.6<br>11      | 1952.7?                | (33/2*)                                    | 1702.5           | (31/2)                                      |                    |                | $I_{\gamma}$ : $I_{\gamma}(250.2\gamma + 249.5\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 277.4 <sup>#</sup> 2                                                                                                  | 11 <b>#</b> 2                     | 706.0                  | (19/2)+                                    | 428.7            | $(15/2)^+$                                  | E2                 | 0.219          | $\alpha(K) = 0.0863; \ \alpha(L) = 0.0972; \ \alpha(M) = 0.0262; \ \alpha(M) = 0.0264; \ \alpha(M)$ |  |
| 288.5 2                                                                                                               | 3.8 8                             | 858.1                  | (21/2)+                                    | 569.6            | (17/2)+                                     | E2                 | 0.194          | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

Continued on next page (footnotes at end of table)

|                                                                                                                      |                                     |                        |                                            | <sup>208</sup> <b>P</b> | b( <sup>18</sup> <b>0,3</b> n               | γ) <b>1988</b>     | BDa15 (con     | ntinued)                                                                                                                                                                                                                                       |  |  |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|--------------------------------------------|-------------------------|---------------------------------------------|--------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\gamma$ <sup>(223</sup> Th) (continued)                                                                             |                                     |                        |                                            |                         |                                             |                    |                |                                                                                                                                                                                                                                                |  |  |
| Eγ                                                                                                                   | $I_{\gamma}^{\ddagger}$             | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                         | $\mathbf{E}_{f}$        | $\mathrm{J}_f^\pi$                          | Mult. <sup>†</sup> | α <sup>@</sup> | Comments                                                                                                                                                                                                                                       |  |  |
| 290.9 2                                                                                                              | 15 2                                | 838.1                  | (21/2)-                                    | 547.3                   | (17/2)-                                     | E2                 | 0.189          | $\alpha(K) = 0.0785; \ \alpha(L) = 0.0808; \ \alpha(M) = 0.0217; \ \alpha(N+) = 0.00799$                                                                                                                                                       |  |  |
| x297.6 2<br>305.2 2                                                                                                  | 4<br>19 2                           | 962.1                  | (23/2 <sup>-</sup> )                       | 657.0                   | (19/2 <sup>-</sup> )                        | E2                 | 0.163          | $\alpha(K) = 0.0714; \ \alpha(L) = 0.0671; \ \alpha(M) = 0.0180; \ \alpha(M+) = 0.00662$                                                                                                                                                       |  |  |
| 315.7 2                                                                                                              | 4.8 9                               | 1021.6                 | (23/2)+                                    | 706.0                   | (19/2)+                                     | E2                 | 0.147          | $\alpha(K) = 0.0667; \ \alpha(L) = 0.0590; \ \alpha(M) = 0.0158; \ \alpha(N+) = 0.00581$                                                                                                                                                       |  |  |
| 326.8 <sup>#</sup> 5                                                                                                 | 8 <sup>#</sup> 2                    | 1185.4                 | (25/2)+                                    | 858.1                   | (21/2)+                                     | E2                 | 0.133          | $\begin{array}{l} \alpha(\mathrm{K}) = \ 0.0623; \ \alpha(\mathrm{L}) = \ 0.0518; \ \alpha(\mathrm{M}) = \\ 0.0139; \ \alpha(\mathrm{N} +) = \ 0.00509 \\ \mathrm{I}_{\gamma} : \ \mathrm{I}_{\gamma}(326.8\gamma + 326.9\gamma). \end{array}$ |  |  |
| $x^{326.9}$ <sup>#</sup> 5<br>$x^{331.8}$ <sup>#</sup> 2                                                             | 8 <sup>#</sup> 2<br>13 <sup>#</sup> |                        |                                            |                         |                                             |                    |                | $I_{\gamma}: I_{\gamma}(326.9\gamma + 326.8\gamma).$<br>$I_{\gamma}: I_{\gamma}(331.8\gamma + 332.2\gamma).$                                                                                                                                   |  |  |
| x332.2" 5<br>341.4 2                                                                                                 | 13"<br>8 <i>3</i>                   | 1179.4                 | (25/2)-                                    | 838.1                   | (21/2)-                                     | E2                 | 0.117          | $I_{\gamma}$ : $I_{\gamma}(332.2\gamma + 331.8\gamma)$ .<br>$\alpha(K) = 0.0571; \ \alpha(L) = 0.0441; \ \alpha(M) = 0.0117; \ \alpha(N+1) = 0.00431$                                                                                          |  |  |
| 349.0 2<br>351.9 2<br><sup>x</sup> 354.1 2<br><sup>x</sup> 358.9 2<br><sup>x</sup> 363 1 2                           | 11 4<br>20 5<br>10<br>7<br>3 8      | 1370.6<br>1313.8       | (27/2) <sup>+</sup><br>(27/2) <sup>-</sup> | 1021.6<br>962.1         | (23/2) <sup>+</sup><br>(23/2 <sup>-</sup> ) |                    |                | 0.0117, a(10+) = 0.00451                                                                                                                                                                                                                       |  |  |
| 366.3 2                                                                                                              | 9 <i>3</i>                          | 1551.7                 | (29/2)+                                    | 1185.4                  | (25/2)+                                     | E2                 | 0.0962         | $\alpha$ (K)= 0.0497; $\alpha$ (L)= 0.0341; $\alpha$ (M)= 0.00905; $\alpha$ (N+)= 0.00332                                                                                                                                                      |  |  |
| <sup>*</sup> 372.8 2<br>378.9 <sup>#</sup> 5                                                                         | 3.9<br>12 <sup>#</sup> 3            | 1558.4                 | (29/2)-                                    | 1179.4                  | (25/2)-                                     | E2                 | 0.0877         | $\alpha(K) = 0.0465; \ \alpha(L) = 0.0302; \ \alpha(M) = 0.00801; \ \alpha(N+) = 0.00293$<br>Ly: $1\gamma(378.9\gamma + 379.0\gamma).$                                                                                                         |  |  |
| $x^{379.0}^{\#} 5$<br>386.2 <sup>a</sup> 2                                                                           | 12 <sup>#</sup> 3<br>4.6 18         | 1756.8?                | (31/2 <sup>+</sup> )                       | 1370.6                  | $(27/2)^+$                                  | E2                 | 0.0833         | $I_{\gamma}: I_{\gamma}(379.0\gamma + 378.9\gamma).$<br>$\alpha(K)= 0.0448; \ \alpha(L)= 0.0282; \ \alpha(M)=$                                                                                                                                 |  |  |
| 388.8 2                                                                                                              | 11 <i>3</i>                         | 1702.5                 | (31/2)-                                    | 1313.8                  | (27/2)-                                     | E2                 | 0.0818         | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                           |  |  |
| <sup>x</sup> 393.6 2<br><sup>x</sup> 396.3 2<br>401.0 <sup>a</sup> 5                                                 | 4<br>5.2<br>4.2 <i>20</i>           | 1952.7?                | (33/2+)                                    | 1551.7                  | (29/2)+                                     | E2                 | 0.0753         | $\alpha(K) = 0.0417; \alpha(L) = 0.0248; \alpha(M) = 0.0207$                                                                                                                                                                                   |  |  |
| <sup>x</sup> 413.2 2<br><sup>x</sup> 418.2 2<br><sup>x</sup> 421.5 2<br><sup>x</sup> 440.8 2<br><sup>x</sup> 444.3 2 | 5.6<br>14<br>8.7<br>20<br>8.7       |                        |                                            |                         |                                             |                    |                | $0.00653; \alpha(N+) = 0.00239$                                                                                                                                                                                                                |  |  |

<sup>†</sup> From L-subshell ratios and  $\gamma$ -ray angular distributions. E1 multipolarities have been assigned to transitions for which conversion-electron lines were not observed. <sup>‡</sup> For a projectile energy  $E(^{18}O)=86$  MeV.

<sup>#</sup> Doublet.

<sup>(a)</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>&</sup> Multiply placed with undivided intensity.

<sup>*a*</sup> Placement of transition in the level scheme is uncertain. <sup>*x*</sup>  $\gamma$  ray not placed in level scheme.

#### <sup>208</sup>Pb(<sup>18</sup>O,3nγ) 1988Da15









 $^{223}_{90}{\rm Th}_{133}$