		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne	NDS 93, 846 (2001)	1-May-2001

Parent: ²²³Rn: E=0.0; $J^{\pi}=7/2$; $T_{1/2}=24.3 \text{ min } 4$; $Q(\beta^{-})=1900 \text{ SY}$; $\%\beta^{-}$ decay=100.0

²²³Rn activity was produced by spallation of 600-MeV protons on targets of ²³²Th and mass separated in the ISOLDE on-line separator. Characteristic Fr K x ray, and γ rays previously observed in the α decay of ²²⁷Ac confirmed the assignment of the activity to ²²³Rn.

²²³Fr Levels

The structure of ²²³Fr has been interpreted in terms of the reflection-asymmetric rotor model, and most of the levels below 600 keV have been assigned to $K^{\pi}=3/2\pm$ and $K^{\pi}=1/2\pm$ parity doublet bands.

E(level) [†]	J ^π ‡	Comments
0.0#	$3/2^{(-)}$	
12.882 [#] 22	$(5/2^{-})$	
54.98 ^{&} 4	$1/2^{(-)}$	
82.129 [#] 21	$(7/2^{-})$	
99.53 ^{&} 3	$(3/2^{-})$	
100.999 <mark>&</mark> 24	$(5/2^{-})$	
134.48 ^{<i>a</i>} 4	$(3/2^+)$	
160.43 [@] 3	$(3/2^+)$	
171.963 [@] 25	$(5/2^+)$	
187.07 ^d 3	$(5/2^{-})$	
188.92 ^{&} 3	$(7/2^{-})$	
219.53 ^{<i>a</i>} 3	$(7/2^+)$	
222.98 [@] 4	$(7/2^+)$	
242.45 4	(5/2)	
243.374	(3/2)	
244.074** 23	(7/2)	
519.89 [°] 7	3/2-	Adopted level energy is 515.20 keV 22. See Adopted Levels, gammas for deexciting γ rays.
540.53 ^b 3	$(5/2^+)$	
605.40 [°] 3	(5/2-)	
647.58 <i>3</i>	$(5/2^-, 7/2^-)$	
649.66 <i>3</i>	$(5/2^{-})$	
684.80° 6	$(7/2^+)$	
098.027 736.88 [°] 4	$(7/2^{-})$	
763.21 4	(1/2)	
782.66 4	$(3/2^+, 5/2^+)$	
834.54 5		
839.30 5		
892.08 4 921.63 11		
987.73 11		
995.61 7		
999.12 6		
1001.94 /		
1042.28 10		

223 Rn β^- decay 1992Ku03 (continued)

²²³Fr Levels (continued)

E(level) [†]	E(level) [†]	E(level) [†]	E(level) [†]
1070.11 5 1102.81 5 1120.24 6 1221.10 7 1322.17 5	1359.12 5 1398.29 9 1399.17 6 1512.40 10 1540.74 6	1552.11 6 1566.56 18 1573.78 10 1590.49 10 1595.05 8	1629.30 <i>10</i> 1695.43 <i>21</i>

 † Deduced by evaluator from a least-squares fit to $\gamma\text{-ray energies}.$

[‡] From Adopted Levels.

[#] Band(A): $K^{\pi}=3/2^{-}$ parity doublet band. [@] Band(a): $K^{\pi}=3/2^{+}$ parity doublet band.

[&] Band(B): $K^{\pi} = 1/2^{-}$ parity doublet band.

^{*a*} Band(b): $K^{\pi} = 1/2^+$ parity doublet band.

^{*b*} Band(C): $K^{\pi}=3/2^+$ parity doublet band.

^{*c*} Band(c): $K^{\pi} = 3/2^{-}$ parity doublet band.

^d Band(D): $K^{\pi} = 5/2^{-}$ parity doublet band.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(204 <i>SY</i>)	1695.43	0.029	6.7	av E β =55.26 6
(270 SY)	1629.30	0.16	6.3	av E β =74.75 3
(304 <i>SY</i>)	1595.05	0.18	6.4	av $E\beta = 85.118\ 25$
(309 <i>SY</i>)	1590.49	0.21	6.4	av E β =86.51 3
(326 SY)	1573.78	0.094	6.8	av $E\beta = 91.65 \ 3$
(333 <i>SY</i>)	1566.56	0.12	6.7	av E β =93.88 6
(347 SY)	1552.11	0.48	6.2	av E β =98.364 19
(359 SY)	1540.74	0.44	6.3	av $E\beta = 101.911 \ I9$
(387 SY)	1512.40	0.094	7.0	av $E\beta = 110.84 \ 4$
(500 <i>SY</i>)	1399.17	0.31	6.9	av $E\beta = 147.571\ 20$
(501 SY)	1398.29	0.10	7.4	av $E\beta = 147.86 \ 3$
(540 SY)	1359.12	0.70	6.6	av $E\beta = 160.936 \ 17$
(577 SY)	1322.17	0.39	7.0	av $E\beta = 173.42$
(678 SY)	1221.10	0.12	7.7	av $E\beta = 208.311\ 25$
(779 SY)	1120.24	0.57	7.3	av $E\beta = 244.09$
(797 SY)	1102.81	0.49	7.4	av $E\beta = 250.36$
(829 SY)	1070.11	0.52	7.4	av $E\beta = 262.20$
(857 SY)	1042.28	0.10	8.2	av E β =272.34 4
(864 <i>SY</i>)	1035.28	0.15	8.0	av $E\beta = 274.89$
(898 SY)	1001.94	0.22	7.9	av E β =287.13
(900 SY)	999.12	0.34	7.7	av E β =288.17
(904 <i>SY</i>)	995.61	0.21	7.9	av E β =289.47
(912 <i>SY</i>)	987.73	0.1	8.3	av E β =292.37 4
(978 <i>SY</i>)	921.63	0.19	8.1	av E β =316.89 5
(1007 SY)	892.68	0.53	7.7	av E β =327.73
(1060 SY)	839.30	0.27	8.1	av E β =347.90
(1065 SY)	834.54	0.6	7.7	av E β =349.71
(1117 <i>SY</i>)	782.66	1.4	7.4	av E β =369.45
(1136 <i>SY</i>)	763.21	0.53	7.9	av E β =376.86
(1163 <i>SY</i>)	736.88	11	6.6	av E β =386.97
(1201 SY)	698.62	0.25	8.3	av E β =401.72
(1215 SY)	684.80	0.44	8.1	av E β =407.07

Continued on next page (footnotes at end of table)

$^{223}\mathbf{Rn}\,\beta^{-}\,\mathbf{decay}$ 1992Ku03 (continued)

 β^- radiations (continued)

E(decay)	E(level)	Iβ ^{-†‡}	Log ft		Comments
(1250 SY)	649.66	4.7	7.1	av E β =420.70	
(1252 <i>SY</i>)	647.58	2.7	7.3	av E β =421.51	
(1294 SY)	605.40	14	6.7	av E β =437.96	
(1359 SY)	540.53	0.23	8.5	av E β =463.41	
(1534 SY)	365.65	0.70	8.2	av E β =532.85	
(1677 SY)	222.98	1.7	8.0	av E β =590.28	
(1680 SY)	219.53	0.80	8.3	av Eβ=591.67	
(1712 <i>SY</i>)	187.07	9.0	7.3	av Eβ=604.83	
(1728 SY)	171.963	2.0	8.0	av Eβ=610.96	
(1799 SY)	100.999	<2	>8.0	av Eβ=639.84	
(1800 SY)	99.53	2.1	8.0	av Eβ=640.44	
(1817 SY)	82.129	21	7.0	av E β =647.54	
(1887 SY)	12.882	≤24	≥7.1	av E β =675.88	

[†] Deduced by evaluator from γ -ray transition intensity balance at each level. [‡] Absolute intensity per 100 decays.

 $\gamma(^{223}\mathrm{Fr})$

I γ normalization: deduced by evaluator using no direct β^- feeding to the g.s. of ²²³Fr, I γ (12.9 γ) \approx 20, and Σ Ti(g.s.)=100.

Experimental Fr K x ray intensities: 330 *13* (K α_2 x ray), 580 *30* (K α_1 x ray), and 252 *10* (K β x ray), compare with 400 *42* (K α_2 x ray), 650 *58* (K α_1 x ray) and 300 *33* (K β x ray), respectively, deduced by evaluator (using RADLST) from the γ -ray intensities and K-conversion coefficients presented here, using a K-fluorescence yield of 0.967 *4* (1996Sc06).

Measured E γ , I γ , $\gamma\gamma$ coin, Ice. Deduced multipolarities. Detector: high-purity germanium, mini-orange magnetic spectrometer. Others: 1986Bo35, 1982BrZF, 1975VyZS, 1964Bu02, 1961Be28.

Eγ	Ι _γ @	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	α^{\dagger}	$I_{(\gamma+ce)}^{@}$	Comments
12.90‡	≤0.14	12.882	(5/2-)	0.0	3/2 ⁽⁻⁾	(E2)		5.11×10 ⁴		γ ray not observed. I γ deduced by evaluator to reproduce a $\leq 24\% \beta^-$ feeding (reported by 1992Ku03) using α =51100 for an (E2) adopted multipolarity. I $\gamma \leq 20$ (1992Ku03).
25.95 [‡]	≈0.009 [#]	160.43	$(3/2^+)$	134.48	$(3/2^+)$	[M1+E2]			26 8	
37.47 [‡]	≈0.28 [#]	171.963	$(5/2^+)$	134.48	$(3/2^+)$	[M1+E2]		500	$1.4 \times 10^2 \ 40$	
45.95 [‡]	≈0.42 [#]	100.999	$(5/2^{-})$	54.98	$1/2^{(-)}$	[E2]		352	≈150	
51.06 [‡]	≈0.29 [#]	222.98	(7/2+)	171.963	(5/2+)	[M1+E2]		1.2×10 ² 10	35 10	$I_{(\gamma+ce)}$: from the γ-ray spectrum of 1992Ku03 evaluator concluded that the Iγ value listed by 1992Ku03 actually corresponds to I(γ+ce).
52.32 [‡]	≈15 [#]	187.07	$(5/2^{-})$	134.48	$(3/2^+)$	[E1]		0.61	24 5	
53.3 [‡] 3	≈3.0	242.45	(5/2)	188.92	$(7/2^{-})$					
55.00 5	10.2 4	54.98	$1/2^{(-)}$	0.0	3/2(-)	M1+E2	0.05 4	17.4 8		α (L)=13.1 6; α (M)=3.14 <i>16</i> ; α (N+)=1.11 6 δ : deduced by evaluator from α (exp)=24 7.
55.80 5	3.4 4	244.674	$(7/2^{-})$	188.92	$(7/2^{-})$	[M1+E2]		$8. \times 10^{1}$ 7		
57.56 5	2.8 4	244.674	$(7/2^{-})$	187.07	$(5/2^{-})$	M1		14.9		$\alpha(L)=11.3; \ \alpha(M)=2.69; \ \alpha(N+)=0.95$
69.21 5	185 10	82.129	(7/2 ⁻)	12.882	(5/2 ⁻)	M1+E2	0.42 8	15.0 22		α (L)=11.2 <i>16</i> ; α (M)=2.9 <i>5</i> ; α (N+)=1.00 <i>15</i> δ: deduced by evaluator from α (L1)exp + α (L2)exp=8.2 <i>13</i> , α (L3)exp=11 <i>4</i> .
70.60 10	3.7 5	242.45	(5/2)	171.963	$(5/2^+)$					
72.4 [‡] 2	6.7 13	171.963	$(5/2^+)$	99.53	$(3/2^{-})$	[E1]		0.257		
79.50 10	62 [‡] 10	134.48	$(3/2^+)$	54.98	$1/2^{(-)}$	[E1]		0.200		
82.10 5	43.4 22	82.129	(7/2 ⁻)	0.0	3/2 ⁽⁻⁾	E2		22.6		α (L)=16.6; α (M)=4.48; α (N+)=1.58 Mult.: from α (L1)exp + α (L2)exp=11 4, α (M)exp=3.4 10.
83.0 [‡] 1	≈1.5	243.57	(5/2)	160.43	$(3/2^+)$	[M1+E2]		13 9		· · ·
85.0 [‡] 5	≈1.0	219.53	$(7/2^+)$	134.48	$(3/2^+)$	[E2]		19.2		
86.1 [‡] 1	48 5	187.07	$(5/2^{-})$	100.999	$(5/2^{-})$	[M1]		4.6		
86.7 [‡] 3	≈12	99.53	(3/2 ⁻)	12.882	(5/2-)	[M1+E2]		11 7		

 $^{223}_{87}\mathrm{Fr}_{136}\text{-}4$

4

 $^{223}_{87}\mathrm{Fr}_{136}\text{-}4$

	²²³ Rn β^- decay 1992Ku03 (continued)												
						γ (²²³ F	r) (continue	ed)					
Eγ	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	α^{\dagger}	Comments					
88.0 ^{&} 1	≈50 &	100.999	$(5/2^{-})$	12.882	$(5/2^{-})$	[M1+E2]	10 6						
88.0 <mark>&</mark> 1	11.0 ^{&} 14	188.92	$(7/2^{-})$	100.999	$(5/2^{-})$	[M1+E2]	10 6						
88.5 [‡] 5	≈1.0	222.98	$(7/2^+)$	134.48	$(3/2^+)$	[E2]	15.9						
89.90 5	17.4 15	171.963	$(5/2^+)$	82.129	$(7/2^{-})$	[E1]	0.144						
99.55 5	25 5	99.53	(3/2-)	0.0	3/2(-)	M1	3.02	α (L)=2.28; α (M)=0.544; α (N+)=0.192 Mult.: from α (L)exp=2.8 5.					
100.95 5	76 4	100.999	(5/2 ⁻)	0.0	3/2 ⁽⁻⁾	M1	2.90	$\alpha(L)=2.19; \ \alpha(M)=0.523; \ \alpha(N+)=0.185$ Mult.: from $\alpha(L)\exp=2.45, \ \alpha(M)\exp=0.529.$					
104.87 5	35 2	187.07	(5/2-)	82.129	(7/2 ⁻)	M1	13.3	α (K)=10.7; α (L)=1.96; α (M)=0.468; α (N+)=0.166 Mult.: from α (M)exp=0.34 <i>15</i> .					
106.80 5	50 <i>3</i>	188.92	(7/2-)	82.129	(7/2 ⁻)	M1	12.6	α (K)=10.1; α (L)=1.86; α (M)=0.444; α (N+)=0.157 Mult.: from α (L)exp=2.1 4.					
118.58 10	2.7 6	219.53	$(7/2^+)$	100.999	$(5/2^{-})$	[E1]	0.318						
121.58 5	51.5 20	134.48	$(3/2^+)$	12.882	(5/2 ⁻)	E1	0.299	α (K)=0.234; α (L)=0.0490; α (M)=0.0117; α (N+)=0.00399 Mult.: from α (L)exp<0.18.					
134.50 5	24.0 20	134.48	(3/2 ⁺)	0.0	$3/2^{(-)}$	E1	0.233	α (K)=0.184; α (L)=0.0376; α (M)=0.0090; α (N+)=0.00306 Mult.: from α (L)exp<0.05.					
137.35 5	35.4 14	219.53	$(7/2^+)$	82.129	$(7/2^{-})$	[E1]	0.222						
140.93 5	214 7	222.98	$(7/2^+)$	82.129	$(7/2^{-})$	E1	0.208	α (K)=0.164; α (L)=0.0333; α (M)=0.00794; α (N+)=0.00271 Mult.: from α (L)exp≤0.03.					
142.74 5	9.4 4	365.65		222.98	$(7/2^+)$	[M1+E2]	3.8 18						
143.65 5	23.3 9	244.674	(7/2 ⁻)	100.999	(5/2 ⁻)	M1	5.38	α (K)=4.33; α (L)=0.795; α (M)=0.190; α (N+)=0.0669 Mult.: from α (L)exp=0.71 <i>14</i> .					
146.0 [‡] 2	1.8 6	365.65		219.53	$(7/2^+)$	[M1+E2]	3.5 17						
147.52 5	38.0 15	160.43	$(3/2^+)$	12.882	$(5/2^{-})$	[E1]	0.186						
159.08 5	57.0 21	171.963	$(5/2^{+})$	12.882	$(5/2^{-})$	[E1]	0.155						
160.45 5	76.5 30	160.43	(3/2 ⁺)	0.0	3/2(-)	El	0.152	α (K)=0.120; α (L)=0.0238; α (M)=0.00567; α (N+)=0.00193 Mult.: from α (L)exp<0.044.					
161.38 5	15.1 6	243.57	(5/2)	82.129	$(7/2^{-})$	[E1]	0.150						
162.50 5	49.5 20	244.674	(7/2)	82.129	(7/2)	M1,E2	2.5 13	$\alpha(K)=1.6\ 14;\ \alpha(L)=0.64\ 8;\ \alpha(M)=0.16\ 3;\ \alpha(N+)=0.058\ 11$ Mult.: from $\alpha(L)\exp=0.69\ 14$.					
171.95 5	100	171.963	$(5/2^+)$	0.0	3/2(-)	E1	0.128	α (K)=0.102; α (L)=0.0199; α (M)=0.00474; α (N+)=0.00162 Mult.: from α (L)exp<0.07.					
174.15 5	25.0 10	187.07	$(5/2^{-})$	12.882	$(5/2^{-})$	[M1+E2]	2.0 11						
176.10 5	16.0 6	188.92	(7/2 ⁻)	12.882	$(5/2^{-})$	M1,E2	2.0 11	α (K)=1.3 <i>11</i> ; α (L)=0.47 <i>3</i> ; α (M)=0.121 <i>15</i> ; α (N+)=0.043 <i>6</i> Mult.: from α (L)exp=0.50 <i>10</i> .					
206.65 5	81.1 32	219.53	(7/2+)	12.882	$(5/2^{-})$	E1	0.0822	α (K)=0.0657; α (L)=0.0125; α (M)=0.00297; α (N+)=0.00101 Mult.: from α (K)exp<0.08, α (L)exp=0.014 5.					
216.40 5	19.0 8	999.12		782.66	$(3/2^+, 5/2^+)$								
229.60 5	8.6 4	242.45	(5/2)	12.882	$(5/2^{-})$								
231.79 5	6.5 4	244.674	$(7/2^{-})$	12.882	$(5/2^{-})$	[M1+E2]	0.96						
242.41 5	6.6 4	242.45	(5/2)	0.0	$3/2^{(-)}$								

S

From ENSDF

 $^{223}_{87}\mathrm{Fr}_{136}$ -5

L

$\gamma(^{223}\text{Fr})$ (continued)

Eγ	$I_{\gamma}^{@}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\dagger}	Comments
243.69 5	24.9 12	243.57	(5/2)	0.0	$3/2^{(-)}$	[E1]	0.0556	
283.45 5	11.0 5	365.65		82.129	$(7/2^{-})$	[E1]	0.0392	
319.5 [‡] 5	≈4	684.80	$(7/2^+)$	365.65				
351.8 [‡] 5	4.0 15	540.53	$(5/2^+)$	188.92	$(7/2^{-})$	[E1]	0.0241	
360.73 5	32.6 13	605.40	(5/2 ⁻)	244.674	$(7/2^{-})$	M1	0.414	$\alpha(K)=0.335; \alpha(L)=0.0605; \alpha(M)=0.0144; \alpha(N+)=0.00502$
	201	605 40	(5/2-)	222 00	(7/2+)	(7)(1)	0.0001	Mult.: from $\alpha(\mathbf{K}) \exp[=0.32] 6$.
382.0+ 5	2.0 6	605.40	(5/2)	222.98	$(1/2^+)$	[EI]	0.0201	
$363.32\ 10$	4.5 2	762.21		265.65	(7/2)			
397.81 3	≈3 1547	703.21 647.58	$(5/2^{-} 7/2^{-})$	303.03 244.674	$(7/2^{-})$	M1	0.307	$\alpha(\mathbf{K}) = 0.248; \alpha(\mathbf{I}) = 0.0448; \alpha(\mathbf{M}) = 0.0106; \alpha(\mathbf{N} + 1) = 0.00372$
402.80 5	13.4 /	047.38	(3/2 ,7/2)	244.074	(1/2)	IVI I	0.307	Mult.: from $\alpha(K)$ exp=0.27 6.
404.7 [‡] 5	4.2 14	649.66	$(5/2^{-})$	244.674	$(7/2^{-})$			
416.52 5	355 14	605.40	(5/2 ⁻)	188.92	$(7/2^{-})$	M1	0.281	$\alpha(K)=0.227; \ \alpha(L)=0.0409; \ \alpha(M)=0.0097; \ \alpha(N+)=0.00340$ Mult.: from $\alpha(K)\exp=0.23$ 3, $\alpha(L)\exp=0.044$ 7, $\alpha(M)\exp=0.014$ 3.
420.61 20	1.0 2	519.89	3/2-	99.53	$(3/2^{-})$	[M1+E2]	0.17 11	
424.76 10	2.3 3	647.58	$(5/2^-, 7/2^-)$	222.98	$(7/2^+)$	[E1]	0.0160	
^x 428.10 20	1.1 2							
439.60 5	8.8 5	540.53	$(5/2^+)$	100.999	$(5/2^{-})$	[E1]	0.0149	
441.08 5	14.0 6	540.53	$(5/2^+)$	99.53	$(3/2^{-})$	[E1]	0.0148	
458.65 5	32.6 12	647.58	$(5/2^-, 7/2^-)$	188.92	$(7/2^{-})$	M1	0.217	$\alpha(K)=0.175; \ \alpha(L)=0.0315; \ \alpha(M)=0.00749; \ \alpha(N+)=0.00262$ Mult : from $\alpha(K)=0.22$ 3
460.85 10	14.9 6	649.66	(5/2 ⁻)	188.92	$(7/2^{-})$	M1	0.214	$\alpha(K)=0.173; \ \alpha(L)=0.0311; \ \alpha(M)=0.00739; \ \alpha(N+)=0.00259$
461 01 5	20 2 12	601 00	$(7/2^{+})$	222.08	$(7/2^{+})$	M1	0.212	Mult.: from $\alpha(\mathbf{K}) \exp[=0.1/4]$.
401.81 3	50.5 12	084.80	(7/2)	222.98	(7/2)	IVI I	0.215	$\alpha(K)=0.172; \alpha(L)=0.0510; \alpha(M)=0.00753; \alpha(N+)=0.00257$ Mult.: from $\alpha(K)\exp=0.17.4$.
464.83 10	7.2 4	519.89	3/2-	54.98	$1/2^{(-)}$	[M1+E2]	0.13 9	
477.8 [‡] <i>3</i>	4.5 9	649.66	$(5/2^{-})$	171.963	$(5/2^+)$			
^x 485.85 20	1.4 2							
492.21 5	112 3	736.88	$(7/2^{-})$	244.674	(7/2 ⁻)	M1	0.180	α (K)=0.145; α (L)=0.0261; α (M)=0.00620; α (N+)=0.00217 Mult.: from α (K)exp=0.14 2, α (L)exp=0.029 6.
493.3 [‡] <i>3</i>	≈10	736.88	$(7/2^{-})$	243.57	(5/2)			
x498.30 20	1.4 2				(-1)			
^x 499.75 10	4.5 3							
x502.59 10	7.3 4							
504.35 10	2.6 2	605.40	$(5/2^{-})$	100.999	$(5/2^{-})$	[M1+E2]	0.10 7	
505.85 5	25.3 13	605.40	$(5/2^{-})$	99.53	$(3/2^{-})$	[M1+E2]	0.10 7	
509.75 10	12.1 6	698.62		188.92	$(7/2^{-})$	-		
514.3 [‡] 5	3 1	736.88	$(7/2^{-})$	222.98	$(7/2^+)$			
517.8 [‡] 5	4 1	736.88	$(7/2^{-})$	219.53	$(7/2^+)$			
520.75 5	6.6 4	763.21		242.45	(5/2)			
523.26 5	72.8 30	605.40	(5/2 ⁻)	82.129	(7/2 ⁻)	M1	0.153	α (K)=0.123; α (L)=0.0221 Mult.: from α (K)exp=0.14 2.

6

From ENSDF

					²²³ R	n β^- decay	1992Ku03 (continued)				
						γ (²²³ F	r) (continue	ed)			
Eγ	$I_{\gamma}^{@}$	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.	δ	α^{\dagger}	Comments		
526.52 10	7.3 4	698.62		171.963	$(5/2^+)$						
527.60 <i>10</i> x532.80 <i>20</i>	7.2 <i>4</i> 1.6 2	540.53	$(5/2^+)$	12.882	(5/2 ⁻)	[E1]		0.0103			
540.40 ^{&} 5	18 ^{&} 6	540.53	$(5/2^+)$	0.0	$3/2^{(-)}$	[E1]		0.0098			
540.4 ^{&‡} 5	6 ^{&‡} 2	763.21		222.98	$(7/2^+)$						
540.4 ^{&‡} 5	$6^{\& \ddagger} 2$	782.66	$(3/2^+, 5/2^+)$	242.45	(5/2)						
543.70 10	2.8 2	763.21	(5/2 - 7/2 -)	219.53	$(7/2^+)$	M1		0.126	$\alpha(W) = 0.110, \alpha(U) = 0.0107$		
546.53 5	65.6 20	647.58	(5/2 ,1/2)	100.999	(5/2)	MI		0.136	$\alpha(K)=0.110; \alpha(L)=0.0197$ Mult.: from $\alpha(K)\exp=0.12$ 2.		
548.0 [‡] 3	12 3	736.88	$(7/2^{-})$	188.92	$(7/2^{-})$						
548.55 5	36+ 3	649.66	$(5/2^{-})$	100.999	$(5/2^{-})$						
550.10 5 x559 10 20	19.9 10	649.66	(5/2)	99.53	(3/2)						
563.10 10	5.4 3	782.66	$(3/2^+, 5/2^+)$	219.53	$(7/2^+)$						
565.52 5	44.3 20	647.58	(5/2 ⁻ ,7/2 ⁻)	82.129	$(7/2^{-})$	M1+E2	1.1 6	0.07 4	$\alpha(K)=0.06 \ 3; \ \alpha(L)=0.012 \ 4$ δ : deduced by evaluator from $\alpha(K)=0.057 \ 17$		
^x 566.8 [‡] 5	8.6 21								••••••••••••••••••••••••••••••••••••••		
567.60 5	26.1 14	649.66	(5/2 ⁻)	82.129	$(7/2^{-})$	M1+E2	0.9 5	0.08 3	$\alpha(K)=0.064\ 25;\ \alpha(L)=0.013\ 4$ δ : deduced by evaluator from $\alpha(K)=0.065\ 17$		
^x 571.75 5	20.6 11					M1		0.121	$\alpha(K)=0.098; \alpha(L)=0.0175$ Mult : from $\alpha(K)=0.175$		
576.10 <i>5</i> ^x 578.40 <i>20</i>	19.1 <i>10</i> 1.3 2	763.21		187.07	(5/2 ⁻)				Mult.: E1 or E2 from α (K)exp<0.06.		
590.1 [‡] 3	8 2	834.54		244.674	$(7/2^{-})$						
590.9 [‡] 3	≈10	834.54		243.57	(5/2)						
591.3 [‡] 5	52	763.21		171.963	$(5/2^+)$						
592.55 5	555 23	605.40	(5/2 ⁻)	12.882	(5/2-)	M1+E2	0.60 15	0.088 9	$\alpha(K)=0.070$ 7; $\alpha(L)=0.0132$ 10 δ : deduced by evaluator from $\alpha(K)\exp=0.070$ 7, $\alpha(L)\exp=0.0130$ 13, $\alpha(M)\exp=0.0052$ 10.		
595.80 10	5.9 6	839.30		243.57	(5/2)						
605.40 <i>10</i>	9.2 5	605.40	(5/2 ⁻)	0.0	3/2 ⁽⁻⁾	(E2)		0.0241	$\alpha(K)=0.0170; \alpha(L)=0.00532$ Mult.: E1 or E2 from $\alpha(K)\exp<0.05$. Decay scheme requires E2.		
610.65 5	19.4 8	782.66	$(3/2^+, 5/2^+)$	171.963	$(5/2^+)$				*		
619.65 10	7.2 4	839.30		219.53	$(7/2^+)$						
622.25 5	86.7 <i>35</i>	782.66	$(3/2^+, 5/2^+)$	160.43	$(3/2^+)$	M1(+E2)	0.5 3	0.082 14	α (K)=0.066 <i>12</i> ; α (L)=0.0121 <i>18</i> δ : deduced by evaluator from α (K)exp=0.066 <i>10</i> .		
634.65 10	36.1 40	647.58	(5/2 ⁻ ,7/2 ⁻)	12.882	(5/2-)	M1(+E2)			$\alpha(K)=0.04 \ 3; \ \alpha(L)=0.009 \ 5$ Mult.: from $\alpha(K)\exp=0.061 \ 6$ for $634.6\gamma + 635.8\gamma$.		
635.80 <i>10</i>	320 13	736.88	(7/2 ⁻)	100.999	(5/2 ⁻)	M1(+E2)			$\alpha(K)=0.04 \ 3; \ \alpha(L)=0.009 \ 5$ Mult.: from $\alpha(K)\exp=0.061 \ 6$ for $634.6\gamma + 635.8\gamma$.		

²²³₈₇Fr₁₃₆-7

L

From ENSDF

 $^{223}_{87}\mathrm{Fr}_{136}$ -7

					²²³ I	$\mathbf{Rn} \beta^- \mathbf{deca}$	y 1992 K	Ku03 (conti	inued)
						$\gamma(22)$	²³ Fr) (conti	nued)	
Eγ	$I_{\gamma}^{@}$	E_i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	α^{\dagger}	Comments
636.75 10 x641.00 20 x645 50 10	76.5 40 1.7 2 3 4 2	649.66	(5/2 ⁻)	12.882	(5/2-)				
647.75 10	5.2.3	647.58	$(5/2^{-},7/2^{-})$	0.0	$3/2^{(-)}$				
648.1 [‡] 5	3.7.10	782.66	$(3/2^+, 5/2^+)$	134.48	$(3/2^+)$				
649.73 5	187 7	649.66	$(5/2^{-})$	0.0	$3/2^{(-)}$	M1		0.086	$\alpha(K)=0.0696; \alpha(L)=0.0124$
					- 1				Mult.: from α (K)exp=0.058 6, α (L)exp=0.019 4.
654.78 <i>5</i>	253 10	736.88	$(7/2^{-})$	82.129	(7/2 ⁻)	M1		0.084	α (K)=0.0682; α (L)=0.0122 Mult.: from α (K)exp=0.051 <i>6</i> , α (L)exp=0.015 <i>3</i> .
^x 659.10 20	1.2 2								
x665.20 10	2.2.2				(= (= +)				
667.35 5	9.2.5	839.30		171.963	$(5/2^{+})$				
669.70.5	13.15	892.68		222.98	$(1/2^{+})$				
073.20 J 674 25 20	22.3 11	892.08 834.54		219.55	$(1/2^{+})$ $(3/2^{+})$				
x676.88.20	2.94	034.34		100.45	(3/2)				
x680.80.20	2.0.5								
x687.55 10	3.5.3								
x690.11 20	1.7 2								
x691.90 20	1.0 2								
698.90 20	1.8 2	698.62		0.0	$3/2^{(-)}$				
705.44 10	3.6 3	892.68		187.07	$(5/2^{-})$				
x707.60 20	1.1 2								
x709.80 20	1.3 2								
*719.80 20	1.3 3	726.00	(7/2-)	10.000	$(\overline{F} \overline{O} =)$	M1 . E2	0.75.25	0.047.0	
724.00 5	141 0	/36.88	(7/2)	12.882	(5/2)	M1+E2	0.75 25	0.0478	$\alpha(K)=0.038$ /; $\alpha(L)=0.0071$ 10 δ : deduced by evaluator from $\alpha(K)\exp=0.038$ 6.
734.55 10	15.5 6	921.63		187.07	$(5/2^{-})$				
736.75 10	19.6 8	736.88	$(1/2^{-})$	0.0	$3/2^{(-)}$				
744.15 10	6.3 3	987.73		243.57	(5/2)				
750.80 20	1.4 2	/03.21		12.882	(5/2)				
752.40 5	1236	1350 12		605.129	(1/2) $(5/2^{-})$				
x762 90 20	153	1559.12		005.40	(3/2)				
781.70 10	6.0 4	1322.17		540.53	$(5/2^+)$				
782.60 10	3.9 4	782.66	$(3/2^+, 5/2^+)$	0.0	$3/2^{(-)}$				
x788.10 10	4.6 4		(-,- ,-,-)		-,-				
791.30 20	1.7 2	892.68		100.999	$(5/2^{-})$				
793.80 20	2.1 2	1399.17		605.40	(5/2-)				
^x 795.20 20	2.2 2								
800.00 20	2.6 3	1042.28		242.45	(5/2)				
⁴ 801.60 20	1.5 2								
~803.10/20	1.6 2								

 ∞

From ENSDF

 $^{223}_{87}\mathrm{Fr}_{136}\text{-}8$

$^{223}_{87}\mathrm{Fr}_{136}$ -8

²²³Rn β^- decay 1992Ku03 (continued)

$\gamma(^{223}\text{Fr})$ (continued)

Eγ	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Comments
810.60 20	1.2.2	892.68	_	82,129	$(7/2^{-})$	
812.50 20	1.2.2	1035.28		222.98	$(7/2^+)$	
815.55 10	4.8.3	1035.28		219.53	$(7/2^+)$	
818.60 10	27.5 11	1359.12		540.53	$(5/2^+)$	
821.65 20	2.7 2	834.54		12.882	$(5/2^{-})$	
x825.90 20	1.7 2				(-1)	
827.40 20	2.3 3	999.12		171.963	$(5/2^+)$	
830.00 10	4.1 3	1001.94		171.963	$(5/2^+)$	
835.20 20	3.4 <i>3</i>	995.61		160.43	$(3/2^+)$	
841.50 10	8.9 4	1001.94		160.43	$(3/2^+)$	
847.05 10	12.2 5	1070.11		222.98	$(7/2^+)$	
850.65 10	4.5 3	1070.11		219.53	$(7/2^+)$	
x854.00 20	2.4 2					
^x 855.95 10	4.1 21					
858.50 ^a 10	3.4 <i>3</i>	1102.81		244.674	$(7/2^{-})$	
863.45 10	3.3 3	1035.28		171.963	$(5/2^+)$	
x866.35 20	2.9 4					
867.45 10	5.4 5	1001.94		134.48	$(3/2^+)$	
x873.15 10	4.1 3					
881.80 <i>10</i>	5.7 4	1042.28		160.43	$(3/2^+)$	
883.0 [‡] 5	3 [‡] 1	1102.81		219.53	$(7/2^+)$	
883.05 10	$12^{\ddagger} 2$	1070.11		187.07	$(5/2^{-})$	
x891.20 20	1.5 2				(-1)	
892.80 20	2.0.2	892.68		0.0	$3/2^{(-)}$	
894.60 10	10.2 4	995.61		100.999	$(5/2^{-})$	
898.10 10	10.5 4	1070.11		171.963	$(5/2^+)$	E_{γ} : E_{γ} =899.10 reported on a table, E_{γ} =898.10 given in the decay scheme.
900.80 10	3.5 3	1035.28		134.48	$(3/2^+)$	
x902.40 20	2.3 3					
^x 908.40 20	1.7 2					
913.75 10	5.9 <i>3</i>	1102.81		188.92	$(7/2^{-})$	
915.75 10	5.7 3	1102.81		187.07	$(5/2^{-})$	
^x 918.45 10	4.5 4					
^x 919.80 20	2.8 3					
931.30 10	4.7 4	1120.24		188.92	$(7/2^{-})$	
^x 935.45 10	9.4 <i>4</i>					
942.40 10	11.9 5	1102.81		160.43	$(3/2^+)$	
944.30 10	7.4 4	999.12		54.98	$1/2^{(-)}$	
948.45 10	28.8 12	1120.24		171.963	$(5/2^+)$	
x953.30 10	5.5 3					
*956.65 10	9.5 4			4 60 1-	(a. (c. 1.)	
959.85 <i>10</i>	7.3 3	1120.24		160.43	$(3/2^{+})$	
^962.80 <i>10</i>	11.5 5					
~9/5.68 10	3.0 2					

$^{223}_{87}\mathrm{Fr}_{136}\text{-}9$

From ENSDF

$\gamma(^{223}\text{Fr})$ (continued)

Eγ	$I_{\gamma}^{@}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	E_{γ}	$I_{\gamma}^{@}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
977.40 20	1.3 2	1221.10		243.57	(5/2)	1221.10 10	2.4 3	1322.17		100.999	$(5/2^{-})$
982.70 10	2.4 3	995.61		12.882	$(5/2^{-})$	x1229.60 10	3.5 3				
^x 984.30 10	2.8 3					1239.95 10	14.6 8	1322.17		82.129	$(7/2^{-})$
^x 988.34 5	21.4 11					x1246.60 20	3.5 4				
992.40 20	1.9 <i>3</i>	1512.40		519.89	$3/2^{-}$	^x 1248.80 20	2.7 4				
995.70 20	1.4 <i>3</i>	995.61		0.0	$3/2^{(-)}$	^x 1249.80 20	1.8 <i>3</i>				
998.15 10	5.3 <i>3</i>	1221.10		222.98	$(7/2^+)$	1258.20 10	3.2 3	1359.12		100.999	$(5/2^{-})$
x1000.30 10	3.1 <i>3</i>					1268.85 10	5.9 <i>3</i>	1512.40		243.57	(5/2)
1001.85 10	7.5 4	1102.81		100.999	$(5/2^{-})$	1277.30 20	2.6 3	1359.12		82.129	$(7/2^{-})$
x1004.45 10	3.7 4					^x 1286.10 20	1.7 3				
^x 1011.76 <i>10</i>	2.7 3					1296.20 10	11.6 6	1540.74		244.674	$(7/2^{-})$
x1017.80 10	6.2 <i>3</i>					1298.20 10	9.3 5	1399.17		100.999	$(5/2^{-})$
^x 1019.90 3	1.3 2					^x 1304.60 <i>10</i>	3.0 3				
x1022.80 10	3.4 <i>3</i>					1307.50 10	8.2 5	1552.11		244.674	$(7/2^{-})$
x1029.70 10	5.6 3					1309.50 20	1.8 3	1322.17		12.882	$(5/2^{-})$
^x 1030.90 20	3.2 5				a /a	x1313.20 <i>10</i>	3.9 3	1000 00			
1032.22 10	10.3 7	1552.11		519.89	3/2-	1315.90 20	2.5 3	1398.29		82.129	$(7/2^{-})$
1037.90 10	4.73	1120.24		82.129	$(1/2^{-})$	1317.60 10	14.3 8	1540.74		222.98	$(7/2^{+})$
x1044.80 20	1.9 2					1329.10 10	7.5 4	1552.11		222.98	$(7/2^{+})$
×1052.60 20	1.5 2					1332.60 10	8.4 4	1552.11		219.53	$(7/2^{+})$
*1054.90 20	1.2 3					1350.80 <i>10</i>	3.5 3	15/3.78		222.98	$(7/2^{+})$
~10/0.50 <i>10</i>	5.9 /					*1353.80 20	1.9.3	1050 10		0.0	2/2(-)
*10/5.70 3	1.2.3	1000 17		011 (71	(7/2-)	1358.90 20	1.5 2	1359.12		0.0	$3/2^{(-)}$
10/7.40 10	3.73	1322.17		244.674	(7/2)	*1365.50 20	2.0 3				
^x 1082.40 <i>10</i>	2.5 3					1367.4 5	3.0 10	1590.49		222.98	$(7/2^+)$
^x 1087.60 10	4.0 3					1368.7+ 5	2.4 8	1540.74		171.963	$(5/2^+)$
1090.00 10	4.9 <i>3</i>	1102.81		12.882	$(5/2^{-})$	^x 1369.3 5	2.2 5				
^x 1094.15 <i>10</i>	3.5 3					1371.40 20	2.6 3	1595.05		222.98	$(7/2^+)$
1099.30 10	4.1 <i>3</i>	1322.17		222.98	$(7/2^+)$	1375.40 20	3.8 4	1595.05		219.53	$(7/2^+)$
1102.80 20	1.6 2	1102.81		0.0	$3/2^{(-)}$	1379.70 20	2.4 3	1552.11		171.963	$(5/2^+)$
1107.30 20	1.8 2	1120.24		12.882	$(5/2^{-})$	1385.70 20	2.6 3	1398.29		12.882	$(5/2^{-})$
^x 1118.50 <i>10</i>	4.7 6					*1390.60 20	2.2 3				
^x 1133.6 5	1.6 3					1394.8 [‡] 5	1.6 5	1566.56		171.963	$(5/2^+)$
x1135.25 10	3.7 4					1402.0 5	3.1 5	1590.49		188.92	$(7/2^{-})$
1139.50 10	2.7 3	1359.12		219.53	$(7/2^+)$	1403.40 10	11.2 6	1590.49		187.07	$(5/2^{-})$
^x 1150.10 20	1.7 3					1406.20 20	7.4 5	1566.56		160.43	$(3/2^+)$
1154.50 10	5.3 <i>3</i>	1399.17		244.674	$(7/2^{-})$	^x 1407.70 20	5.4 5				
1156.70 10	4.4 3	1399.17		242.45	(5/2)	1409.70 10	11.2 6	1629.30		219.53	$(7/2^+)$
~1161.00 <i>10</i>	2.9 3			100.05		1423.25 10	6.7 5	1595.05		171.963	$(5/2^+)$
1170.15 10	3.0 3	1359.12		188.92	$(7/2^{-})$	^1435.80 20	1.9 3	1540 51		100.000	(5/0-)
1175.30 10	3.6 3	1398.29		222.98	$(1/2^{+})$	1439.80 10	4.8 4	1540.74		100.999	$(5/2^{-})$
1187.10 10	5.2 3	1359.12		171.963	$(5/2^{+})$	1451.30 20	2.8 3	1552.11		100.999	$(5/2^{-})$
1208.20 10	3.73	1221.10		12.882	$(5/2^{-})$	~1470.90 20	1.7 3	1572 70		100.000	(5/0-)
1210.20 10	4.3 3	1399.17		188.92	$(1/2^{-})$	1472.8 5	1.4 3	15/3.78		100.999	$(5/2^{-})$

$\gamma(^{223}\text{Fr})$ (continued)

Eγ	Ι _γ @	E_i (level)	E_f	\mathbf{J}_{f}^{π}	Eγ	$I_{\gamma}^{@}$	E _i (level)	J_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
x1475.80 20	1.8 3				1540.50 20	3.9 <i>3</i>	1540.74		0.0	$3/2^{(-)}$
1491.60 20	2.9 3	1573.78	82.129	$(7/2^{-})$	1547.40 20	2.1 2	1629.30		82.129	$(7/2^{-})$
^x 1506.5 5	1.2 2				^x 1563.6 5	1.3 2				
1513.00 20	1.6 2	1595.05	82.129	$(7/2^{-})$	1565.9 5	1.1 2	1566.56		0.0	$3/2^{(-)}$
1535.00 20	2.4 2	1695.43	160.43	$(3/2^+)$	^x 1620.6 5	1.1 2				

[†] Conversion coefficients for M1+E2 multipolarities are for δ =1.0, unless δ is given.

[‡] From $\gamma\gamma$ coin measurement. [#] Deduced by evaluator from reported I(γ +ce), and α . [@] For absolute intensity per 100 decays, multiply by \approx 0.012. [&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

^x γ ray not placed in level scheme.

Decay Scheme

			Intensitio	es: $I_{(\gamma+ce)}$ per 100 pa	arent decays	Legend
$\frac{7/2}{Q_{\beta-}=19}$	0.0 000 SY	4.3 min <i>4</i> %β [−] =100			-	$\begin{array}{c c} & I_{\gamma} < 2\% \times I_{\gamma}^{m} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{m} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{m} \end{array}$
86-14	-13/	e e e e e e e e e e e e e e e e e e e				
$\frac{I\beta^{-}}{2}$	Log ft	23:0 0,20:0	0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00			
0.029	6.7	\\	\$ \$ _ <u>6</u> 8	0		1695.43
0.16	6.3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 <u>~</u>		1629.30
0.18	6.4				0 N	1595.05
0.21	6.4			- % % % — % % % % %	§	1590.49
0.094	6.8			,	~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1573.78
0.12	6.7		- - - - -			1566.56
0.48	6.2					1552.11
0.44	6.3	*			<u></u> ~	N in in in <u>1540.74</u>
0.094	7.0	▶				<u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>
0.31	6.9				28 28 28 29 29 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	38 1399.17
14	6.7	(5/2 ⁻)				605.40
		3/2-				519.89
		(7/2 ⁻) (5/2) (5/2)		· · · · · · · · · · · · · · · · · · ·		<u>244.674</u> 243.57 242.45
1.7	8.0	(7/2+)				222.98
0.80	8.3	(7/2+)			<u> </u>	219.53
		(7/2-)			<u> </u>	188.92
9.0	7.3	(5/2 ⁻)	t			187.07
2.0	8.0	(5/2+)				171.963
		(3/2+)		+		160.43
<2	>8.0	(5/2 ⁻)				100.999
21	7.0	(7/2 ⁻)				82.129
		3/2 ⁽⁻⁾				0.0

 $^{223}_{87}\mathrm{Fr}_{136}$

223 Rn β^- decay 1992Ku03

 $^{223}_{87}\mathrm{Fr}_{136}$

223 Rn β^- decay 1992Ku03

Decay Scheme (continued)

 $^{223}_{87}$ Fr₁₃₆

Decay Scheme (continued)

223 Rn β^- decay 1992Ku03

Decay Scheme (continued)

 $^{223}_{87} {\rm Fr}_{136}$

17

 $^{223}_{87}\mathrm{Fr}_{136}\text{--}17$

 $^{223}_{87}\mathrm{Fr}_{136}\text{--}17$

From ENSDF

Decay Scheme (continued)

 $^{223}_{87}\mathrm{Fr}_{136}$

 $^{223}_{87}\mathrm{Fr}_{136}$

 $^{223}_{87}\mathrm{Fr}_{136}$