1995Sh03,1966Ba29,1986Ry04 ²²⁷Ac α decay

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne	NDS 93, 846 (2001)	1-May-2001

Parent: ²²⁷Ac: E=0.0; $J^{\pi}=3/2^{-}$; $T_{1/2}=21.772$ y 3; $Q(\alpha)=5042.19$ 14; % α decay=1.380 4

1995Sh03: chemically purified ²²⁷Ac. Measured Ey, Iy, $\alpha\gamma$ coin, a ce coin. Detectors: hyperpure germanium for γ rays; ion-implanted silicon for α particles; Si(Li) placed inside an axially increasing magnetic field for conversion electrons.

²²³Fr Levels

The structure of ²²³Fr has been interpreted in terms of the reflection-asymmetric rotor model by coupling octupole deformations to Nilsson quasiparticle states (1995Sh03).

E(level) [†]	J ^π d	Comments
0.0#	$3/2^{(-)}$	
12.89 [#] 5	$(5/2^{-})$	
54.97 <mark>&</mark> 7	$1/2^{(-)}$	
82.13 [#] 6	$(7/2^{-})$	
99.63 ^{&} 6	$(3/2^{-})$	
101.00 ^{&} 6	$(5/2^{-})$	
134.51 ^{<i>a</i>} 6	$(3/2^+)$	
149.3? ^a 3	$(1/2^{+})$	
160.48 [°] 7	$(3/2^+)$	
1/2.08 6	$(5/2^{+})$ $(5/2^{-})$	
189 10 7	$(3/2^{-})$	
219.61 ^{<i>a</i>} 9	$(7/2^+)$	
222.75 [@] 10	$(7/2^+)$	
242.63 7	(5/2)	
243.85 13	(5/2)	J^{π} : $J^{\pi} = (7/2^{-})$ assigned by 1995Sh03. See Adopted Levels.
244.66 15	(1/2) $(9/2^{-})$	$J^{+}: J^{+}=(9/2^{+})$ assigned by 1995Sh03. See Adopted Levels.
365.47 10	()[2])	
371 [‡] 4		
379 [‡] 7		
449 [‡] 5		
503 ^{‡b} 7		
515.20 ^c 22	3/2-	J ^{π} : populated by favored (HF=2.0) α -particle group from ²²⁷ Ac (J ^{π} =3/2 ⁻) decay.
540.74 ^b 25	$(5/2^+)$	J^{π} : $J^{\pi} = (5/2^{-})$ assigned by 1995Sh03.
601 ^{‡c} 7	$(5/2^{-})$	

[†] Deduced by evaluator from a least-squares fit to γ -ray energies, unless otherwise specified.

^{\ddagger} From α -particle energies.

[#] Band(A): $K^{\pi}=3/2^{-}$ parity doublet band. [@] Band(a): $K^{\pi}=3/2^{+}$ parity doublet band.

& Band(B): $K^{\pi}=1/2^{-}$ parity doublet band.

^{*a*} Band(b): $K^{\pi} = 1/2^+$ parity doublet band.

^b Band(C): $K^{\pi}=3/2^+$ parity doublet band.

^c Band(c): $K^{\pi} = 3/2^{-}$ parity doublet band.

^d From Adopted Levels.

227 Ac α decay 1995Sh03,1966Ba29,1986Ry04 (continued)

α radiations

$E\alpha^{\dagger\ddagger}$	E(level)	Ια ^{#b}	HF ^a	Comments
4363 7	601	≈0.003 ^{&}	8	
4423 5	540.74	0.006 <mark>&</mark>	12	I α : 0.009% 4, from γ -ray transition intensity balance.
4445 <i>4</i>	515.20	0.05 ^{&}	2.1	I α : 0.038% 13, from γ -ray transition intensity balance.
4459 7	503	≈0.005 <mark>&</mark>	26	
4512 5	449	≈0.003 ^{&}	108	$E\alpha = 4522 \text{ keV } 10, I\alpha \approx 0.2 (1959 \text{No}41).$
4581 7	379	≈0.003 ^{&}	340	
4589 <i>4</i>	371	0.01 ^{&}	116	
4594 <i>4</i>	365.47	0.02 ^{&}	65	Ia: $\leq 0.3\%$, from γ -ray transition intensity balance.
4715 4	242.63	0.4 2	23	$E\alpha$ =4709 keV 8 (1959No41), I α =0.31 (1966Ba19). Multiplet.
		0		I α : 0.54% 20, from γ -ray transition intensity balance to 243 24444 24545 levels.
4738 4	219.61	0.09	142	I α : 0.13% 4, from γ -ray transition intensity balance to 220 22323 levels. E α =4733 keV 8, I α ≈0.1 (1959No41). Doublet.
4768 <i>3</i>	189.10	1.8 5	11	$E\alpha$ =4764 keV 5 (1959No41), I α =1.4 (1966Ba19). Doublet.
		<i>R</i> ₇		1α : 2.0% /, from γ -ray transition intensity balance to 18/18989 levels.
4785 4	172.08	0.08°	329	
4796 3	160.48	1.0 5	31	$E\alpha$ =4791 keV 5 (1959No41), I α =0.81 (1966Ba19). I α : 0.65% 19, from γ -ray transition intensity balance.
4822 4	134.51	0.07 <mark>&</mark>	663	I α : 0.29% 9, from γ -ray transition intensity balance.
4855 2	99.63	6 1	13	$E\alpha$, $I\alpha$: values deduced from data of 1959No41 and 1966Ba19. Doublet. I α : 7% 4, from γ -ray transition intensity balance.
4872.7 [@] 2	82.13	6.3 [@] 5	16	I α : 6.3 20, from γ -ray transition intensity balance.
4898.8 <i>30</i>	54.97	0.11 ^{&}	1360	
4940.7 [@] 8	12.89	39.6 [@] 12	7.0	I α : 46% 13, from γ -ray transition intensity balance.
4953.26 [@] 14	0.0	47.7 [@] 10	7.0	I α : 35% 18, from γ -ray transition intensity balance.

[†] α-particle energies presented here have been adjusted for changes in the energies of the calibration standards: +3.5 keV correction for values from 1966Ba19, +5 keV correction for values from 1959No41 (1986Ry04,1991Ry01). Other measurements: 1972GaZA.

[‡] From 1966Ba19, unless otherwise specified.

[#] From 1959No41, unless otherwise specified.

[@] Recommended by 1991Ry01.

[&] From 1966Ba19. ^{*a*} Using $r_0(^{223}Fr)=1.538$, from $r_0(^{222}Rn)=1.5397$ 4, $r_0(^{222}Ra)=1.5383$ 8, and $r_0(^{224}Ra)=1.5332$ 8 (1998Ak04).

^b For absolute intensity per 100 decays, multiply by 0.01380 4.

 $\gamma(^{223}{\rm Fr})$

Iy normalization: from Σ I(y+ce) (to g.s. and 12.7 levels)=12.7 *16* per 100 α 's (from α -decay data).

An experimental Fr K x ray intensity of 8.5 10 compares to 7 3 deduced by evaluator (using RADLST) from the γ -ray intensities and K-conversion coefficients presented here, using a K-fluorescence yield of 0.967 4 (1996Sc06).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	$\alpha^{\#}$	Comments
12.9 <i>I</i>	<0.01	12.89	(5/2 ⁻)	0.0	3/2 ⁽⁻⁾	(E2)		5.11×10 ⁴	α(M)=3.84×10 ⁴ Mult.: from ce(M1)+ce(M2):ce(M3):ce(N) exp=130:130:180 (1959No41).
25.95 <mark>&</mark>	≈0.0004 <mark>&</mark>	160.48	$(3/2^+)$	134.51	$(3/2^+)$				
33.5 1	0.08 2	134.51	$(3/2^+)$	101.00	$(5/2^{-})$	[E1]		2.02	α (L)=1.52; α (M)=0.376
35.0 2	0.02 1	134.51	$(3/2^+)$	99.63	$(3/2^{-})$	[E1]		1.80	$\alpha(L)=1.36; \ \alpha(M)=0.334$
37.47 ^{&}	≈0.002 ^{&}	172.08	$(5/2^+)$	134.51	$(3/2^+)$			2	
44.7 1	0.08 2	99.63	$(3/2^{-})$	54.97	$1/2^{(-)}$	[M1+E2]		$2.3 \times 10^2 \ 20$	$\alpha(L)=1.7\times10^2$ 15; $\alpha(M)=4.E1$ 4
51.06 ^{&}	≈0.0002 ^{&}	222.75	$(7/2^+)$	172.08	$(5/2^+)$				
52.32 ^{&}	≈0.001 ^{&}	187.18	$(5/2^{-})$	134.51	$(3/2^+)$				
53.7 2	0.03 1	242.63	(5/2)	189.10	$(7/2^{-})$	[E1]		0.573	α (L)=0.433; α (M)=0.105; α (N+)=0.0348
55.0 1	0.32 6	54.97	$1/2^{(-)}$	0.0	3/2(-)	M1+E2	0.05 4	17.4 8	$\alpha(L)=13.1 \ 6; \ \alpha(M)=3.14 \ 16; \ \alpha(N+)=1.11 \ 6$ Mult., δ : from ²²³ Rn β^- decay.
55.80 ^{&} 5	0.0028	244.66	$(7/2^{-})$	189.10	$(7/2^{-})$				
57.56 <mark>&</mark> 5	0.0023 ^{&}	244.66	$(7/2^{-})$	187.18	$(5/2^{-})$				
59.4 2	0.03 1	160.48	$(3/2^+)$	101.00	$(5/2^{-})$	[E1]		0.437	α (L)=0.330; α (M)=0.0799; α (N+)=0.0265
60.6 3	0.03 1	160.48	$(3/2^+)$	99.63	$(3/2^{-})$	[E1]	0.57	0.414	α (L)=0.313; α (M)=0.0757; α (N+)=0.0251
69.28 8	2.8 4	82.13	$(1/2^{-})$	12.89	$(5/2^{-})$	M1+E2	0.57	19.0	$\alpha(L)=14.1; \alpha(M)=3.65; \alpha(N+)=1.28$
									δ =0.33, from ce(L1)+ce(L2);ce(L3) (19953h05). Other value: δ =0.33, from ce(L1):ce(L2):ce(L3) exp=11:6:7 (1959No41), consistent with M1+10% E2, or E1.
70.6 2	0.06 2	242.63	(5/2)	172.08	$(5/2^+)$	[M1+E2]		27 19	α (L)=20 14; α (M)=5 4; α (N+)=1.9 14
72.5 <mark>b</mark> 2	0.05^{b} 2	172.08	$(5/2^+)$	99.63	$(3/2^{-})$	[E1]		0.256	α (L)=0.194; α (M)=0.0466; α (N+)=0.0156
72.5 <mark>b</mark> 2	0.05 ^b 2	244.66	$(7/2^{-})$	172.08	$(5/2^+)$	[E1]		0.256	α (L)=0.194; α (M)=0.0466; α (N+)=0.0156
79.54 8	0.8 1	134.51	$(3/2^+)$	54.97	$1/2^{(-)}$	E1 [@]		0.200	α (L)=0.151; α (M)=0.0363; α (N+)=0.0122
82.2 1	0.6 1	82.13	$(7/2^{-})$	0.0	$3/2^{(-)}$	E2		22.5	α (L)=16.5; α (M)=4.45; α (N+)=1.57
83.0 ^{&} 1	≈0.001 ^{&}	243.85	(5/2)	160.48	$(3/2^+)$				
85.0 <mark>&</mark> 5	≈0.008 <mark>&</mark>	219.61	$(7/2^+)$	134.51	$(3/2^+)$				
86.1 ^{&} 1	0.34 <mark>&</mark>	187.18	$(5/2^{-})$	101.00	$(5/2^{-})$				
86.7 2	2.0 3	99.63	$(3/2^{-})$	12.89	$(5/2^{-})$	[M1+E2]		11 7	α (L)=8 5; α (M)=2.1 14; α (N+)=0.8 5
88.1 ^b 1	0.5 ^b 1	101.00	$(5/2^{-})$	12.89	$(5/2^{-})$	[M1+E2]		10 6	α (L)=8 5; α (M)=2.0 13; α (N+)=0.7 5
88.1 ^b 1	0.5 ^b 1	189.10	$(7/2^{-})$	101.00	$(5/2^{-})$	[M1+E2]		10 6	α (L)=8 5; α (M)=2.0 13; α (N+)=0.7 5
88.5 <mark>&</mark> 6	≈0.0007 <mark>&</mark>	222.75	$(7/2^+)$	134.51	$(3/2^+)$	-			
					/				

$\gamma(^{223}\text{Fr})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	α [#]	Comments
90.0.1	0 13 5	172.08	$(5/2^+)$	82.13 (7/2-)	[E1]	0 144	$\alpha(L)=0.109: \alpha(M)=0.0261: \alpha(N+)=0.0088$
99.6 1	3.7.5	99.63	$(3/2^{-})$	$0.0 3/2^{(-)}$	M1+E2	6.3	$\alpha(L) = 4.5 22; \ \alpha(M) = 1.2 7; \ \alpha(N+) = 0.42 23$
101.0 1	0.5 2	101.00	$(5/2^{-})$	$0.0 3/2^{(-)}$	[M1+E2]	63	$\alpha(L) = 4.2 \ 21; \ \alpha(M) = 1.1 \ 6; \ \alpha(N+) = 0.39 \ 21$
105.0 2	0.25 7	187.18	$(5/2^{-})$	82.13 (7/2-)	M1	13.3	$\alpha(K)=5 6; \alpha(L)=3.6 17; \alpha(M)=0.9 5; \alpha(N+)=0.33 17$
							Mult.: from ²²³ Rn β^- decay.
106.85 10	0.8 1	189.10	$(7/2^{-})$	82.13 (7/2 ⁻)	M1(+E2)	10 3	$\alpha(K)=55; \alpha(L)=3.315; \alpha(M)=0.95; \alpha(N+)=0.3116$
108.0 3	0.03 1	242.63	(5/2)	$134.51 (3/2^+)$	[M1+E2]	93	$\alpha(K) = 55; \alpha(L) = 3.214; \alpha(M) = 0.84; \alpha(N+) = 0.3015$
118./4	0.03 I	219.61	$(1/2^{+})$	101.00 (5/2)	[EI]	0.317	$\alpha(\mathbf{K}) = 0.248; \ \alpha(\mathbf{L}) = 0.0522; \ \alpha(\mathbf{M}) = 0.0125; \ \alpha(\mathbf{N}+) = 0.00426$
121.6 ⁰ 1	$0.9^{o} 2$	134.51	$(3/2^+)$	12.89 (5/2 ⁻)	[E1]	0.299	$\alpha(K)=0.234; \ \alpha(L)=0.0490; \ \alpha(M)=0.0117; \ \alpha(N+)=0.00399$
121.6 ⁰ 1	0.9° 2	365.47		243.85 (5/2)	[E1]	0.299	$\alpha(K)=0.234; \ \alpha(L)=0.0490; \ \alpha(M)=0.0117; \ \alpha(N+)=0.00399$
134.5 1	0.4 1	134.51	$(3/2^+)$	$0.0 3/2^{(-)}$	E1 [@]	0.233	$\alpha(K)=0.184; \ \alpha(L)=0.0376; \ \alpha(M)=0.0090; \ \alpha(N+)=0.00306$
137.4 1	0.3 1	219.61	$(7/2^+)$	$82.13 (7/2^{-})$	[E1]	0.221	$\alpha(\mathbf{K}) = 0.174; \ \alpha(\mathbf{L}) = 0.0356; \ \alpha(\mathbf{M}) = 0.0085; \ \alpha(\mathbf{N}+) = 0.00289$
140.9 I	0.154	222.75	$(1/2^{+})$	82.13 (7/2)		0.208	$\alpha(\mathbf{K}) = 0.164; \ \alpha(\mathbf{L}) = 0.0353; \ \alpha(\mathbf{M}) = 0.00794; \ \alpha(\mathbf{N}+) = 0.00271$
143.0° 1	0.20° 4	242.63	(5/2)	99.63 (3/2)	[E1]	0.201	$\alpha(K)=0.159; \ \alpha(L)=0.0321; \ \alpha(M)=0.00/64; \ \alpha(N+)=0.00261$
							Mult.: M1 from $2-2$ Kn β decay. γ ray possibly deexcites the 244.6 (1/2) level. See adopted gammas.
143.0 ^b 1	0.20 ^b 4	365.47		222.75 (7/2+)	[M1+E2]	3.7 18	$\alpha(K)=2.3 21; \alpha(L)=1.04 24; \alpha(M)=0.27 8; \alpha(N+)=0.09 3$
143.65 ^{&} 5	0.019 <mark>&</mark>	244.66	$(7/2^{-})$	101.00 (5/2-)	M1	5.38	
146.0 2	0.0064	365.47		219.61 (7/2+)			
147.61 8	1.8 2	160.48	$(3/2^+)$	12.89 (5/2-)	E1 [@]	0.186	$\alpha(K)=0.147; \ \alpha(L)=0.0295; \ \alpha(M)=0.00704; \ \alpha(N+)=0.00240$
149.3 ^c 3	≈0.01	149.3?	$(1/2^+)$	$0.0 3/2^{(-)}$			
159.2 <i>1</i>	0.4 1	172.08	$(5/2^+)$	12.89 (5/2 ⁻)	[E1]	0.155	α (K)=0.123; α (L)=0.0243; α (M)=0.00578; α (N+)=0.00197
160.49 10	3.2 3	160.48	$(3/2^+)$	$0.0 3/2^{(-)}$	E1 @	0.152	α (K)=0.120; α (L)=0.0238; α (M)=0.00566; α (N+)=0.00193
161.4 4	0.10 3	243.85	(5/2)	82.13 (7/2 ⁻)	[M1+E2]	2.6 13	$\alpha(K)=1.7 \ 15; \ \alpha(L)=0.66 \ 9; \ \alpha(M)=0.17 \ 4; \ \alpha(N+)=0.059 \ 12$
162.6 2	0.04 2	244.66	(7/2)	82.13 (7/2)	M1,E2	2.5 13	$\alpha(K)=1.7/12; \ \alpha(L)=0.6.5; \ \alpha(M)=0.16/10; \ \alpha(N+)=0.057/30$
172.0.1	071	172.00	$(5/2^{+})$	0.0 2/2(-)	E1 [@]	0.129	where $a = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{$
172.01	0.71 0.204	172.08	(5/2) $(5/2^{-})$	$12.89 (5/2^{-})$	E1 [M1+F2]	0.128 2.0.11	$\alpha(\mathbf{K})=0.102; \ \alpha(\mathbf{L})=0.0199; \ \alpha(\mathbf{M})=0.00474; \ \alpha(\mathbf{N}+)=0.00101$ $\alpha(\mathbf{K})=1.4.12; \ \alpha(\mathbf{L})=0.49.4; \ \alpha(\mathbf{M})=0.126.17; \ \alpha(\mathbf{N}+)=0.044.6$
176.1^{b} 1	0.20°	180 10	$(3/2^{-})$	$12.09 (5/2^{-})$ $12.89 (5/2^{-})$	M1 F2	2.011	$\alpha(\mathbf{K}) = 1.112, \alpha(\mathbf{L}) = 0.177, \alpha(\mathbf{M}) = 0.12017, \alpha(\mathbf{M} + 1) = 0.0436$
176.1 p	0.24 + 4	265 47	(1/2)	12.09 (3/2)	IE11	0.121	$a(\mathbf{K}) = 1.5 11, a(\mathbf{L}) = 0.47 5, a(\mathbf{M}) = 0.121 15, a(\mathbf{M} +) = 0.045 0$
170.1 1	0.24 4	505.47		189.10 (7/2)		0.121	$\alpha(K)=0.096; \alpha(L)=0.0187; \alpha(M)=0.00446; \alpha(M+)=0.00132$ Mult.: M1,E2 in adopted gammas.
206.8 1	0.7 1	219.61	$(7/2^+)$	12.89 (5/2-)	E1 @	0.0821	α (K)=0.0656; α (L)=0.0125; α (M)=0.00296; α (N+)=0.00101
216.6 3	0.04 2	298.7	$(9/2^{-})$	82.13 (7/2 ⁻)	[M1+E2]	1.1 7	$\alpha(K)=0.8$ 7; $\alpha(L)=0.229$ 20; $\alpha(M)=0.0575$ 18; $\alpha(N+)=0.0202$ 6
*219.2 4	≈0.01	242 62	$(\overline{\mathbf{F}} \mathbf{O})$	12.80 (5/2=)	[[7]1]	0.0620	(X) = 0.0512, $(X) = 0.0006$, $(M) = 0.00228$, $(X) = 0.00078$
229.11	0.50 S ≈0.01	242.03 243.85	(5/2) (5/2)	12.09 (3/2) 12.89 (5/2 ⁻)	[E1] [M1+F2]	0.0039	$\alpha(\mathbf{N}) = 0.0515; \ \alpha(\mathbf{L}) = 0.0090; \ \alpha(\mathbf{M}) = 0.00228; \ \alpha(\mathbf{N} +) = 0.00078$ $\alpha(\mathbf{K}) = 0.6.5; \ \alpha(\mathbf{L}) = 0.184, 24; \ \alpha(\mathbf{M}) = 0.046, 4; \ \alpha(\mathbf{N} +) = 0.0162, 12$
230.95	~ 0.01	243.03	(3/2) $(7/2^{-})$	12.09 (5/2) 12.80 (5/2)	[1411+152]	0.9 0	$u(\mathbf{N}) = 0.05, u(\mathbf{L}) = 0.10727, u(\mathbf{N}) = 0.0707, u(\mathbf{N} +) = 0.010212$
231.19 242.6.2	0.0052	244.00 242.63	(1/2)	12.09 (3/2) 0.0 $3/2(-)$	[F1]	0.0562	$\alpha(\mathbf{K}) = 0.0451; \alpha(\mathbf{I}) = 0.0084; \alpha(\mathbf{M}) = 0.00100; \alpha(\mathbf{N} + \mathbf{I}) = 0.00068$
243.9.4	≈0.02	242.05	(5/2)	$0.0 3/2^{(-)}$	[E1] [F2]	0.0502	$\alpha(K) = 0.0000$, $\alpha(L) = 0.0000$, $\alpha(M) = 0.00197$, $\alpha(N+) = 0.00000$
283.4 3	0.04 2	365.47	(3/2)	$82.13 (7/2^{-})$	[E2]	0.0392	$\alpha(K)=0.0317; \ \alpha(L)=0.00574; \ \alpha(M)=0.00136; \ \alpha(N+)=0.00047$
_000	0.0.2	2.00.17		J=.10 (7/2)	[]	0.00/2	

From ENSDF

 $^{223}_{87}\mathrm{Fr}_{136}\text{-}4$

					²²⁷ Ac a	<i>t</i> decay	1995Sh03,19	066Ba29,1986Ry04 (continued)
							$\gamma(^{223}\text{Fr})$ (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	α #	Comments
351.7 3	0.04 2	540.74	$(5/2^+)$	189.10	$(7/2^{-})$	[E1]	0.0241	$\alpha(K)=0.020; \ \alpha(L)=0.003; \ \alpha(M)=0.0008; \ \alpha(N+)=0.0003$
415.6 3	0.15 4	515.20	3/2-	99.63	$(3/2^{-})$	[M1+E2]	0.17 12	α (K)=0.13 <i>10</i> ; α (L)=0.029 <i>12</i> ; α (M)=0.007 <i>3</i> ; α (N+)=0.0025 <i>10</i>
439.60 ^{&} 5	0.025 <mark>&</mark>	540.74	$(5/2^+)$	101.00	$(5/2^{-})$			
441.0 4	0.04 2	540.74	$(5/2^+)$	99.63	$(3/2^{-})$	[E1]	0.0148	α (K)=0.012; α (L)=0.0021; α (M)=0.00049; α (N+)=0.00017
460.2 3	0.15 4	515.20	3/2-	54.97	$1/2^{(-)}$	[M1+E2]	0.13 9	α (K)=0.10 8; α (L)=0.022 10; α (M)=0.0053 22; α (N+)=0.0019 8
527.60 ^{&} 10	0.021 ^{&}	540.74	$(5/2^+)$	12.89	$(5/2^{-})$			
540.40 ^{&} 5	0.051 ^{&}	540.74	$(5/2^+)$	0.0	3/2(-)			

[†] From 1995Sh03. Others: 1981Va28, 1975VyZS, 1959No41.
[‡] From conversion electron subshell ratios (1995Sh03), unless otherwise specified.

[#] Conversion coefficients for [M1+E2] multipolarities are for δ =1.0.

^{*a*} For absolute intensity per 100 decays, multiply by 0.0015 4.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

²²⁷Ac α decay 1995Sh03,1966Ba29,1986Ry04

Decay Scheme

 $^{223}_{87}\mathrm{Fr}_{136}$

6

²²⁷Ac α decay 1995Sh03,1966Ba29,1986Ry04

²²⁷Ac α decay 1995Sh03,1966Ba29,1986Ry04

 $^{223}_{87}\mathrm{Fr}_{136}$

²²⁷Ac α decay 1995Sh03,1966Ba29,1986Ry04 (continued)

Band(c): K parity doub	$a^{\pi}=3/2^{-}$ let band
(5/2-)	601

Band(C): $K^{\pi}=3/2^+$ parity doublet band

(5/2⁺) 540.74

3/2- 515.20

503

 $^{223}_{87}\mathrm{Fr}_{136}$