Adopted Levels

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, M. S. Basunia, Jun Chen et al.,	NDS 192,315 (2023)	25-Sep-2023

 $O(\beta^{-}) = -7000 \ 60; \ S(n) = 8320 \ 90; \ S(p) = 3390 \ 80; \ O(\alpha) = 9480 \ 50 \ 2021 Wa16$

 $Q(\varepsilon)=2210\ 100,\ Q(\varepsilon p)=40\ 50,\ S(2n)=14880\ 110\ (syst),\ S(2p)=4990\ 50\ (2021Wa16).$

- 1983Hi12: W(⁴⁰Ar,xn) E(⁴⁰Ar)=180 MeV; products were separated from the primary beam by the velocity filter; parent of ²¹⁴Ra (7.16-MeV α). Tentative identification of ²²²U nuclide.
- 2012Ya04: ¹⁰⁰Mo(¹²⁴Sn,2n)²²²U,E(¹²⁴Sn)=505 MeV. Measured evaporation residues at the HRIBF-ORNL facility. Deduced production σ =21 nb +38–21 from in-beam data, and <270 nb from post-irradiation collection of decay product ²⁰⁶Po (from α decay chain: ²²²U \rightarrow ²¹⁸Th \rightarrow ²¹⁴Ra \rightarrow ²¹⁰Rn \rightarrow ²⁰⁶Po). No confirmed production and identification of ²²²U nuclide.
- 2015Kh09: ²²²U produced and identified in ¹⁷⁶Yb(⁵⁰Ti,4n), E(⁵⁰Ti)=231-255 MeV reaction. The ⁵⁰Ti¹²⁺ pulsed beam was produced by the UNILAC at GSI. Target=0.45 mg/cm² 5 thick ¹⁷⁶YbF₃ mounted on a rotating wheel, synchronized with the beam pulses. Evaporation residues (ERs), separated by using gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) with flight time of 0.53 μ s 6 through the separator, were implanted in a double-sided silicon strip detector. The events due to radioactive decays of implanted residues were selected from the events related to beam using a multiwire proportional counter (MWPC). Measured E α , I α , from ER- α correlated events from subsequent α -decay chains, half-lives of the parent nuclei corresponding to the evaporation residues, and successive α -decay daughters, the latter identified by their known characteristics in literature. The identification of ²²²U was made based on observed ER- α , two- or three-signal correlated events using a fast data acquisition and combined analog and digital (CANDI) readout system. A total of 81 ER traces were recorded for ²²²U and analyzed with subsequent α decay chain: ²²²U -> ²¹⁸Th -> ²¹⁴Ra. FWHM≈40 keV for 8.7 MeV α particles, recorded as single events, ≈110 keV and ≈180 keV for multiple α events stored in a single trace with time differences of 1 μ s and 0.17 μ s, respectively. Deduced α -decay reduced widths, and neutron shell gap, the latter compared with FRDM95 and HFB26 theoretical calculations for the Z=82-92.N=126 nuclei.
- 2023Lu04: ²²²U produced in ¹⁸⁶W(⁴⁰Ar,4n),E(⁴⁰Ar)=188 MeV, followed by the separation of the evaporation residues (ERs) using the He-filled recoil separator SHANS at the HRIFL-Lanzhou facility. Measured α - α -correlated decay chains, E α and T_{1/2} for the decay of the g.s. of ²²²U from a total of ten observed events. Deduced reduced α -decay width and hindrance factor in Rasmussen's formalism.

Nuclear structure calculations:

2021Ch14: calculated equilibrium quadrupole deformations β_{20} , deformation energies using axial reflection-asymmetric Hartree-Fock-Bogoliubov theory with Skyrme energy-density functionals and density-dependent pairing force for multipole expansion of interaction energies in isospin and reflection-asymmetric deformations.

2021Gu26: calculated odd-even mass differences using deformed mean-field plus extended pairing model.

2021No02, 2021Ro02: calculated low-energy levels, J^{π} , B(E1), B(E2), B(E3), quadrupole and octupole deformation parameters using Hartree-Fock-Bogoliubov approximation, based on the Gogny-D1M energy density functional and corresponding mapped sdf-IBM.

- 2020Ca18: calculated deformation parameters β_2 , β_3 , octupole deformation energies, proton moments Q_{20} and Q_{30} using five Skyrme energy density functionals, and four covariant energy density functionals.
- 2017Xi15: calculated levels, J^{π} , B(E1), B(E2), B(E3), electric dipole moments, deformation energy surface in (β_3 , β_3) plane using microscopic quadrupole-octupole collective Hamiltonian (QOCH) based on relativistic PC-PK1 energy density functional and δ -interaction pairing.
- 2016Ag06: calculated equilibrium β_2 , β_3 deformation parameters for ground state using density functional models and ε_2 , ε_3 parameters by mic-mac (MM) approach, potential energy surfaces in (β_2 , β_3) plane using CEDF DD-PC1 theory, and covariant energy density functionals, with a nonlinear meson coupling, with density-dependent meson couplings, and pairing correlations within relativistic Hartree-Bogoliubov theory.

Theoretical calculations for α and cluster decays:

2022He18: calculated α -decay T_{1/2}, α -preformation factor using density-dependent cluster model with RMF NN interactions, M3Y NN interactions and universal decay law (UDL) formula.

2022Xu13: calculated α -decay T_{1/2} using the Gamow model with a screened electrostatic barrier.

2021Sa52: calculated Q(2α), T_{1/2} for 2α -decay with and without the deformation effects using used modified generalized liquid drop model, and Coulomb and proximity potential model with different preformation factors for double α decay.

2021Se10: calculated Q-values and $T_{1/2}$ for cluster decays, change in neutron-skin thickness, the isospin-asymmetry using self-consistent Hartree-Fock-Bogolyubov based on Skyrme-SLy4 effective nucleon-nucleon interaction.

2020Ni01, 2017Ni01: calculated α -branching ratios to vibrational states, α -decay T_{1/2}, partial half-lives for β^+/ε and α -decay

Adopted Levels (continued)

modes using multichannel cluster model (MCCM).

2018Se01: calculated driving potential vs cluster charge, $T_{1/2}$ for α -decay and for cluster decay, α and cluster Q values using Skyrme-SLy4 nucleon-nucleon interaction, within the frame work of the performed cluster model.

2017Sa39: calculated cluster decay $T_{1/2}$ using 12 different potentials.

Additional information 1.

²²²U Levels

E(level)	J^{π}	T _{1/2}	Comments
0	0+	4.6 μs 7	%α≈100 Only the α decay has been observed. Decay mode of %α≈100 is based on theoretical half-lives of 17.4 μs for α decay and 17.5 s for β decay (2019Mo01). T _{1/2} : weighted average of 4.7 μs 7 (2015Kh09, fitting of the (ER)-α correlated decay curve for the 9310α peak from ²²² U decay to a single exponential); and 4.0 μs +19–10 (2023Lu04, ER-α correlated decay curve). Other: 1.0 μs +12-4 (1983Hi12, from correlated 12.08 MeV and 7.16 MeV α peaks, the latter from ²¹⁴ Ra decay; the 12.08 MeV composite peak was interpreted as the superposition of α peaks from decays of ²²² U and ²¹⁸ Th; the assignment of this α peak to ²²² U was not that definite).

Measured $E\alpha$ =9.31 MeV 5 from the decay of ²²²U to ²¹⁸Th (2015Kh09), 9246 keV 8 (2023Lu04). Evaluator's note: the difference in the two values seems significant, however, it seems that the uncertainty of 8 keV in 2023Lu04 is underestimated, as this value was deduced from simply a spread of $E\alpha$ values (without uncertainties) for only five events (#3, #4, #5, #6 and #9) in authors' Table I.