²²⁶U α decay (268 ms) 1998Gr19,2000He17,1989An13

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, M. S. Basunia, Jun Chen et al.	NDS 192,315 (2023)	25-Sep-2023

Parent: ²²⁶U: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=268$ ms 9; $Q(\alpha)=7701$ 4; $\%\alpha$ decay=100

²²⁶U-T_{1/2}: From α decay. Weighted average of measured values of 258 ms *13* (2002CaZU, from the same lab as 2000He17, but an independent experiment); 281 ms 9 (2000He17); 260 ms *10* (1998Gr19, also 260 ms 20 in 2001Ku07, 230 ms +60-40 in 1999Gr28, and 160 ms +2*1*-*17* tentative result in 1997En10, all from the same lab); and 200 ms *50* (1994Ye08,1990An22, also 0.25 s +15-10 in 1989An13 from the same lab). Others: 0.4 s *1* (2018Mi11), and 0.5 s 2 (1973Vi10).

²²⁶U-Q(*α*): From 2021Wa16.

²²⁶U-% α decay: Only the α decay of ²²⁶U has been observed. From theoretical $T_{1/2}(\beta) > 100$ s and $T_{1/2}(\alpha) = 0.65$ s (2019Mo01), $\%\epsilon + \%\beta^+ < 0.65$. Other: $\%\epsilon + \%\beta^+ < 0.05$ (from gross theory of β decay, 1973Ta30).

This dataset prepared by P. Dimitriou, B. Singh, and IAEA-ICTP workshop participants: M.J. Lazaric and C. Ngwetsheni.

2000He17, 2002CaZU: ²²⁶U was produced in heavy-ion fusion ²⁰⁸Pb(²²Ne,4n) at GSI. Fusion products were separated in-flight reaction using the velocity filter SHIP. Measured E α , I α , half-life of ²²⁶U decay by $\alpha\alpha$ - and $\alpha\gamma$ -coin. FWHM=18-20 keV for E α . In 2002CaZU, half-life of ²²⁶U decay was reported as 258 ms 13.

Additional information 1.

- 1998Gr19, 1999Gr28 (also 2001Ku07, 1997En10): ²²⁶U produced in ²⁰⁸Pb(²²Ne,4n),E(²²Ne)=111 MeV at the K130 cyclotron facility of the University of Jyvaskyla, followed by the separation of fusion products using the gas-filled magnetic separator RITU. Measured Eα, Iα, half-life of ²²⁶U decay by recoil-α tagging technique using silicon strip detector for α particles with FWHM better than 30 keV for Eα≈7.5–MeV. In 2001Ku07 (conference article), a position-sensitive PIPS Si detector was used for α detection for which resolution was stated as 35 keV.
 1989An13, 1990An22: ²²⁶U and ²³⁰Pu were produced in heavy-ion fusion reactions ²⁰⁸Pb(²²Ne,4n) and ²⁰⁸Pb(²⁶Mg,4n),
- 1989An13, 1990An22: ²²⁶U and ²³⁰Pu were produced in heavy-ion fusion reactions ²⁰⁸Pb(²²Ne,4n) and ²⁰⁸Pb(²⁶Mg,4n), respectively, at JINR. Fusion products were separated in-flight by the VASSILISSA kinematic separator. Measured E α , I α , T_{1/2} using α -spectroscopy, with FWHM=40-60 keV, and 35 keV, respectively.
- 1973Vi10: measured E α , T_{1/2} of ²²⁶U decay by bombarding ²³²Th with 140 MeV ⁴He ions from University of Maryland cyclotron, and using secular equilibrium technique. FWHM=50 keV for α -particle detection.

1970Va13: measured E α , T_{1/2} of ²²²Th decay chain at the Berkeley HILAC.

2018Mi11 (conference article): ²²⁶U from the α decay of ²³⁰Pu, produced in W(⁴⁸Ca,X)²³⁰Pu,E(⁴⁸Ca)=4.55 MeV/nucleon; measured E α and half-life for the decay of ²²⁶U using the new COMPASS detection system with SHIP fragment separator at GSI facility.

2003MoZT: ²²⁶U produced in a decay chain starting from ²³⁴Bk decay, where the activity was produced in ¹⁹⁷Au(⁴⁰Ar,3n), $E(^{40}Ar)=188.4$ MeV, followed by separation of reaction products using the Gas-Filled Recoil-Ion Separator (GARIS) at RIKEN. For four events assigned to the decay of ²³⁴Bk, α decay times for ²²⁶U α decay were given as 196 ms, 149 ms, 464 ms, and 1370 ms.

²²²Th Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	0^{+}	1.964 ms 2	$T_{1/2}$: from the Adopted Levels.
181 8	2+	240 ps 20	E(level): from $E\alpha = 7387$ 7 for decay to the 2 ⁺ level, and Q(α)=7701 4 for the decay of ²²⁶ U. Other: 182.9 2 in the Adopted Levels.
246 20	(1 ⁻)		E(level): from E α =7323 20 for decay to the (1 ⁻) level, and Q(α)=7701 4 for the decay of 226 U.

 J^{π} : proposed by 2000He17, based on systematics of 1⁻ states in neighboring nuclei.

$^{226}\mathrm{U}\,\alpha$ decay (268 ms) 1998Gr19,2000He17,1989An13 (continued)

α radiations

Eα	E(level)	$I\alpha^{\ddagger}$	HF	Comments
7450 30				E α : from 2018Mi11 only, as authors report two α transitions: 7400 30 which likely corresponds to 7387 5 α , and 7450 30 α . Note that the two α energies reported by 2018Mi11 overlap within the uncertainties.
7323 20	246	31	4.0 14	$E\alpha$, I α : from 2000He17.
7387 5	181	16 2	1.3 2	Eα: weighted average of 7384 20 (2002CaZU, from the same lab as but an independent experiment); 7374 10 (2000He17); and 7390 5 (1999Gr28, 7384 7 in 2001Ku07, 7394 20 in 1997En10). Others: two transitions of Eα=7400 30 and 7450 30 (2018Mi11), 7420 20 (1989An13). Iα: weighted average of 14 3 (2002CaZU, from the same lab as but an independent experiment); 15 3 (2000He17); 18 2 (1999Gr28, 15 5 in 2001Ku07, ≈28 in 1997En10); and
7563 5	0.0	84 <i>3</i>	1.00	Eα: weighted average of 7570 30 (2018Mi11); 7560 10 (2002CaZU, from the same lab as 2000He17 but an independent experiment); 7555 10 (2000He17); 7565 5 (1999Gr28, 1998Gr19, 7566 4 in 2001Ku07, 7566 20 in 1997En10); and 7570 15 (1990An22, 7570 20 in 1989An13). Others: 7430 30 (1973Vi10), 7500 50 (1970Va13). Iα: weighted average of 86 3 (2002CaZU, from the same lab as 2000He17, but an independent experiment); 82 5 (2000He17); 82 4 (1999Gr28, 85 11 in 2001Ku07, ≈72 in 1997En10); and 85 5 (1989An13).

^{\dagger} The nuclear radius parameter $r_0(^{222}\text{Th})=1.5387\ 27$ is deduced by assuming HF=1.0 for the ground-state to ground-state alpha decay branch. [‡] Absolute intensity per 100 decays.