Coulomb excitation 2022Sp01

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, M. S. Basunia, Jun Chen et al.,	NDS 192,315 (2023)	25-Sep-2023

Dataset by Balraj Singh, S. Basunia, and IAEA-ICTP workshop participants: S. Das and A. Karmakar. Beam=²²²Rn. Targets=¹²⁰Sn and ⁶⁰Ni of 2.1 mg/cm² thickness.

2022Sp01 (also 2020Bu20,2019Bu29): $E(^{222}Rn)=4.23$ MeV/nucleon produced in bombardment of thorium carbide with 1.4-GeV protons from CERN PS Booster, followed by separation of ions of interest according to A/Q, and delivered to a Penning trap, REXTRAP, where the singly-charged ions were accumulated and cooled before being allowed into an electron beam ion source, REXEBIS. The ions were then confined in a high-density electron beam that stripped more electrons to produce a charge state of 51⁺ for ²²²Rn beam, extracted as 1 ms pulses before being mass-selected again according to A/Q, and injected into the HIE-ISOLDE linear post-accelerator. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin using Miniball array of eight triple-cluster HPGe detectors, each with sixfold segmentation. Scattered particles and recoiling target recoils were detected using a highly segmented silicon 'CD' detector with four double-sided silicon strip detectors with 16 annular strips on the front face and 24 radial sectors. Deduced levels, J^{π} , E2, E3 and E1 matrix elements, and intrinsic dipole, quadrupole and octupole moments, and g.s. and octupole bands. Authors of 2020Bu20 conclude that while octupole vibrations exist, but with no static pear-shapes (or static octupole deformation) in the ground state. Comparison of measured intrinsic electric-octupole moments with theoretical calculations using 2-D Gogny D1S force, QOCH with relativistic PC-PK1 EDF (RMF), covariant density EDF (CDFT), and spdf-IBM-2.

All data are from 2022Sp01.

²²²Rn Levels

Matrix elements (M.E.) were deduced by 2022Sp01 from measured γ -ray yields with least-squared fit of a total of 89 data points to GOSIA analysis code, using known γ -ray branching ratios of low-lying negative-parity states from earlier studies of ²²²Rn structure. The matrix elements are in units of eb^{1/2} for E1, eb for E2, and eb^{3/2} for E3.

$E(level)^{\dagger}$	J ^π @	T _{1/2} &	Comments
0 ^{<i>a</i>}	0^{+}		
186 ^a	2+		Q = -1.4 + 5 - 6
			Q: deduced by evaluators from Diagonal E2 M.E.
			Diagonal E2 M.E. $(186,2^+ \rightarrow 186,2^+) = -1.8 + 6 - 9.$
			Intrinsic electric quadrupole moment, $Q_0=4.8$ eb +24-16.
448 ^a	4^{+}	52.5 ps +44-23	E2 M.E. $(186,2^+ \rightarrow 448,4^+) = +2.55 + 6 - 10.$
			Deduced B(E2) \uparrow (186,2 ⁺ \rightarrow 448,4 ⁺)=1.30 +6-10 (evaluators).
			Intrinsic electric quadrupole moment, $Q_0=5.04$ eb +13-20.
			For $T_{1/2}$, $E\gamma=262.27$ keV from the Adopted dataset is used.
601 ⁶	1-	0.7 ps +11-5	E1 M.E. $(0,0^+ \rightarrow 601,1^-) = -0.007 + 3 - 7$ or $+0.007 + 7 - 3$.
			Deduced B(E1) $\uparrow(0,0^+ \to 601,1^-)=0.00005 + 15-3$ (evaluators).
			Intrinsic electric dipole moment, $D_0 = 0.014 \text{ eb}^{1/2} + 14 - 6 \text{ or} - 0.014 \text{ eb}^{1/2} + 6 - 14$.
			E3 M.E. $(186,2^+ \rightarrow 601,1^-) = +0.5 + 2 - 4$.
			Intrinsic electric octupole moment, $O_0=1.20 \text{ eb}^{3/2} + 50-90$.
			E3 M.E. $(448,4^+ \rightarrow 601,1^-) < 1.4$.
			Intrinsic electric octupole moment, $O_0 < 2.90 \text{ eb}^{3/2}$.
			$T_{1/2}$: deduced by evaluators from B(E1) \uparrow for 601-keV transition and branching ratio of
			0.62 for this transition from the Adopted dataset.
636 ^b	3-	≈0.4 ns	E2 M.E. $(601,1^- \rightarrow 636,3^-) = +2.1$ 4.
			Intrinsic electric quadrupole moment, $Q_0=5.0$ eb 10.
			Deduced B(E2) \uparrow (601,1 ⁻ \rightarrow 636,3 ⁻)=1.5 +6-5 (evaluators).
			E3 M.E. $(0,0^+ \rightarrow 636,3^-) = +0.88 + 11 - 8.$
			Intrinsic electric octupole moment, $O_0=2.36 \text{ eb}^{3/2} + 30-21$.
			E3 M.E. $(186,2^+ \rightarrow 636,3^-) < 1.5$.
			Intrinsic electric octupole moment, $O_0 < 3.50 \text{ eb}^{3/2}$.
			$T_{1/2}$: deduced by evaluators from B(E2)↑ for 34.8-keV transition and branching ratio of

Continued on next page (footnotes at end of table)

 $^{222}_{86}$ Rn₁₃₆-2

Coulomb excitation 2022Sp01 (continued)

²²²Rn Levels (continued)

E(level) [†]	Jπ@	T _{1/2} &	Comments
7.00	< ±	150 10 11	≈ 0.3 for this transition from the Adopted dataset.
/694	6'	15.9 ps $+18-11$	E2 M.E. $(448,4' \rightarrow /69,6')=+3.52 + 13 - 18$. Deduced B(E2) $\uparrow(448.4^+ \rightarrow 760.6^+)=1.38 + 10 - 14$ (evaluators)
			Intrinsic electric quadrupole moment $\Omega_0 = 5.50 \text{ eb} + 20 - 30$
708 <mark>b</mark>	5-		F2 M E (636.3 ⁻ \rightarrow 708.5 ⁻)-+2.7.7
790	5		Intrinsic electric quadrupole moment $\Omega_0 = 4.7$ eb 12
			Deduced B(E2) \uparrow (636.3 ⁻ \rightarrow 798.5 ⁻)=0.058 +15-22 (evaluators).
			E3 matrix element (from 186, 2^+)=+1.3 +2-3.
			Intrinsic electric octupole moment, $O_0 = 2.30 \text{ eb}^{3/2} + 30 - 50$.
867 ^C	(2^{+})		E2 M.E. $(0,0^+ \rightarrow 867,(2^+)) = +0.24 + 3 - 5.$
			Intrinsic electric quadrupole moment, $Q_0=0.76$ eb +10-16.
			Deduced B(E2) $\uparrow(0,0^+ \rightarrow 867,(2^+))=0.058 + 15-22$ (evaluators).
			E2 M.E. $(186,2^+ \rightarrow 867,(2^+)) = +0.52 + 14 - 20.$
			Deduced B(E2) \uparrow (186,2 ⁺ \rightarrow 867,(2 ⁺))=0.054 33 (evaluators).
, d			Intrinsic electric quadrupole moment, $Q_0 = 1.40 \text{ eb} + 40 - 50$.
867 ⁴	(0^{+})		E1 M.E. $(601,1^- \rightarrow 867,(0^+))=0.0057\ 20.$
			Deduced B(E1) \uparrow (601,1 ⁻ \rightarrow 86 ⁷ ,(0 ⁺))=0.000011 +9-6 (evaluators).
			Intrinsic electric dipole moment, $D_0=0.012$ eb ^{1/2} 4.
			E2 M.E. $(180,2^+ \rightarrow 80^{-})(0^+)=+0.32^{-}3.$
			Intrinsic electric quadrupole moment $\Omega_0 = 1.01$ eb 16
959 ^C	(3^{+})		E2 M.E. $(186.2^+ \rightarrow 959.(3^+)) = -1.2 + 19 - 3.$
,	(0)		Deduced B(E2) \uparrow (186,2 ⁺ \rightarrow 959,(3 ⁺))=0.29 +16-19 (evaluators).
			Intrinsic electric quadrupole moment, $Q_0=2.0 \text{ eb} + 10-40$.
1049 <mark>b</mark>	7^{-}		E2 M.E. $(798.5^- \rightarrow 1049.7^-) = +4.0.9$.
			Deduced B(E2) \uparrow (798,5 ⁻ \rightarrow 1049,7 ⁻)=1.5 +7-6 (evaluators).
			Intrinsic electric quadrupole moment, $Q_0=5.8$ eb 13.
1053? ^{#d}	(2^{+})		
1111 ^C	(4^{+})		E2 M.E. $(448,4^+ \rightarrow 1111,(4^+))=+0.91 + 14-20.$
			Deduced B(E2) \uparrow (448,4 ⁺ \rightarrow 1111,(4 ⁺))=0.092 +31-36 (evaluators).
	a +		Intrinsic electric quadrupole moment, $Q_0=1.60$ eb +30-40.
11284	8-	7.3 ps +11–16	E2 M.E. $(769,6^+ \rightarrow 1128,8^+)=+4.5+6-3$.
			Deduced B(E2) ($709,0^{\circ} \rightarrow 1128,8^{\circ}$)=1.50 +44-20 (evaluators).
12159 # d	$(4\pm)$		maniste electric quadrupole moment, $Q_0=0.00$ eb +80-40.
1313?""	(4 ⁺)		
1319?"	(51)		
1357	9-	7 ps +9–5	$T_{1/2}$: from B(E2)↑ for 308 γ , and branching from the Adopted dataset.
			E2 M.E. $(1049,7) \rightarrow 1357,9 =+5.5 + 21 - 13$.
			Deduced B(E2) (1049,7 \rightarrow 1557,9)=2.0 +19-8 (evaluators).
1513 <mark>a</mark>	10^{+}	$7.8 \text{ ps} \pm 51 - 12$	F2 M F (1128 8 ⁺ \rightarrow 1513 10 ⁺)- ± 4 1 $\pm 5-9$
1515	10	7.0 p3 101 12	Deduced B(E2) $\uparrow(1128, 8^+ \rightarrow 1513, 10^+)=0.99 + 26 - 39$ (evaluators).
			Intrinsic electric quadrupole moment, $O_0=4.9$ eb $+7-11$.
15759 <mark>#c</mark>	(6^{+})		
$16379 \frac{\text{#}d}{}$	(6^+)		
$1709^{+1}h$	11-		
1/08 ⁺⁰	11		
18//?"	(/')		
1913+4	12+		
2089 ^{‡0}	13-		
2219? ^{#c}	(8^+)		

Coulomb excitation 2022Sp01 (continued)

222Rn Levels (continued)

E(level) [†]	Jπ @		
2317 ^{‡a}	14+		
2485 ^{‡b}	15^{-}		

[†] From 2022Sp01, based on their E γ data, unless stated otherwise.

[‡] Level included in the GOSIA analysis based on a level observed in 232 Th(136 Xe,X γ) (1999Co02), but not observed in the present experiment, thus not included in the Adopted Levels.

[#] Level included in the GOSIA analysis based on J(J+1) extrapolation, not observed in the present experiment, thus not included in the Adopted Levels.

[@] As proposed by 2022Sp01, based on population of an even-even nucleus in Coulomb excitation process with E2 excitations, and band structures.

[&] Deduced by evaluators from B(E2)↑ values from E2 matrix elements measured in the present work.

^a Band(A): g.s. band.

^b Band(B): Octupole band based on 1⁻. Average magnitude of $D_0/Q_0=0.00021 \text{ fm}^{-1} 3$ (1997Co08); $D_0=0.10 \text{ efm } 2$ (1997Co14).

^{*c*} Band(C): Tentative γ band.

^{*d*} Band(D): Tentative β band.

$\gamma(^{222}\text{Rn})$

B(E2)(W.u.) values deduced by evaluators from the measured E2 matrix elements in the present work.

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	Comments
(34.8)	636	3-	601	1-	[E2]	1.30×10 ³ 4	B(E2)(W.u.)=80 +32-27 I(γ +ce)(34.8)/I(γ +ce)(449)= \approx 42/ \approx 100 (from the Adopted dataset).
163.0 [@] 5	798	5-	636	3-	[E2]	1.116 21	B(E2)(W.u.)= $4.6 + 12 - 17$ E _y : from the Adopted dataset.
186	186	2+	0	0^+	E2	0.677 9	Mult.: from the Adopted Gammas, also Coulomb excited from 0^+ in the present study.
229	1357	9-	1128	8+	[E1]	0.0624 9	$I\gamma(229)/I\gamma(308)=74$ 42/100 42 (from the Adopted dataset).
251	1049	7-	798	5^{-}			$B(E2)(W.u.)=26\times10^{1}+12-10$
262	448	4+	186	2^{+}	[E2]	0.2093 29	B(E2)(W.u.)=90 + 4 - 7
							α : for E γ =262.27 5 from the Adopted dataset.
266 2	867	(0^{+})	601	1-	[E1]	0.0438 10	$B(E1)(W.u.) = 1.4 \times 10^{-3} + 11 - 8$
281	1049	7-	769	6+			
308	1357	9-	1049	7^{-}	[E2]	0.1279 19	$B(E2)(W.u.)=20\times10^{1}+19-8$
320	769	6+	448	4^{+}	[E2]	0.1144 16	B(E2)(W.u.) = 120 + 9 - 12
							α : for Ey=319.6 2 from the Adopted dataset.
349	798	5-	448	4+			
360	1128	8^{+}	769	6^{+}	[E2]	0.0819 12	B(E2)(W.u.) = 149 + 42 - 19
							α : for E γ =359.6 2 from the Adopted dataset.
385	1513	10^{+}	1128	8+	[E2]	0.0680 10	B(E2)(W.u.)=100 +26-39 α : for E γ =384.9 2 from the Adopted dataset.
415	601	1-	186	2^{+}	[E1]	0.0163 2	$I_{\gamma}(415)/I_{\gamma}(601)=60/100$ (from the Adopted dataset).
449	636	3-	186	2^{+}	[E1]	0.0137 2	
601	601	1-	0	0^{+}	[E1]	0.0076 1	$B(E1)(W.u.) = 7 \times 10^{-4} + 21 - 4$
663	1111	(4^{+})	448	4+			B(E2)(W.u.) = 11.5 + 39 - 45
681 [#]	867	(2^{+})	186	2^{+}	[E2+M1]	0.042 25	B(E2)(W.u.)=6.842
681#	867	(0^+)	186	2+	[F2]	0.0176.3	$B(F2)(W_{H}) = 13 A$
001	007	(0)	100	2	لكتا	0.0170 5	D(D2)(W.U.) = 1.5.4

Continued on next page (footnotes at end of table)

Coulomb excitation 2022Sp01 (continued)

γ (²²²Rn) (continued)

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α^{\ddagger}	Comments
773 867	959 867	(3^+) (2^+)	$ 186 2^+ \\ 0 0^+ $	[E2]	0.0107 2	$\begin{split} &I\gamma(681\gamma)/I\gamma(266\gamma) = 1.9 + 38 - 12, \text{ deduced by evaluators from} \\ &B(E2)(W.u.)/B(E1)(W.u.) \text{ ratio.} \\ &B(E2)(W.u.) = 26 + 14 - 17 \\ &B(E2)(W.u.) = 1.5 + 4 - 5 \\ &I\gamma(867\gamma)/I\gamma(681\gamma) = 0.7 + 6 - 4, \text{ deduced by evaluators from } B(E2)(W.u.) \\ &\text{ ratio, assuming } 681 \text{ is pure } E2. \end{split}$

[†] From 2022Sp01.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Multiply placed.

[@] Placement of transition in the level scheme is uncertain.

2022Sp01 **Coulomb excitation** Band(B): Octupole band based on 1⁻ 15-2485 Band(A): g.s. band Band(C): Tentative γ 14^{+} 2317 band <u>(8</u>⁺) _ _ _ <u>2219</u> 13-2089 <u>12</u>+ 1913 <u>(7⁺)</u> _ _ _ <u>1877</u> Band(D): Tentative β band 11-1708 <u>(6⁺)</u>___<u>1637</u> <u>(6⁺)</u>___<u>1575</u> 10^+ 1513 1357 (5+) 1319 $\underline{(4^+)}$ _ _ _ <u>1315</u> 385 308 1128 8+ (4+) 1111 (2+) 1053 1049 (3+) 959 360 251 (2+) 867 (0+) 867 798 769 6+ 163 636 601 3-1 35 320 4+ 448 262 186 2^+ 186 $\mathbf{0}^+$ 0

²²²₈₆Rn₁₃₆