Coulomb excitation 2022Sp01

$\frac{\text { Type }}{\text { Full Evaluation }}$| Author |
| :---: |

Dataset by Balraj Singh, S. Basunia, and IAEA-ICTP workshop participants: S. Das and A. Karmakar.
Beam $={ }^{222} \mathrm{Rn}$. Targets $={ }^{120} \mathrm{Sn}$ and ${ }^{60} \mathrm{Ni}$ of $2.1 \mathrm{mg} / \mathrm{cm}^{2}$ thickness.
2022Sp01 (also 2020Bu20,2019Bu29): $\mathrm{E}\left({ }^{222} \mathrm{Rn}\right)=4.23 \mathrm{MeV} /$ nucleon produced in bombardment of thorium carbide with $1.4-\mathrm{GeV}$ protons from CERN PS Booster, followed by separation of ions of interest according to A / Q, and delivered to a Penning trap, REXTRAP, where the singly-charged ions were accumulated and cooled before being allowed into an electron beam ion source, REXEBIS. The ions were then confined in a high-density electron beam that stripped more electrons to produce a charge state of 51^{+}for ${ }^{222} \mathrm{Rn}$ beam, extracted as 1 ms pulses before being mass-selected again according to A / Q, and injected into the HIE-ISOLDE linear post-accelerator. Measured E $\gamma, \mathrm{I} \gamma, \gamma \gamma$-coin using Miniball array of eight triple-cluster HPGe detectors, each with sixfold segmentation. Scattered particles and recoiling target recoils were detected using a highly segmented silicon 'CD' detector with four double-sided silicon strip detectors with 16 annular strips on the front face and 24 radial sectors. Deduced levels, J^{π}, E2, E3 and E1 matrix elements, and intrinsic dipole, quadrupole and octupole moments, and g.s. and octupole bands. Authors of 2020Bu20 conclude that while octupole vibrations exist, but with no static pear-shapes (or static octupole deformation) in the ground state. Comparison of measured intrinsic electric-octupole moments with theoretical calculations using 2-D Gogny D1S force, QOCH with relativistic PC-PK1 EDF (RMF), covariant density EDF (CDFT), and spdf-IBM-2.
All data are from 2022Sp01.

$$
{ }^{222} \mathrm{Rn} \text { Levels }
$$

Matrix elements (M.E.) were deduced by 2022Sp01 from measured γ-ray yields with least-squared fit of a total of 89 data points to GOSIA analysis code, using known γ-ray branching ratios of low-lying negative-parity states from earlier studies of ${ }^{222} \mathrm{Rn}$ structure. The matrix elements are in units of eb ${ }^{1 / 2}$ for E , eb for E 2 , and $\mathrm{eb}^{3 / 2}$ for E3.

$\underline{\mathrm{E}\left(\text { level) }{ }^{\dagger}\right.}$	$\mathrm{J}^{\pi @}$	$\mathrm{T}_{1 / 2} \&$	Comments
0^{a}	0^{+}		
186^{a}	2^{+}		$\mathrm{Q}=-1.4+5-6$
			Q: deduced by evaluators from Diagonal E2 M.E.
			Diagonal E2 M.E. $\left(186,2^{+} \rightarrow 186,2^{+}\right)=-1.8+6-9$.
			Intrinsic electric quadrupole moment, $\mathrm{Q}_{0}=4.8 \mathrm{eb}+24-16$.
448^{a}	4^{+}	$52.5 \mathrm{ps}+44-23$	E2 M.E. $\left(186,2^{+} \rightarrow 448,4^{+}\right)=+2.55+6-10$.
			Deduced $\mathrm{B}(\mathrm{E} 2) \uparrow\left(186,2^{+} \rightarrow 448,4^{+}\right)=1.30+6-10$ (evaluators).
			Intrinsic electric quadrupole moment, $\mathrm{Q}_{0}=5.04 \mathrm{eb}+13-20$.
			For $\mathrm{T}_{1 / 2}, \mathrm{E} \gamma=262.27 \mathrm{keV}$ from the Adopted dataset is used.
$601{ }^{\text {b }}$	1^{-}	$0.7 \mathrm{ps}+11-5$	E1 M.E. $\left(0,0^{+} \rightarrow 601,1^{-}\right)=-0.007+3-7$ or $+0.007+7-3$.
			Deduced $\mathrm{B}(\mathrm{E} 1) \uparrow\left(0,0^{+} \rightarrow 601,1^{-}\right)=0.00005+15-3$ (evaluators).
			Intrinsic electric dipole moment, $\mathrm{D}_{0}=0.014 \mathrm{eb}^{1 / 2}+14-6$ or $-0.014 \mathrm{eb}^{1 / 2}+6-14$.
			E3 M.E. $\left(186,2^{+} \rightarrow 601,1^{-}\right)=+0.5+2-4$.
			Intrinsic electric octupole moment, $\mathrm{O}_{0}=1.20 \mathrm{eb}^{3 / 2}+50-90$.
			$\text { E3 M.E. }\left(448,4^{+} \rightarrow 601,1^{-}\right)<1.4 \text {. }$
			Intrinsic electric octupole moment, $\mathrm{O}_{0}<2.90 \mathrm{eb}^{3 / 2}$.
			$\mathrm{T}_{1 / 2}$: deduced by evaluators from $\mathrm{B}(\mathrm{E} 1) \uparrow$ for $601-\mathrm{keV}$ transition and branching ratio of 0.62 for this transition from the Adopted dataset.
$636^{\text {b }}$	3^{-}	$\approx 0.4 \mathrm{~ns}$	E2 M.E. $\left(601,1^{-} \rightarrow 636,3^{-}\right)=+2.14$.
			Intrinsic electric quadrupole moment, $\mathrm{Q}_{0}=5.0$ eb 10 .
			Deduced $\mathrm{B}(\mathrm{E} 2) \uparrow\left(601,1^{-} \rightarrow 636,3^{-}\right)=1.5+6-5$ (evaluators).
			E3 M.E. $\left(0,0^{+} \rightarrow 636,3^{-}\right)=+0.88+11-8$.
			Intrinsic electric octupole moment, $\mathrm{O}_{0}=2.36 \mathrm{eb}^{3 / 2}+30-21$.
			E3 M.E. $\left(186,2^{+} \rightarrow 636,3^{-}\right)<1.5$.
			Intrinsic electric octupole moment, $\mathrm{O}_{0}<3.50 \mathrm{eb}^{3 / 2}$.
			$\mathrm{T}_{1 / 2}$: deduced by evaluators from $\mathrm{B}(\mathrm{E} 2) \uparrow$ for $34.8-\mathrm{keV}$ transition and branching ratio of

Coulomb excitation 2022Sp01 (continued)
$\xrightarrow{{ }^{222} \mathrm{Rn} \text { Levels (continued) }}$

Coulomb excitation 2022Sp01 (continued)

$\xrightarrow{{ }^{222} \mathrm{Rn} \text { Levels (continued) }}$
$\begin{array}{ll}\frac{\mathrm{E}(\text { level })^{\dagger}}{2317^{\ddagger a}} & \frac{\mathrm{~J}^{\pi @}}{14^{+}} \\ 2485^{\ddagger b} & 15^{-}\end{array}$
${ }^{\dagger}$ From 2022Sp01, based on their $\mathrm{E} \gamma$ data, unless stated otherwise.
\ddagger Level included in the GOSIA analysis based on a level observed in ${ }^{232} \mathrm{Th}\left({ }^{136} \mathrm{Xe}, \mathrm{X} \gamma\right)(1999 \mathrm{Co02})$, but not observed in the present experiment, thus not included in the Adopted Levels.
\# Level included in the GOSIA analysis based on $\mathrm{J}(\mathrm{J}+1)$ extrapolation, not observed in the present experiment, thus not included in the Adopted Levels.
${ }^{@}$ As proposed by 2022Sp01, based on population of an even-even nucleus in Coulomb excitation process with E2 excitations, and band structures.
${ }^{\text {\& }}$ Deduced by evaluators from $\mathrm{B}(\mathrm{E} 2) \uparrow$ values from E2 matrix elements measured in the present work.
${ }^{a}$ Band(A): g.s. band.
${ }^{b}$ Band(B): Octupole band based on 1^{-}. Average magnitude of $\mathrm{D}_{0} / \mathrm{Q}_{0}=0.00021 \mathrm{fm}^{-1} 3$ (1997Co08); $\mathrm{D}_{0}=0.10$ efm 2 (1997Co14).
${ }^{c} \operatorname{Band}(\mathrm{C})$: Tentative γ band.
${ }^{d} \operatorname{Band}(\mathrm{D})$: Tentative β band.

$$
\underline{\gamma\left({ }^{222} \mathrm{Rn}\right)}
$$

B(E2)(W.u.) values deduced by evaluators from the measured E2 matrix elements in the present work.

$\mathrm{E}_{\boldsymbol{\gamma}}{ }^{\dagger}$	E_{i} (level)	J_{i}^{π}	E_{f}	J_{f}^{π}	Mult.	α^{\ddagger}	Comments
(34.8)	636	$3{ }^{-}$	601	1^{-}	[E2]	$1.30 \times 10^{3} 4$	$\begin{aligned} & \mathrm{B}(\mathrm{E} 2)(\mathrm{W} . \mathrm{u} .)=80+32-27 \\ & \mathrm{I}(\gamma+\mathrm{ce})(34.8) / \mathrm{I}(\gamma+\mathrm{ce})(449)=\approx 42 / \approx 100 \text { (from the } \\ & \text { Adopted dataset). } \end{aligned}$
$163.0{ }^{@} 5$	798	5^{-}	636	3^{-}	[E2]	1.11621	$\mathrm{B}(\mathrm{E} 2)(\mathrm{W} . \mathrm{u} .)=4.6+12-17$ E_{γ} : from the Adopted dataset.
186	186	2^{+}	0	0^{+}	E2	0.6779	Mult.: from the Adopted Gammas, also Coulomb excited from 0^{+}in the present study.
229	1357	9^{-}	1128	8^{+}	[E1]	0.06249	$\mathrm{I} \gamma(229) / \mathrm{I} \gamma(308)=7442 / 10042$ (from the Adopted dataset).
251	1049	7^{-}	798	5^{-}			$\mathrm{B}(\mathrm{E} 2)$ (W.u.) $=26 \times 10^{1}+12-10$
262	448	4^{+}	186	2^{+}	[E2]	0.209329	$\mathrm{B}(\mathrm{E} 2)(\mathrm{W} . \mathrm{u} .)=90+4-7$ α : for $\mathrm{E} \gamma=262.275$ from the Adopted dataset.
2662	867	$\left(0^{+}\right)$	601	1^{-}	[E1]	0.043810	$\mathrm{B}(\mathrm{E} 1)$ (W.u.) $=1.4 \times 10^{-3}+11-8$
281	1049	$7{ }^{-}$	769	6^{+}			
308	1357	9^{-}	1049	7^{-}	[E2]	0.127919	$\mathrm{B}(\mathrm{E} 2)(\mathrm{W} . \mathrm{u})=.20 \times 10^{1}+19-8$
320	769	6^{+}	448	4^{+}	[E2]	0.114416	$\begin{aligned} & \mathrm{B}(\mathrm{E} 2)(\mathrm{W} . \mathrm{u} .)=120+9-12 \\ & \alpha: \text { for } \mathrm{E} \gamma=319.62 \text { from the Adopted dataset. } \end{aligned}$
349	798	5^{-}	448	4^{+}			
360	1128	8^{+}	769	6^{+}	[E2]	0.081912	$\begin{aligned} & \mathrm{B}(\mathrm{E} 2)(\mathrm{W} . \mathrm{u} .)=149+42-19 \\ & \alpha \text { : for } \mathrm{E} \gamma=359.62 \text { from the Adopted dataset. } \end{aligned}$
385	1513	10^{+}	1128	8^{+}	[E2]	0.068010	$\mathrm{B}(\mathrm{E} 2)(\mathrm{W} . \mathrm{u} .)=100+26-39$ α : for $\mathrm{E} \gamma=384.92$ from the Adopted dataset.
415	601	1^{-}	186	2^{+}	[E1]	0.01632	$\mathrm{I} \gamma(415) / \mathrm{I} \gamma(601)=60 / 100$ (from the Adopted dataset).
449	636	$3{ }^{-}$	186	2^{+}	[E1]	0.01372	
601	601	1^{-}	0	0^{+}	[E1]	0.00761	$\mathrm{B}(\mathrm{E} 1)$ (W.u.) $=7 \times 10^{-4}+21-4$
663	1111	$\left(4^{+}\right)$	448	4^{+}			$\mathrm{B}(\mathrm{E} 2)(\mathrm{W} . \mathrm{u})=.11.5+39-45$
681 ${ }^{\text {\# }}$	867	$\left(2^{+}\right)$	186	2^{+}	[E2+M1]	0.04225	$\mathrm{B}(\mathrm{E} 2)$ (W.u.)=6.8 42
681 \#	867	$\left(0^{+}\right)$	186	2^{+}	[E2]	0.01763	$\mathrm{B}(\mathrm{E} 2)$ (W.u.) $=134$

[^0]

| Coulomb excitation 2022Sp01 | Legend |
| :---: | :---: | :---: | :---: |
| Level Scheme | $\ldots \ldots$ Decay (Uncertain) |

Coulomb excitation 2022Sp01

Band(B): Octupole band

based on 1^{-}

$15^{-} \quad 2485$
Band(A): g.s. band
14^{+}
2317
Band(C): Tentative γ band
$\mathbf{(8}^{+}$) _ _ _ _ 2219
$13^{-} \quad 2089$
$12^{+} \quad 1913$
$\underline{(7}^{+}$) _ _ - _ $187 \underline{7}$
$11^{-} \quad 1708$

$\left(6^{+}\right)-1575$

$\left.\underline{(5}^{+}\right)-\ldots-1319$
$\left(4^{+}\right)$
1315
\qquad

$\left(4^{+}\right)$	1111	
		$\left(2^{+}\right)$
$\left(3^{+}\right)$	959	
$\left(2^{+}\right)$	867	$\left(0^{+}\right)$

$$
{ }_{86}^{222} \mathrm{Rn}_{136}
$$

[^0]: Continued on next page (footnotes at end of table)

