Adopted Levels, Gammas

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh, M. S. Basunia, Jun Chen et al.	NDS 192,315 (2023)	25-Sep-2023	

 $Q(\beta^{-}) = -6 8$; S(n) = 6171 6; S(p) = 7700 14; $Q(\alpha) = 5590.4 3 2021$ Wal6

S(2n)=10382.7 19, S(2p)=13469 18 (2021Wa16).

- Dataset by Balraj Singh, S. Basunia, and IAEA-ICTP workshop participants: B.M.S. Amro, S. Basu, S. Das, A. Karmakar, and S.S. Nayak.
- ²²²Rn is a naturally occuring radioactive isotope, emitted from the α decay of ²²⁶Ra, a long-lived activity produced in the decay chain of ²³⁸U, first identified by 1899Cu01, just three years after the discovery of radioactivity, followed by the first measurement of half-life of ²²²Rn decay by 1902Cu01.

Mass measurement: 2010Li02: Schottky mass spectrometry.

Theoretical nuclear structure calculations:

2021Va08: calculated levels, J^{π} , yrast positive- and negative-parity states, B(E1), B(E2), B(E3), B(M1), magnetic dipole and electric quadrupole moments using the *spdf*-IBM-2 interacting boson model.

2020Ca18: calculated deformation parameters β_2 , β_3 , octupole deformation energies, proton quadrupole Q_{20} and octupole Q_{30} moments for octupole-deformed nuclei using Skyrme energy density functional, and covariant energy density functional models.

2019Zh50: calculated empirical proton-neutron interaction, B(E2), B(E3), binding energy, total energy in (β_2 , β_3) plane, neutron and proton single-particle levels using the covariant density functional theory and the quadrupole-octupole collective Hamiltonian.

2018Yo12: calculated E(first 4⁺)/E(first 2⁺) ratio, energy of the first 3⁻ state using shell model with one-octupole-phonon representing collective octupole vibration across the magic core.

2017Xi15: calculated levels, J^{π} , B(E1), B(E2), B(E3), electric dipole moment, deformation energy surface in (β_2 , β_3) plane, reflection-asymmetric states using microscopic quadrupole-octupole collective Hamiltonian (QOCH), based on based on relativistic energy density functional.

2014De43, 2013De12: calculated energy levels, J^{π} , deformation parameters, B(E2), $T_{1/2}$ using coherent state model (CSM).

2013Ro30: calculated level energies of 1⁻ states, B(E1), B(E3) using two-dimensional generator coordinate method (GCM) for quadrupole-octupole coupling with Gogny forces.

2005Za02, 2001Za04: calculated levels, J^{π} , transition rates, octupole excitations using interacting boson model.

1998Ra05: calculated high-spin levels, J^{π} , $K^{\pi}=0^{-}$ band using phenomenological model.

1994Li05: calculated total energy surface vs α_{20} , α_{32} deformations, fourfold degenerate levels using the results of realistic total nuclear energy calculations.

1987Ro08: calculated single-particle states, pairing energies, octupole deformation, dipole vs octupole moments, B(E1)/B(E2) using constrained HF plus BCS method.

1983Ro14: calculated potential equilibrium deformation, deformation energies, static quadrupole and hexadecapole moments using density-dependent shell correction method.

1982Le19: calculated potential energy minima, octupole separation energy, and intrinsic reflection symmetry breaking using deformed shell-model.

1981Gy03: calculated potential energy, quadrupole and octupole equilibrium deformations using macroscopic-microscopic method. 1981Pe09: analyzed levels, J^{π} , strong Coriolis coupling effects for rotational bands based on one-phonon octupole vibrational states. 1980Sh07: analyzed levels, J^{π} , inverse moments of inertia; deduced structural relation of $K^{\pi}=0^+$ and $K^{\pi}=0^-$ bands.

Other theoretical calculations: 14 primary references for structure, and 76 primary references for decay characteristics are in the NSR database, and listed in this dataset as 'document' records.

Additional information 1.

²²²Rn Levels

The $K^{\pi}=0^+$ g.s. band and the $K^{\pi}=0^-$ band at 600.66 keV have been interpreted as octupole parity-doublet bands. However, 2022Sp01 and 2020Bu20 in their Coulomb excitation study do not support stable octupole deformation in the ground state of 222 Rn.

Cross Reference (XREF) Flags

A 226 Ra α decay (1603 y) B 232 Th(136 Xe,X γ)

Coulomb excitation

C

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments	
0.0	0+	3.8222 d 9	ABC	% <i>α</i> =100 With Q(<i>β</i> [−])=−6 8 (2021Wa16), no <i>β</i> [−] decay is expected. Evaluated rms charge radius <r<sup>2>^{1/2}=5.692 fm 20 (2013An02). Evaluated <i>δ</i><r<sup>2>(²²²Rn⁻²¹²Rn)=+1.1236 fm² 4 (2013An02). Additional information 2. T_{1/2}: weighted average of 3.82146 d 85 (2015Be07, from decay curve for integral <i>γ</i>-ray spectrum from 6 keV onwards, weighted average of four measurements: 3.82157 d 32 for 1301 h, 3.82134 d 30 for 1462 h, 3.82169 32 for 1185 h, and 3.82124 d 35 for 1357 h; statistical uncertainty of 0.000 d and systematic uncertainty of 0.0004 d in 2015Be07 combined in quadrature, and total uncertainty increased to 0.00085, to have a maximum relative weight of 50%); 3.8195 d 30 (2004Sc04, ionization chamber, reanalysis of 2004Sc04 data by 2018Po01 gave 3.825 d 5); 3.8224 d 18 (1995Co34, 4π αβ liquid scintillation counter, average of six measurements) 3.82351 d 170 (1972Bu33, decay curve for integral <i>γ</i>-ray spectrum measure over 40 half-lives, average of two measurements, quoted uncertainty of 0.00034 increased to 0.00170 as in 1990Ho28 evaluation); 3.83 d 3 (1958Sh69, calorimetry); 3.8229 d 170 (1956Ma64, ionization chamber, average of three measurements, quoted uncertainty of 0.000170 as in 1990Ho28); 3.825 d 5 (1956Ro31, calorimetry, quoted uncertainty of 0.004 increased to 0.005 as in 1990Ho28); 3.825 d 6 (1955To07,1951To25, ionization chamber, average of two measurements, quoted uncertainty of 0.002 increased to 0.003 as in 1990Ho28); 3.825 d 4 (1923Bo01, ionization chamber, average of four measurements, quoted uncertainty of 0.002 increased to 0.003 as in 1990Ho28); 3.825 d 4 (1923Bo01, ionization chamber, average of four measurements). Other: 3.81474 d 14 from 1994Se21 (indirect T_{1/2} deduced in the measurement of efficiency of Lucas scintillation cell by depositing a known quantity of ²²²R and following the decay and ingrowth of Rn and its daughters for a total oô 7014 data points, and fitting these data points using several parameters; T_{1/2} value is quoted very precisely, but disagrees b</r<sup></r<sup>	
186.211 [@] 13	2+	0.32 ns 2	ABC	$\mu =+0.92 \ 14 \ (1970 \text{Or} 02,2020 \text{StZV})$ $Q=-1.4 + 5-6$ $\mu: \text{ measurement of } g=0.45 \ 7 \text{ by } \alpha \gamma(\theta, \text{H}) \ (1970 \text{Or} 02), \text{ integral perturbed}$ angular correlation method. $Q: \text{ deduced by evaluators from diagonal E2 matrix element } (186,2^+ \rightarrow 186,2^+)=-1.8 + 6-9 \text{ in Coulomb excitation } (2022 \text{Sp}01).$ $J^{\pi}: \text{ E2 } \gamma \text{ to } 0^+.$ $T_{1,0}: \alpha \gamma(1) \ (1960 \text{Re} 25). \text{ Other measurement: } 0.31 \text{ ns } (1961 \text{Fo}08).$	
448.48 [@] 6	4+	52.5 ps +44-23	ABC	$(\alpha)(262\gamma)(\theta)$ data of 1989Po03 rule out J of 0, 1, 2 and 3; population of natural-parity state in α decay from 0 ⁺ parent.	
600.74 ^{&} 4	1-	0.7 ps +11-5	ABC	J^{π} : γ to g.s.; the $(\alpha)(601\gamma)(\theta)$ and $(\alpha)(415\gamma)(\theta)$ data rule out 2; population of natural-parity state in α decay from 0 ⁺ parent.	
635.57 ^{&} 9	3-	≈ 0.4 ns	ABC	$(\alpha)(449\gamma)(\theta)$ data of 1989Po03 rules out 0, 1, 2 and 4; population of natural-parity state in α decay from 0 ⁺ parent.	
768.08 [@] 21	(6 ⁺)	15.9 ps +18-11	BC	J^{π} : γ to 4 ⁺ ; level is Coulomb excited as g.s. band member.	
797.4 ^{&} 5	(5 ⁻)		BC	J^{π} : gamma to 4 ⁺ ; possible γ to 3 ⁻ ; band member.	
867.0 7 867.1 ^a 7	(0^+) (2^+)		C C	J^{n} : gammas to 2 ⁺ and 1 ⁻ ; possible bandhead of β band (2022Sp01). J^{π} : γ to 0 ⁺ ; possible bandhead of γ band.	

Adopted Levels, Gammas (continued)

²²²Rn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments		
959.2 ^a 10	(3 ⁺)		С	J^{π} : gamma to 2 ⁺ ; possible band member.		
1048.7 <mark>&</mark> 5	(7^{-})		BC	J^{π} : gamma to (6 ⁺); possible γ to (5 ⁻); band member.		
1111.5 ^a 10	(4^{+})		С	J^{π} : γ to 4 ⁺ ; possible band member.		
1127.7 [@] 3	(8+)	7.3 ps +11-16	BC	J^{π} : γ to (6 ⁺); band member.		
1356.5 ^{&} 5	(9 ⁻)	7 ps +9–5	BC	J^{π} : gammas to (7 ⁻) and (8 ⁺); band member. T _{1/2} : 67 ps +126-57 deduced from B(E2) value in Coulomb excitation. D ₀ /Q ₀ =0.00191 b _{1/2} 35 (1999Co02). Average D ₀ =0.010 eb ^{1/2} 2 (1999Co02) for J=9 and 11 states.		
1512.5 [@] 4	(10 ⁺)	7.8 ps +51-12	BC	J^{π} : γ to (8 ⁺); band member.		
1707.8 ^{&} 5	(11 ⁻)		В	J^{π} : gammas to (9 ⁻) and (10 ⁺); band member. D ₀ /Q ₀ =0.00273 b _{1/2} 63 (1999Co02). Average D ₀ =0.010 eb ^{1/2} 2 (1999Co02) for J=9 and 11 states.		
1912.9? [@] 6	(12^{+})		В	J^{π} : possible γ to (10 ⁺); band member.		
2088.7 <mark>&</mark> 7	(13 ⁻)		В	J^{π} : gammas to (11 ⁻) and (12 ⁺); band member.		
2316.7? [@] 8	(14^{+})		В	J^{π} : possible γ to (12 ⁺); band member.		
2485.0? ^{&} 9	(15 ⁻)		В	J^{π} : possible γ to (13 ⁻); band member.		
2727.2? [@] 10	(16^{+})		В	J^{π} : possible γ to (14 ⁺); band member.		
2881.6? ^{&} 10	(17-)		В	J^{π} : possible γ to (15 ⁻); band member.		
3285.6? ^{&} 12	(19 ⁻)		В	J^{π} : possible γ to (17 ⁻); band member.		
3695.8? ^{&} 13	(21 ⁻)		В	J^{π} : possible γ to (19 ⁻); band member.		

[†] From least-squares fit to Eγ data.
[‡] From band assignments in ²³²Th(¹³⁶Xe,Xγ) for levels above 635 keV.
[#] For levels above 186 keV, half-lives deduced by evaluators from E2 matrix elements measured (2022Sp01) in Coulomb excitation.

[@] Band(A): $K^{\pi}=0^+$ g.s. band.

& Band(B): $K^{\pi}=0^{-}$ octupole vibrational band.

^{*a*} Band(C): Possible γ band.

$\gamma(^{222}\mathrm{Rn})$

B(E2)(W.u.) and B(E1)(W.u.) values are from Coulomb excitation, deduced by evaluators from measured transition matrix elements, with exceptions noted.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	$I_{(\gamma+ce)}$	Comments
186.211	2+	186.211 13	100	0.0	0^{+}	E2	0.677 9		B(E2)(W.u.) = 58.4
448.48	4+	262.27 5	100	186.211	2+	[E2]	0.2087 30		B(E2)(W.u.)=90 + 4 - 7
600.74	1-	414.60 5	60	186.211	2^{+}	[E1]	0.01628 23		B(E1)(W.u.)=0.0014 + 23 - 9
									B(E1)(W.u.) from $T_{1/2}$ and γ branching, 20% uncertainty assumed in the γ branching ratio
		600 66 5	100	0.0	0^{+}	[E1]	0.00762.11		$B(E1)(W_{III}) = 7 \times 10^{-4} + 21 - 4$
635.57	3-	(34.81 16)	≈0.032	600.74	1-	[E1] [E2]	$1.30 \times 10^3 4$	≈42	B(E2)(W.u.)=80+32-27
000107	5	$187 10^{@} 20$	0.002	118 18	1 ⁺	[E 1]	0 1011 14		
		107.10 20 140 37 10	~100	186 211	+ 2+	[E1]	0.0137 2	~100	$B(E1)(W_{H}) \sim 4 \times 10^{-6}$
		++9.57 10	~100	100.211	2		0.0137 2	~100	$B(E1)(W_{11}) \sim 4\times10^{-10}$ B(E1)(W_{11}) from T _{1/2}
768.08	(6^{+})	319.6 2	100	448.48	4+	[E2]	0.1144 16		B(E2)(W.u.)=120 + 9 - 12
797 4	(5^{-})	$163.0^{@}5$		635 57	3-	[=_] [F2]	1 116 27		B(F2)(Wu) = 4.6 + 12 - 17
171.4	(5)	348.9.5		448.48	4 ⁺		1.110 21		D(E2)(W.u.) = 7.0 + 12 - 17
867.0	(0^{+})	266 2		600.74	1-	[E1]	0.0438 10		$B(E1)(W.u.) = 1.4 \times 10^{-3} + 11 - 8$
		681 [#]		186.211	2^{+}	[E2]	0.0176.3		$B(E2)(W_{11}) = 13.4$
		001		1001211	-	[]			$I\gamma(681\gamma)/I\gamma(266\gamma)=1.9 + 38-12$, deduced by evaluators from B(E2)(W.u.)/B(E1)(W.u.) ratio.
867.1	(2^{+})	681 [#]		186.211	2+	[E2+M1]	0.042 25		B(E2)(W.u.)=6.8 42
		867		0.0	0^{+}	[E2]	0.0107 2		B(E2)(W.u.)=1.5 + 4-5
									$I\gamma(867\gamma)/I\gamma(681\gamma)=0.7 + 6 - 4$, deduced by evaluators
	(a.t.)				a +				from B(E2)(W.u.) ratio, assuming pure E2 for 681.
959.2	(3^{+})	773		186.211	2*	[E2+M1]	0.031 17		B(E2)(W.u.)=26 + 14 - 17
1048.7	(7^{-})	251.4 ^w 5		797.4	(5 ⁻)	[E2]	0.240 4		$B(E2)(W.u.)=26\times10^{1}+12-10$
	(4 ±)	280.6 5	100 28	768.08	(6^+)	[E1]	0.0387 6		
1111.5	(4^+)	663	100	448.48	4'	[E2+M1]	0.04 3		B(E2)(W.u.) = 11.5 + 39 - 45 D(E2)(W.u.) = 140 + 42 - 10
1127.7	(0^{-})	559.0 Z	74 42	1127.7	(0^{+})	[E2] [E1]	0.0819 12		B(E2)(w.u.)=149+42-19
1550.5	(9)	220.8 5	100 42	1048 7	(0) (7^{-})	[E1] [E2]	0.0024 9 0.1270 10		$B(E2)(W_{11}) = 20 \times 10^{1} \pm 10^{-8}$
1512.5	(10^{+})	384 9 2	100 42	1127 7	(7) (8^+)	[E2]	0.1279 19		$B(E2)(Wu) = 20 \times 10^{-179-8}$ $B(F2)(Wu) = 100 \pm 26-39$
1707.8	(10^{-})	195.4.5	48 31	1512.5	(10^+)	[E2]	0.0000 10		D(L2)(W.u.) = 100 + 20 - 39
1,0,10	()	351.2 5	100 31	1356.5	(9 ⁻)	[E2]	0.0874 13		
1912.9?	(12^{+})	$400.4^{@}$ 5		1512.5	(10^{+})	r1			
2088 7	(12^{-})	$175.6^{@}5$		1012.02	(10^{+})				
2000.7	(15)	380.9.5	100.53	1707.8	(12) (11^{-})	[F2]	0 0700 10		
		500.7 5	100 55	1/0/.0	(11)		0.0700 10		

4

γ (²²²Rn) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
2316.7?	(14 ⁺)	403.8 [@] 5	1912.9?	(12 ⁺)
2485.0?	(15 ⁻)	396.3 [@] 5	2088.7	(13 ⁻)
2727.2?	(16^{+})	410.5 [@] 5	2316.7?	(14^{+})
2881.6?	(17 ⁻)	396.6 [@] 5	2485.0?	(15 ⁻)
3285.6?	(19 ⁻)	404.0 [@] 5	2881.6?	(17 ⁻)
3695.8?	(21 ⁻)	410.2 [@] 5	3285.6?	(19 ⁻)

[†] From ²²⁶Ra α decay for levels up to 636 keV. For higher levels, values are from ²³²Th(¹³⁶Xe,X γ). [‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Multiply placed.[@] Placement of transition in the level scheme is uncertain.

 $^{222}_{86}Rn_{136}$

Adopted Levels, Gammas

 $^{222}_{86}Rn_{136}$