Coulomb excitation

2020Bu01

Dataset prepared by Balraj Singh, Jun Chen, and IAEA-ICTP-workshop participants: Diwanshu and B. Rohila.
2020Bu01 (also 2020Bu20, 2019Bu29): $4.31 \mathrm{MeV} /$ nucleon ${ }^{222} \mathrm{Ra}$ beam obtained in spallation reaction by bombarding uranium carbide target with $1.4-\mathrm{GeV}$ protons from the CERN PS Booster, followed by extraction of ions from a tungsten surface ion source, stripped to 51^{+}charge state, and accelerated in HIE-ISOLDE. Targets was $2.1 \mathrm{mg} / \mathrm{cm}^{2}$ thick ${ }^{60} \mathrm{Ni}$ and ${ }^{120} \mathrm{Sn} . \gamma$ rays were detected using Miniball array of 24 HPGe , sixfold segmented detectors, arranged in eight triple clusters. Scattered projectiles and target recoils were detected in a highly segmented silicon detector. Measured $\mathrm{E} \gamma, \mathrm{E}(\mathrm{X}$-ray), $\mathrm{I} \gamma$, (recoils) γ-coin, γ-ray yields. Deduced levels, J, π, band structures, matrix elements and corresponding intrinsic electric (quadrupole, octupole, dipole) moments using GOSIA code. Systematics of neighboring Ra isotopes.
A total of 114 experimental yields for ${ }^{222} \mathrm{Ra}$ were fitted to 42 variables, with random (but within reasonable limits) initial values for each of the freely varied matrix elements. The E4 matrix elements were also considered in the fitting procedure, by assuming the rotational model and a constant value of the hexadecapole moment obtained from the theoretical values for β_{4}. For ${ }^{222} \mathrm{Ra}$, observed E3 matrix elements consistent with pear shape and stable octupole deformation.

$$
{ }^{222} \text { Ra Levels }
$$

Units of matrix elements (M.E.): eb ${ }^{1 / 2}$ for E1, eb for E2 and $\mathrm{eb}^{3 / 2}$ for E3. Values of E1 matrix elements are from supplemental material of 2020Bu01.
$B(E 1), B(E 2)$, and $B(E 3)$ values deduced by evaluators from corresponding transitional matrix elements $M(E \lambda)(f r o m J)$ using $B(E \lambda) \uparrow($ from $J)=[M(E \lambda)]^{2} /(2 J+1)$. Units are: eb for $B(E 1), e^{2} b^{2}$ for $B(E 2)$ and $e^{3} b^{3}$ for $B(E 3)$.
Q_{0} (rotational model) $=5.78$ eb $18(2020 \mathrm{Bu} 01)$; weighted average of all the experimental values.
$\mathrm{O}_{0}($ rotational model $)=3.12 \mathrm{eb}^{3 / 2} 19(2020 \mathrm{Bu} 01)$; weighted average of all the experimental values.

$\mathrm{E}(\mathrm{level})^{\dagger}$	J^{π} @	$\mathrm{T}_{1 / 2}{ }^{\text {\& }}$	Comments
$0.0{ }^{a}$	0^{+}		
$111{ }^{a}$	2^{+}		$\mathrm{Q}=-0.75+29-28$
			Q: from diagonal E2 M.E. $\left(111,2^{+} \rightarrow 111,2^{+}\right)=-1.35$.
			Intrinsic electric quadrupole moment $\left(\mathrm{Q}_{0}\right)=3.3 \mathrm{eb} 14$.
242^{b}	1^{-}	$9.5 \mathrm{ps}+21-16$	$\mathrm{T}_{1 / 2}$: deduced from $\mathrm{B}(\mathrm{E} 1) \uparrow\left(0,0^{+} \rightarrow 242.1-\right)=0.000067+12-11$. Other: $9.6 \mathrm{ps}+24-36$ from
			$\mathrm{B}(\mathrm{E} 1) \uparrow\left(111,2^{+} \rightarrow 242,1^{-}\right)=0.000026+13-4$. Note that the contribution from the experimental $\mathrm{B}(\mathrm{E} 3)$ value for the $131-\mathrm{keV}$ transition is negligible as deduced from $\mathrm{B}(\mathrm{E} 3,131 \gamma) / \mathrm{B}(\mathrm{E} 1,242 \gamma)$ ratio.
			E1 M.E. $\left(0,0^{+} \rightarrow 242,1^{-}\right)=+0.00827$; B(E1) $\uparrow=0.000067+12-11$.
			E1 M.E. (111, $\left.2^{+} \rightarrow 242,1^{-}\right)=-0.0114+9-25 ; \mathrm{B}(\mathrm{E} 1) \uparrow=0.000026+13-4$.
			E3 M.E. ($\left.111,2^{+} \rightarrow 242,1^{-}\right)=+0.8524 ; \mathrm{B}(\mathrm{E} 3) \uparrow=0.15+9-7$.
			Intrinsic E1 moment: $\mathrm{D}_{0}\left(0,0^{+} \rightarrow 242,1^{-}\right)=0.0168 \mathrm{eb}^{1 / 2} 14$.
			Intrinsic E1 moment: $\mathrm{D}_{0}\left(111,2^{+} \rightarrow 242,1^{-}\right)=0.0165 \mathrm{eb}^{1 / 2}+37-13$.
			Intrinsic E3 moment: $\mathrm{O}_{0}\left(111,2^{+} \rightarrow 242,1^{-}\right)=2.00 \mathrm{eb}^{3 / 2} 60$.
$301{ }^{a}$	4^{+}	$135 \mathrm{ps}+17-14$	$\mathrm{Q}=-1.59+29-28$
			Q: from diagonal E2 M.E. $\left(301,4^{+} \rightarrow 301,4^{+}\right)=-2.85$.
			$\mathrm{T}_{1 / 2}$: deduced from $\mathrm{B}(\mathrm{E} 2)\left(111,2^{+} \rightarrow 301,4^{+}\right)=1.7818$. Note that the contribution from the experimental $\mathrm{B}(\mathrm{E} 3)$ value for the $59-\mathrm{keV}$ transition is negligible as deduced from $\beta(\mathrm{E} 3,59 \gamma) / \beta(\mathrm{E} 2,190 \gamma)$ ratio.
			E2 M.E. ($111,2^{+} \rightarrow 301,4^{+}$) $=+2.9815$, coupled to $0^{+} \rightarrow 2^{+}$M.E.; B(E2) $\uparrow=1.7818$.
			E3 M.E. $\left(242,1^{-} \rightarrow 301,4^{+}\right)=-2.15$, coupled to higher-lying matrix elements; $B(E 3) \uparrow=0.49$ $+26-21$.
			Intrinsic E2 moment: $\mathrm{Q}_{0}\left(301,4^{+} \rightarrow 301,4^{+}\right)=5.80$ eb 10.
			Intrinsic E2 moment: $\mathrm{Q}_{0}\left(111,2^{+} \rightarrow 301,4^{+}\right)=5.90$ eb 30.
			Intrinsic E3 moment: $\mathrm{O}_{0}\left(242,1^{-} \rightarrow 301,4^{+}\right)=4.4 \mathrm{eb}^{3 / 2} 10$.
$317{ }^{\text {b }}$	3^{-}	$4.7 \mathrm{ps}+26-14$	$\mathrm{T}_{1 / 2}$: deduced from $\mathrm{B}(\mathrm{E} 1)\left(111,2^{+} \rightarrow 317,3^{-}\right)=0.000135+57-47$. Other: $4.7 \mathrm{ps}+34-18$ from

${ }_{88}^{222} \mathrm{Ra}_{134}{ }^{-2}$			From ENSDF	
$\underline{\mathrm{E}\left(\text { level) }{ }^{\dagger}\right.}$	$\mathrm{J}^{\pi @}$		Coulomb excitation	2020Bu01 (continued)
			${ }^{222} \mathrm{Ra}$ Levels (continued)	
		$\mathrm{T}_{1 / 2}{ }^{\text {\& }}$	Comments	
$474{ }^{\text {b }}$	5^{-}	$24 \mathrm{ps}+5-9$	B(E2)(242,1 $\left.{ }^{-} \rightarrow 317,3^{-}\right)=1.84+36-48$. Note that contributions from the experimental $B(E 1)$ and $B(E 3)$ values for the $15.8-\mathrm{keV}$ transition, and experimental $B(E 3)$ values for the 206- and $317-\mathrm{keV}$ transitions are negligible as deduced from respective ratios of transition probabilities. E1 M.E. $\left(111,2^{+} \rightarrow 317,3^{-}\right)=+0.0265$; $\mathrm{B}(\mathrm{E} 1) \uparrow=0.000135+57-47$. E1 M.E. $\left(301,4^{+} \rightarrow 317,3^{-}\right)=-0.027$ 26; $\mathrm{B}(\mathrm{E} 1) \uparrow=0.0000810+2311-809$. E2 M.E. $\left(242,1^{-} \rightarrow 317,3^{-}\right)=+2.3522 ; \mathrm{B}(\mathrm{E} 2) \uparrow=1.84+36-48$. E3 M.E. $\left(0,0^{+} \rightarrow 317,3^{-}\right)=+1.139$; $\mathrm{B}(\mathrm{E} 3) \uparrow=1.28+21-41$. E3 M.E. $\left(111,2^{+} \rightarrow 317,3^{-}\right)=-0.95 ; \mathrm{B}(\mathrm{E} 3) \uparrow=0.16+23-13$. E3 M.E. $\left(301,4^{+} \rightarrow 317,3^{-}\right)=+2.6+6-9$, coupled to higher-lying matrix elements; $\mathrm{B}(\mathrm{E} 3) \uparrow=0.75+39-43$. Intrinsic E1 moment: $\mathrm{D}_{0}\left(111,2^{+} \rightarrow 317,3^{-}\right)=0.031 \mathrm{eb}^{1 / 2} 6$. Intrinsic E1 moment: $\mathrm{D}_{0}\left(301,4^{+} \rightarrow 317,3^{-}\right)=0.028$ eb $^{1 / 2} 26$. Intrinsic E2 moment: $\mathrm{Q}_{0}\left(242,1^{-} \rightarrow 317,3^{-}\right)=5.60 \mathrm{eb} 50$. Intrinsic E3 moment: $\mathrm{O}_{0}\left(0,0^{+} \rightarrow 317,3^{-}\right)=3.03 \mathrm{eb}^{3 / 2} 24$. Intrinsic E3 moment: $\mathrm{O}_{0}\left(111,2^{+} \rightarrow 317,3^{-}\right)=2.1 \mathrm{eb}^{3 / 2} 12$. Intrinsic E3 moment: $\mathrm{O}_{0}\left(301,4^{+} \rightarrow 317,3^{-}\right)=5.5 \mathrm{eb}^{3 / 2}+13-18$.	
			$\mathrm{T}_{1 / 2}$: deduced from $\mathrm{B}(\mathrm{E} 1)\left(301,4^{+} \rightarrow 474,5^{-}\right)=0.000036+22-7$; and considering deduced branching ratio from $\mathrm{B}(\mathrm{E} 2) / \mathrm{B}(\mathrm{E} 1)$ ratio for an unobserved 156.5γ. E1 M.E. $\left(301,4^{+} \rightarrow 474,5^{-}\right)=+0.0180+48-19$; $\mathrm{B}(\mathrm{E} 1) \uparrow=0.000036+22-7$. E2 M.E. $\left(317,3^{-} \rightarrow 474,5^{-}\right)=+3.14 ; \mathrm{B}(\mathrm{E} 2) \uparrow=1.37+38-33$. E3 M.E. $\left(111,2^{+} \rightarrow 474,5^{-}\right)=+1.7920 ; \mathrm{B}(\mathrm{E} 3) \uparrow=0.64+15-14$. E3 M.E. $\left(301,4^{+} \rightarrow 474,5^{-}\right)=-1.710$, coupled to higher-lying matrix elements; $B(E 3) \uparrow=0.32$ $+49-27$.	
			```Intrinsic E1 moment: \(\mathrm{D}_{0}\left(301,4^{+} \rightarrow 474,5^{-}\right)=0.0165 \mathrm{eb}^{1 / 2}+44-18\). Intrinsic E2 moment: \(\mathrm{Q}_{0}\left(317,3^{-} \rightarrow 474,5^{-}\right)=5.30 \mathrm{eb} 70\). Intrinsic E3 moment: \(\mathrm{O}_{0}\left(111,2^{+} \rightarrow 474,5^{-}\right)=3.10 \mathrm{eb}^{3 / 2} 40\). Intrinsic E3 moment: \(\mathrm{O}_{0}\left(301,4^{+} \rightarrow 474,5^{-}\right)=3.2 \mathrm{eb}^{3 / 2} 18\).```	
$550{ }^{\text {a }}$	$6^{+}$	$34 \mathrm{ps}+6-5$	$\mathrm{T}_{1 / 2}$ : weighted average of $37 \mathrm{ps}+6-5$ deduced from $\mathrm{B}(\mathrm{E} 2)\left(301,4^{+} \rightarrow 550,6^{+}\right)=1.42+15-14$ and $29 \mathrm{ps}+8-6$ from $\mathrm{B}(\mathrm{E} 1)\left(474,5^{-} \rightarrow 550,6^{+}\right)=0.0000698+57-54$.   E1 M.E. $\left(474,5^{-} \rightarrow 550,6^{+}\right)=+0.027711$; $\mathrm{B}(\mathrm{E} 1) \uparrow=0.0000698+57-54$.   E2 M.E. $\left(301,4^{+} \rightarrow 550,6^{+}\right)=+3.5718 ; \mathrm{B}(\mathrm{E} 2) \uparrow=1.42+15-14$.   Intrinsic E1 moment: $\mathrm{D}_{0}\left(474,5^{-} \rightarrow 550,6^{+}\right)=0.0231 \mathrm{eb}^{1 / 2} 10$.   Intrinsic E2 moment: $\mathrm{Q}_{0}\left(301,4^{+} \rightarrow 550,6^{+}\right)=5.59$ eb 28.	
$703{ }^{\text {b }}$	$7^{-}$	15 ps 5	```\(\mathrm{T}_{1 / 2}\) : weighted average of 17 ps 5 deduced from \(\mathrm{B}(\mathrm{E} 1)\left(550,6^{+} \rightarrow 703,7^{-}\right)=0.0000573\) \(+92-85\) and \(9 \mathrm{ps}+10-5\) from B(E2) \(\left(474,5^{-} \rightarrow 703,7^{-}\right)=1.76+34-31\). E1 M.E. \(\left(550,6^{+} \rightarrow 703,7^{-}\right)=+0.027321 ; \mathrm{B}(\mathrm{E} 1) \uparrow=0.0000573+92-85\). E2 M.E. \(\left(474,5^{-} \rightarrow 703,7^{-}\right)=+4.44\); B(E2) \(\uparrow=1.76+34-31\). E3 M.E. ( \(301,4^{+} \rightarrow 703,7^{-}\)) \(=+3.3+3-5\), coupled to higher-lying matrix elements; \(B(E 3) \uparrow=1.21+23-34\).```	
			Intrinsic E1 moment: $\mathrm{D}_{0}(550$	+ $\left.\rightarrow 703,7^{-}\right)=0.0211 \mathrm{eb}^{1 / 2} 16$
			Intrinsic E2 moment: $\mathrm{Q}_{0}(47$	$\left.{ }^{-} \rightarrow 703,7^{-}\right)=6.30 \mathrm{eb} 60$.
			Intrinsic E3 moment: $\mathrm{O}_{0}(30$	$\left.{ }^{+} \rightarrow 703,7^{-}\right)=4.60 \mathrm{eb}^{3 / 2}+50-60$.
$843{ }^{a}$	$8^{+}$	11.1 ps $+31-24$	$\mathrm{T}_{1 / 2}$ : weighted average of $10.5 \mathrm{ps}+31-24$ from $\mathrm{B}(\mathrm{E} 2)\left(550,6^{+} \rightarrow 843,8^{+}\right)=1.32+15-14$ and   $11.8 \mathrm{ps}+31-27$ from $\mathrm{B}(\mathrm{E} 1)\left(703,7^{-} \rightarrow 843,8^{+}\right)=0.0000670+78-74$.   E1 M.E. $\left(703,7^{-} \rightarrow 843,8^{+}\right)=+0.031718 ; \mathrm{B}(\mathrm{E} 1) \uparrow=0.0000670+78-74$.   E2 M.E. $\left(550,6^{+} \rightarrow 843,8^{+}\right)=+4.1523 ; B(E 2) \uparrow=1.32+15-14$.   Intrinsic E1 moment: $D_{0}\left(703,7^{-} \rightarrow 843,8^{+}\right)=0.0230 \mathrm{eb}^{1 / 2} 13$.   Intrinsic E2 moment: $\mathrm{Q}_{0}\left(550,6^{+} \rightarrow 843,8^{+}\right)=5.60$ eb 30 .	
$914{ }^{\# C}$	$0^{+}$			
$992{ }^{\text {b }}$	$9^{-}$	$5.1 \mathrm{ps}+17-13$	$\mathrm{T}_{1 / 2}$ : weighted average of $4.9 \mathrm{ps}+17-13$ from $\mathrm{B}(\mathrm{E} 1)\left(843,8^{+} \rightarrow 992,9^{-}\right)=0.000136+24-22$ and $5.9 \mathrm{ps}+40-22$ from $\mathrm{B}(\mathrm{E} 2)\left(703,7^{-} \rightarrow 992,9^{-}\right)=2.40+87-73$.   E1 M.E. $\left(843,8^{+} \rightarrow 992,9^{-}\right)=+0.0484 ; \mathrm{B}(\mathrm{E} 1) \uparrow=0.000136+24-22$.	

Continued on next page (footnotes at end of table)

## Coulomb excitation 2020Bu01 (continued)

${ }^{222} \mathrm{Ra}$ Levels (continued)


$$
\underline{\gamma\left({ }^{(222} \mathrm{Ra}\right)}
$$

Total conversion coefficients are from the Adopted Levels, Gammas dataset, where $\mathrm{E} \gamma$ values are given more precisely than the rounded values in this dataset, taken from 2020Bu01.

$\mathrm{E}_{i}$ (level)	$\mathrm{J}_{i}^{\pi}$	$\mathrm{E}_{\gamma}{ }^{\dagger}$	$\mathrm{I}{ }^{\ddagger}$	$\mathrm{E}_{f}$	$\mathrm{J}_{f}^{\pi}$	Mult. ${ }^{\ddagger}$	$\alpha^{@}$	Comments
111	$2^{+}$	111	100	0.0	$0^{+}$	E2	6.129	
242	$1^{-}$	131	31.215	111	$2^{+}$	(E1)	0.250035	$\mathrm{I} \gamma(131 \gamma, \mathrm{E} 3) / \mathrm{I} \gamma(242 \gamma, \mathrm{E} 1)=1.9 \times 10^{-9} 7$, deduced by evaluators from $B(E 3) / B(E 1)$ ratio.
		242	100.030	0.0	$0^{+}$	E1	0.05758	
301	$4^{+}$	(59)	$7.7 \times 10^{-9} 38$	242	$1^{-}$	[E3]	$5.2 \times 10^{3} 6$	$\mathrm{I} \gamma(59 \gamma, \mathrm{E} 3) / \mathrm{I} \gamma(190 \gamma, \mathrm{E} 2)=7.7 \times 10^{-11} 38$ deduced by evaluators from $\mathrm{B}(\mathrm{E} 3) / \mathrm{B}(\mathrm{E} 2)$ ratio. This $\gamma$ is

[^0]

## Coulomb excitation 2020Bu01 Legend

## Level Scheme

Intensities: Relative photon branching from each level
----- $\quad \gamma$ Decay (Uncertain)


## Coulomb excitation 2020Bu01

# Band(C): Band based on 

914, $0^{+}$
$\left.\underline{(8}^{+}\right)$_ $-\ldots 2000$


$$
{ }_{88}^{222} \mathrm{Ra}_{134}
$$


[^0]:    Continued on next page (footnotes at end of table)

