²²⁶Th α decay (30.72 min) 1976Ku08,1995Ko54,2012Ma30

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, M. S. Basunia, Jun Chen et al.	NDS 192,315 (2023)	25-Sep-2023

Parent: ²²⁶Th: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=30.72 \text{ min } 5$; $Q(\alpha)=6452.5 \ 10$; % $\alpha \text{ decay}=100$

²²⁶Th-T_{1/2}: NRM-weighted average with reduced χ^2 =3.06 of 30.70 min 3 (2012Po13, analysis of seven α -decay curves), 30.83 min 1 (1995Ko54, γ -decay curves for four sources, each counted for five half-lives, uncertainty of 0.01 min gets inflated to 0.06 min in the NRM procedure), 30.57 min 10 (1987Mi10, α -decay curves, weighted average of 39 measurements). Weighted average is 30.82 3, with reduced χ^2 =11.5. LWM-weighted average is 30.76 5, with reduced χ^2 =6.8. Unweighted average is 30.70 8 min. Other: 30.9 min (1948St42).

²²⁶Th-Q(α): From 2021Wa16.

²²⁶Th- $\%\alpha$ decay: $\%\alpha$ =100 for ²²⁶Th decay. 2001Bo11 measured $\%^{18}$ O cluster decay of $<3.2\times10^{-14}$.

Dataset by Balraj Singh, Jun Chen, and IAEA-ICTP-workshop participants: A. Rathi and P.S. Rawat.

1976Ku08: ²³⁰U activity was from decay of ²³⁰Pa produced by natural Thorium target with 100 MeV proton beam at Dubna. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(x ray)$ -coin, ce using two Ge(Li) detectors with volumes of 0.17cm³ and 32cm³ for low and high energy γ -rays and Si(Li) detector for ce measurement. Deduced levels, J, π , α -decay branching ratios, hindrance factors.

1995Ko54: ²³⁰U activity was from decay of ²³⁰Pa produced via ²³²Th(p,3n)²³⁰Pa reaction at 30 MeV. Measured E γ , I γ using HPGe coaxial detector and LEPS detector. Deduced levels, J, π , T_{1/2} of ²²⁶Th and ²²²Ra decay, α -decay branching ratios, hindrance factors.

2012Ma30: source of 18.6 mm diameter prepared from electro-deposition of 230 U solution with activity at starting of order of 1kBq. α -particles were detected using ion-implanted planar silicon detector. Measured E α , I α .

Other measurements or analyses:

2012Po13: source prepared by capturing recoil atoms from open 230 U; measured T_{1/2} of 226 Th and 222 Ra decays; α detection by ion-implanted silicon detector.

2009Mo37: Measured cross sections and thick-target yields; Deuteron irradiations of ²³¹Pa targets; comparison with EMPIRE 3 code; No $E\alpha$, I α data for ²²⁶Th decay.

1991Ry01: Evaluated $E\alpha$ and $I\alpha$ for the two most intense α lines of 6338- and 6229-keV.

1991Ga28: α spectrum contained peaks assigned to ²²⁶Th decay; no E α , I α data; ON-Line Gas chemistry apparatus used.

1988Hu08: α spectrum contained peaks assigned to ²²⁶Th decay; no E α , I α data; measured mass-separated yields using ion-guide separation technique; used natural ²³²Th and radioactive ²³⁰Th targets with 55 MeV proton beam.

1987Mi10: $T_{1/2}$ of ²²⁶Th decay; ²³²Th irradiated with bremsstrahlung beams; solid state detector used for α detection.

1975VaZD: Measured E α , I α ; deduced hindrance factors; JINR magnetic α spectrograph; sources mass-separated from Th.

1974Va28: Measured $E\gamma$, $I\gamma$.

1971He19: ²²⁶Th source prepared by capturing recoil atoms from ²³⁰U on Al foil; $\alpha\gamma(\theta)$, geometrical factor corrections; Ge(Li) and surface barrier detector.

1969Br10: Measured E γ , I γ , ce, $\alpha\gamma$ -, α (ce)-coin, Ge(Li) Detector.

1969Pe17: ²²⁶Th source from successive disintegration of ²³⁰U extracted chemically from Th(p,3n)²³⁰Pa reaction; measured $\alpha\gamma$ -coin, I γ for 111 γ , I α for 6229 α , ce; Si detector.

1967LoZZ (thesis): Source produced by proton irradiation of natural Th; measured ce for 222 Ra using double focusing spectrometer; E γ , I γ using Ge(Li) detector.

1963Le17 (thesis): Sources are produced by irradiation method; $E\alpha$, $I\alpha$, $E\gamma$, $I\gamma$, ce, I_{ce} , $\alpha\gamma$ -, α (ce)-, γ - γ coin; silicon detectors, anthracene and NaI scintillators.

1961Ru06 (thesis): Source by bombarding He ion beam at ²³²Th; $E\alpha$, $I\alpha$, $I\gamma$, $\alpha\gamma$ -, γ - γ coin; ionization chamber and scintillator.

1956As38: Source by collecting recoils from ²³⁰U α -decay; E α , I α , E γ , I γ , $\gamma\gamma$ -coin; electromagnetic spectrograph and NaI scintillator.

1956Sm88: ²³⁰U separated from Th(p,3n)²³⁰Pa reaction, measured E γ using ce for ²³⁰U decay series; beta-ray spectrographs. 1954St02: E α , $\gamma\gamma$ -coin, $\alpha\gamma(\theta)$, NaI(Tl) detector for γ and thin NaI crystal for α .

1948St42: Deuteron and He ion bombardment of Th; $T_{1/2}$ of ²²⁶Th using α -activity from recoils of parent; $E\alpha$ using pulse analyzer.

$^{226}{\rm Th}~\alpha$ decay (30.72 min) 1976Ku08,1995Ko54,2012Ma30 (continued)

²²²Ra Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0.0#	0+	33.6 s 4	
111.134 [#] 9	2^{+}	0.52 ns 4	$T_{1/2}$: adopted value from (6234 α)(ce 111 γ)(t) (1960Be25).
242.157 [@] 9	1-	9.5 ps +21-16	$T_{1/2}$: other: <1.2 ns ((α)(240 γ)(t)) (1956St23).
301.445 [#] <i>13</i>	4+	135 ps +17-14	$T_{1/2}$: other: <1.4 ns ($\alpha(190\gamma)(t)$) (1956St23).
317.385 [@] 13	(3)-	4.7 ps +26-14	
473.74 [@] 20	(5 ⁻)	24 ps +5-9	
914.174 ^{&} 22	(0^{+})		
1024.96 ^{&} 6	(2 ⁺)		J^{π} : gammas to 0^+ and 4^+ levels; possible member of band based on (0^+) .

[†] From a least-squares fit to E γ data. Reduced χ^2 =2.1 is within the 95% confidence limit. [‡] From the Adopted Levels.

Band(A): g.s. band.
@ Band(B): Octupole band, based on 1⁻.

[&] Band(C): Possible band based on (0^+) .

α radiations

Additional information 1.

$\mathrm{E} \alpha^{\dagger}$	E(level)	$I\alpha^{\dagger @}$	HF^{\ddagger}	Comments
(5331.4 [#] 10)	1024.96	1.50×10^{-4} 23	4.6 8	
(5440.2 [#] 10)	914.174	3.3×10 ^{-4#} 4	8.5 9	
(5872.8 [#] 10)	473.74	2.28×10^{-4} # 23	$2.26 \times 10^3 23$	
6027.1 10	317.385	0.230 5	12.42 31	E α : 2012Ma30 give 0.9 keV lower than 6028 5 quoted as from 1991Ry01, which however does have this E α . Other: 6024.5 50 (1975VaZD), 6029 (1956As38); 6026.6 10 from Q(α)-level energy, de-corrected for recoil. I α : others: 0.22.2 (1975VaZD): 0.207.7 from α +ce intensity balance.
6042.5 10	301.445	0.181 4	18.7 5	E α : 2012Ma30 give 2.5 keV higher than 6040 5 in 1975VaZD. Other: 6042.2 10 from Q(α)-level energy, de-corrected for recoil. I α : others: 0.20.2 (1975VaZD): 0.189.7 from α +ce intensity balance.
6100.2 <i>10</i>	242.157	1.266 7	5.02 7	E α : 2012Ma30 give 1.2 keV higher than 6099 5 quoted as from 1991Ry01, which however does have this E α . Others: 6099.5 50 (1975VaZD), 6095 (1956As38); 6100.5 10 from Q(α)-level energy, de-corrected for recoil. I α : other: 1.70 15 (1956As38), 1.2 4 (1963Le17), 1.3 2 (1975VaZD); 1.25 4 from γ +ce intensity balance.
6229.1 10	111.134	22.93 9	1.076 <i>13</i>	Eα: 2012Ma30 give 4.9 keV lower than 6234 5 quoted in 2012Ma30 as from 1991Ry01 based on measured values of 6234 5 (1975VaZD), 6220 3 (1956As38), but the actual value from 1991Ry01 is 6230.7 30. Other: 6229.2 10 from Q(α)-level energy, de-corrected for recoil. Iα: others: 22.8 2 (1969Pe17), 19.0 15 (1956As38), 20 (1961Ru06), 23.0 23 (1975VaZD): 21.4 12 from γ+ce intensity balance.
6338.2 10	0.0	75.39 10	1.0	 Eα: 2012Ma30 give 1.4 keV higher than 6336.8 <i>10</i> recommended by 1991Ry01, based on measured values of 6337.5 <i>50</i> (1975VaZD) and 6330 <i>10</i> (1956As38). Other: 6338.3 <i>10</i> from Q(α), de-corrected for recoil; 6300 (1948St42, also mentioned Eα=6300 25 from re-analysis by A. H. Joffey). Iα: others: 79 (1956As38), 78 (1961Ru06), 75 8 (1975VaZD); 76.9 <i>12</i> from 100-ΣI(γ+ce to g.s.).

²²⁶Th α decay (30.72 min) 1976Ku08,1995Ko54,2012Ma30 (continued)

α radiations (continued)

- [†] From 2012Ma30, unless otherwise noted. Uncertainty for $E\alpha$ is not given in 2012Ma30, but estimated as 1 keV in priv. comm. by the evaluator (B. Singh) with S. Pomme in March 2021. [‡] The nuclear radius parameter $r_0(^{222}Ra)=1.53762$ 45 is deduced from assumed HF=1.0 for the ground-state to ground-state alpha
- decay branch.
- [#] α not observed; $E\alpha$ from Q(α)-level energy, de-corrected for recoil; I α from γ +ce intensity balance at each level.
- [@] Absolute intensity per 100 decays.

$\gamma(^{222}\text{Ra})$

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α #	Comments
(75.13 2)	0.000033 9	317.385	(3)-	242.157	1-	[E2]	36.8 5	%Iγ=0.000033 9 α (L)=27.0 4; α (M)=7.35 10 α (N)=1.940 27; α (O)=0.412 6; α (P)=0.0593 8; α (Q)=0.0001583 22 E _γ : from 1992Ru01 in ²²² Fr β ⁻ . The E _γ value not used in the least-squares fitting procedure. Fitted E _γ =75.228 13. I _γ : from I _γ (75 _γ)/I _γ (206 _γ)=0.017 4/100 10 (1992Ru01. ²²² Fr β ⁻ decay).
111.15 <i>I</i>	3.11 15	111.134	2+	0.0	0+	E2	6.12 9	(1)) 2(40), 1(β) 4(24)). %[γ=3.11 15 $\alpha(K)=0.293 4; \alpha(L)=4.28 6; \alpha(M)=1.166 16$ $\alpha(N)=0.308 4; \alpha(O)=0.0655 9; \alpha(P)=0.00951$ 13; $\alpha(Q)=3.90\times10^{-5} 5$ E _γ : weighted average of 111.15 1 (1995Ko54), 111.12 3 (1976Ku08). Others: 111.1 3 (1956Sm88, from L2, L3, M2, M3, N and O conversion lines using β-ray spectrometer), 112 3 (1956As38), 111 2 (1967LoZZ), 111.3 (1969Pe17), 111 (1969Br10). E _γ : uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=111.135. I _γ : weighted average of 2.908 145 (1995Ko54), 3.290 200 (1976Ku08), 3.3 2 (1969Pe17). Others: 3.8 4 (1961Ru06, author mentioned that intensities are not determined experimentally so limits on error are to be used from previous work 1956As38), 4.8 4 (1956As38). Relative I _γ =100 (1969Br10). Mult.: L12:L3:M23:N=17.0 22:11.6 19:9.5 17:3.2 7 (1967LoZZ), $\alpha(L2)=2.4 4, \alpha(L)=4.1$ 5 (1974Va28). I(ce) values given here were normalized to Ice(K)(230y of ²²⁶ Ac decay)=5.45. For absolute I(ce) values per 100α decays, multiply by 0.269 18. Value of $\alpha(exp)=6.24 25$ was deduced by 1969Pe17 from $\alpha\gamma$ -coin data. Other: L/M+N+=3.12 (1969Br10)
131.04 1	0.270 <i>13</i>	242.157	1-	111.134	2+	(E1)	0.2499 35	% Iy=0.270 13 α (K)=0.1957 27; α (L)=0.0411 6; α (M)=0.00988 14 α (N)=0.00257 4; α (O)=0.000565 8; α (P)=9.02×10 ⁻⁵ 13; α (Q)=4.85×10 ⁻⁶ 7 E _y : weighted average: 131.04 1 (1995Ko54),

²²⁶ Th α decay (30.72 min)	1976Ku08,1995Ko54,2012Ma30 (continued)
--	--

$\gamma(^{222}\text{Ra})$ (continued) $I_{\gamma}^{\dagger\ddagger}$ α**#** E_{γ}^{\dagger} E_i(level) J_i^{π} \mathbf{J}_{f}^{π} Mult. Comments \mathbf{E}_{f} 131.02 5 (1976Ku08). Other: 131 5 (1956As38), 131 (1969Br10). E_{ν} : uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=131.021. I_γ: weighted average: 0.262 13 (1995Ko54), 0.278 13 (1976Ku08). Others: 0.4 1 (1956As38), 0.3 1 (1961Ru06, author mentioned that intensities are not determined experimentally so limits on error are to be used from previous work 1956As38). Relative $I\gamma = 11$ (1969Br10). Mult.: from intensity balance. No ce lines were observed (1969Br10). 2.02×10⁻⁴ 20 172.3 2 473.74 (5^{-}) 301.445 4+ [E1] 0.1289 18 %Iy=0.000202 20 *α*(K)=0.1022 *15*; *α*(L)=0.02028 *29*; a(M)=0.00486 7 $\alpha(N)=0.001268 \ 18; \ \alpha(O)=0.000280 \ 4;$ $\alpha(P)=4.55\times10^{-5}$ 7; $\alpha(Q)=2.62\times10^{-6}$ 4 E_γ: weighted average: 172.3 2 (1995Ko54), 172.3 3 (1976Ku08). I_{γ} : weighted average: 0.00030 15 (1995Ko54), 0.00020 2 (1976Ku08, γ observed only in $\gamma\gamma$ -coin in this work). 190.31 *1* 0.111 4 301.445 4^{+} 111.134 2+ E2 0.701 10 $%I\gamma = 0.111 4$ $\alpha(K)=0.1776\ 25;\ \alpha(L)=0.385\ 5;\ \alpha(M)=0.1041$ 15 $\alpha(N)=0.0275$ 4; $\alpha(O)=0.00589$ 8; $\alpha(P)=0.000871$ 12; $\alpha(Q)=8.45\times10^{-6}$ 12 E_{γ} : weighted average: 190.31 *l* (1995Ko54), 190.30 5 (1976Ku08). Other: 197 10 (1956As38), 188 (1969Br10). I_{γ} : weighted average: 0.112 4 (1995Ko54), 0.109 6 (1976Ku08). Others: 0.40 5 (1956As38), 0.30 5 (1961Ru06, author mentioned that $I\gamma$ are not determined experimentally so limits on error are to be used from previous work 1956As38). Relative $I\gamma = 3.3$ (1969Br10). Mult.: from ce data of 1976Ku08 (measured ce intensities were not given). Only E2 multipolarity yields an intensity balance at the 301.42-keV level. Other: L/M+N+=1.8 (1969Br10), I(ce)=0.4 (1956As38). 206.25 1 0.191 6 317.385 111.134 2+ E1 0.0838 12 %Iy=0.191 6 $(3)^{-}$ α(K)=0.0669 9; α(L)=0.01288 18; a(M)=0.00308 4 *α*(N)=0.000804 *11*; *α*(O)=0.0001786 *25*; $\alpha(P)=2.93\times10^{-5}$ 4; $\alpha(Q)=1.757\times10^{-6}$ 25 E_{γ} : weighted average: 206.25 *l* (1995Ko54), 206.23 5 (1976Ku08). Other: 207 (1969Br10). I_{γ}: weighted average: 0.192 6 (1995Ko54), 0.189 8 (1976Ku08). Relative $I_{\gamma}=5.5$ (1969Br10). Mult.: from ce data of 1976Ku08 (measured ce intensities were not given). Only E1

		²²⁶ Th	α decay	(30.72 m	in)	1976Ku08,1995Ko54,2012Ma30 (continued)			
			ontinued)						
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult.	α #	Comments	
242.14 <i>I</i>	0.866 26	242.157	1-	0.0	0+	E1	0.0575 8	multipolarity is consistent with the intensity balance at the 317.35 level. Other: I(ce)/I $\gamma \le 0.04$ (1969Br10). %I $\gamma = 0.866\ 26$ $\alpha(K) = 0.0461\ 6;\ \alpha(L) = 0.00866\ 12;$ $\alpha(M) = 0.002068\ 29$ $\alpha(N) = 0.000541\ 8;\ \alpha(O) = 0.0001204\ 17;$ $\alpha(P) = 1.990 \times 10^{-5}\ 28;\ \alpha(Q) = 1.236 \times 10^{-6}\ 17$	
672.02 2	0.00029 2	914.174	(0+)	242.157	1-	[E1]	0.00661 <i>9</i>	$E_{\gamma}: weighted average: 242.14 1(1995Ko54), 242.12 5 (1976Ku08).Other: 242 3 (1956As38), 242(1969Br10).Iγ: weighted average: 0.866 26(1995Ko54), 0.866 40 (1976Ku08).Others: 1.2 1 (1956As38), 1.2 4(1963Le17), 0.9 1 (1961Ru06, authormentioned that intensities are notdetermined experimentally so limits onerror are to be used from previous work1956As38).Relative Iγ=29 (1969Br10),Mult.: from α(K)exp≈0.06 (estimated bythe evaluator from the (α)(ce) spectrumshown by 1969Br10).%Iγ=0.00029 2α(K)=0.00542 8; α(L)=0.000904 13;α(M)=0.0002132 30$	
707.52 9	0.00005 1	1024.96	(2+)	317.385	(3)-	[E1]	0.00600 8	α (N)=5.59×10 ⁻⁵ 8; α (O)=1.264×10 ⁻⁵ 18; α (P)=2.166×10 ⁻⁶ 30; α (Q)=1.588×10 ⁻⁷ 22 E _y : weighted average: 672.02 2 (1995Ko54), 671.9 3 (1976Ku08). I _y : weighted average: 0.00029 2 (1995Ko54), 0.00028 3 (1976Ku08). %I _y =0.00005 1 α (K)=0.00492 7; α (L)=0.000817 11; α (M)=0.0001926 27	
722.9 4	7×10 ⁻⁶ 3	1024.96	(2+)	301.445	4+	[E2]	0.01714 24	$\alpha(N)=5.05\times10^{-5} 7; \ \alpha(O)=1.143\times10^{-5} 16; \alpha(P)=1.960\times10^{-6} 27; \ \alpha(Q)=1.446\times10^{-7} 20 E_{\gamma}: weighted average: 707.52 9 (1995Ko54), 707.5 5 (1976Ku08). I_{\gamma}: weighted average: 0.00005 1 (1995Ko54), 0.00006 2 (1976Ku08). \%I_{\gamma}=0.000007 3 \alpha(K)=0.01255 18; \ \alpha(L)=0.00345 5; \alpha(M)=0.0002271 32; \ \alpha(O)=5.05\times10^{-5} 7; \alpha(P)=8.31\times10^{-6} 12; \ \alpha(Q)=4.40\times10^{-7} 6 E_{\gamma}, I_{\gamma}: from 1995Ko54. WI = 0.00026 12 A = 0.00005 1 C = 0.00005 1 C = 12 $	
183.0 3	J.0×10 ° 12	1024.90	(2.)	242.137	1	[E]	0.00490 /	$\alpha(K) = 0.000036 \ 12$ $\alpha(K) = 0.00408 \ 6; \ \alpha(L) = 0.000672 \ 9;$ $\alpha(M) = 0.0001582 \ 22$ $\alpha(N) = 4.15 \times 10^{-5} \ 6; \ \alpha(O) = 9.40 \times 10^{-6} \ 13;$	

		²²⁶ Th α decay (30.72 min)				1976Ku08,1995Ko54,2012Ma30 (continued)			
	γ ⁽²²² Ra) (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	a#	Comments	
								$\begin{array}{c} \alpha(\mathrm{P}) = 1.615 \times 10^{-6} \ 23; \ \alpha(\mathrm{Q}) = 1.205 \times 10^{-7} \\ 17 \\ \mathrm{E}_{\gamma}: \ \text{weighted average: } 782.9 \ 5 \ (1995\mathrm{Ko54}), \\ 783.0 \ 5 \ (1976\mathrm{Ku08}). \\ \mathrm{I}_{\gamma}: \ \text{weighted average: } 0.000052 \ 10 \\ (1995\mathrm{Ko54}), \ 0.00009 \ 3 \ (1976\mathrm{Ku08}). \end{array}$	
802.7 1	3.7×10 ⁻⁵ 24	914.174	(0+)	111.134	2+	[E2]	0.01385 19	%I γ =0.000037 24 α (K)=0.01035 14; α (L)=0.00263 4; α (M)=0.000651 9 α (N)=0.0001717 24; α (O)=3.83×10 ⁻⁵ 5; α (P)=6.35×10 ⁻⁶ 9; α (Q)=3.59×10 ⁻⁷ 5 E $_{\gamma}$: poor fit in the level scheme, level-energy difference=803.036; uncertainty multiplied by a factor of 2 in the fitting procedure. E $_{\gamma}$: weighted average: 802.7 1 (1995Ko54), 802.7 5 (1976Ku08). E $_{\gamma}$: uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=803.037. I $_{\gamma}$: unweighted average: 0.000013 4 (1995Ko54), 0.00006 2 (1976Ku08)	
913.9 <i>4</i> ×929.5 2	3.3×10 ⁻⁵ 16 0.020 6	1024.96	(2+)	111.134	2+			(1995K054), 0.00000 2 (1976K008). %Iγ=0.000033 <i>16</i> E _γ ,I _γ : from 1995Ko54. %Iγ=0.020 <i>6</i> E _γ ,I _γ : from 1995Ko54. In ²²² Fr β ⁻ decay, Eγ=929.47 8 is reported in 1992Ru01 from an 1171.6 level, but there are several other γ rays of comparable intensities in 1992Ru01, which are not reported in 1995Ko54.	
(1025.02 8)	3.6×10 ⁻⁶ 8	1024.96	(2+)	0.0	0+	[E2]	0.00859 12	% Iy=0.0000036 8 $\alpha(K)=0.00666 9; \alpha(L)=0.001456 20; \alpha(M)=0.000356 5$ $\alpha(N)=9.36\times10^{-5} 13; \alpha(O)=2.104\times10^{-5} 29; \alpha(P)=3.55\times10^{-6} 5; \alpha(Q)=2.256\times10^{-7} 32$ Ey: from 1992Ru01 in ²²² Fr β^- decay. Iy: Iy(1025y)/Iy(707y+783y)=0.060 $10/1.76 9$ (1992Ru01, ²²² Fr β^-) gives Iy(1025y)=0.0000036 8, which is adopted here.	

[†] Weighted or unweighted average of the listed values, as specified in comments. Measured values are mainly from 1995Ko54 and 1976Ku08.

[‡] Absolute intensity per 100 decays.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

6

 $^{222}_{88}$ Ra₁₃₄

²²⁶Th α decay (30.72 min) 1976Ku08,1995Ko54,2012Ma30

