Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh, M. S. Basunia, Jun Chen et al.,	NDS 192,315 (2023)	25-Sep-2023		

 $Q(\beta^{-}) = -221 \times 10^{1} \ 10; \ S(n) = 638 \times 10^{1} \ 11; \ S(p) = 2160 \ 90; \ Q(\alpha) = 8790 \ 60 \ 2021 Wa16$

 $Q(\varepsilon)=4860\ 90,\ S(2n)=14360\ 90,\ S(2p)=6260\ 90\ (2021Wa16).$

Production and identification of ²²²Pa:

1970Bo13: ²⁰⁹Bi(¹⁶O,3n), ²⁰⁶Pb(¹⁹F,3n), excitation function; parent of ²¹⁸Ac from 9210α.

1979Sc09: 184 W(40 Ar,pn),E=165-202 MeV, excitation function; parent of 218 Ac from 9210 α ; and parent of 214 Fr from 8430 α . Additional information 1.

2019Mi08: ²²²Pa produced in ¹⁸¹Ta(⁴⁸Ca,X),E=212,217,226 MeV fusion-evaporation reactions at the UNILAC accelerator of GSI, followed by separation of evaporation residues (ERs) using the SHIP velocity filter and implanted into the COMPAct Spectroscopy Set-up (COMPASS). Measured E α and half-life of ²²²Pa decay from time correlations between ERs and α particles.

2021Hu18: ²²²Pa produced in ¹⁸⁶W(⁴⁰Ar,p3n),E=198.7 MeV. The evaporation residues (ERs) were separated in-flight by the

gas-filled recoil separator SHANS and implanted in three 16-strip position-sensitive silicon detectors (PSSDs) at the IMP-Lanzhou facility. ²²²Pa identified by ERs- α - α - α time and position correlations. Measured E α , I α , and T_{1/2} of g.s. of ²²²Pa.

Theoretical calculations for α decay:

2023Za01: calculated $T_{1/2}$ for α decay using the generalized liquid-drop model with a 1977 nuclear proximity potential.

2022He18: calculated α -decay T_{1/2}, α -preformation factor using density-dependent cluster model with RMF NN interactions, M3Y NN interactions and universal decay law (UDL) formula.

2021Sa52: calculated Q(2α), T_{1/2} for 2α -decay with and without the deformation effects using the modified generalized liquid drop model, and Coulomb and proximity potential model with different preformation factors for double α decay.

2018De17: calculated α -decay preformation factors using cluster-formation model (CFM) and $T_{1/2}(\alpha)$ using a 1977 proximity potential (Prox. 1977).

2017Se19: calculated difference between proton and neutron skin thicknesses, $Q(\alpha)$ using Hartree-Fock-Bogoliubov (HFB) method, based on the Skyrme-like effective interactions.

²²²Pa Levels

Cross Reference (XREF) Flags

A 226 Np α decay (44 ms)

T _{1/2}	XREF	Comments
3.8 ms 6	A	$%\alpha$ =100 Only the α decay has been observed for the decay of ²²² Pa. Theoretical partial T _{1/2} =21.3 s for ²²² Pa ε decay (2019Mo01) gives %ε+%β ⁺ =0.02. Other: %ε+%β ⁺ ≈4×10 ⁻⁴ from gross β ⁻ decay calculations (1973Ta30). Additional information 2.
		 E(level): observed activity is assumed to correspond to the g.s. of ²²²Pa. T_{1/2}: unweighted average of 2.76 ms +43-33 (2021Hu18, ²²²Pa fragments and α decay correlated decay curve); 4.5 ms 3 (2019Mi08, time correlations between ²²²Pa fragments and subsequent α decays); 3.3 ms 3 (1995AnZY); 2.9 ms +6-4 (1979Sc09); 5.7 ms 5 (1970Bo13). Weighted average is 3.85 ms 47, but with large reduced χ² of 7.7 versus 2.4 at 95% confidence level.
	A A	
	T _{1/2} 3.8 ms 6	$\frac{T_{1/2}}{3.8 \text{ ms } 6} \frac{\text{XREF}}{\text{A}}$