²²⁶Ac α decay (29.37 h) 1987Mi10,1975VaZD

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh, M. S. Basunia, Jun Chen et al. , NDS 192,315 (2023)

25-Sep-2023

Parent: 226 Ac: E=0; J^{π} =(1⁻); $T_{1/2}$ =29.37 h 12; $Q(\alpha)$ =5506 8; % α decay=0.006 2

- ²²⁶Ac-J^π: Three hyperfine-structure peaks in hyperfine spectrum Fig. 2 in 2019Ve07 suggest spin of 1. Measured magnetic moment of +1.06 5 is reasonably well reproduced by the empirical values deduced from additivity rule applied to the experimental magnetic moments of the ground states of ²²⁷Ac (J^{π} =3/2⁻, dominant π 3/2[532]); ²²⁵Ac (J^{π} =3/2⁻, mixed π 3/2[532] and π 3/2[651] configurations, as given in 2019Ve07); and ²²⁵Ra (J^{π} =1/2⁺, dominant ν 1/2[631]) (2019Ve07), suggesting negative parity for the ground state of ²²⁶Ac.
- ²²⁶Ac-T_{1/2}: measured by 1987Mi10, α-decay curve for 14 different measurements. Other measurement: 29 h (quoted by 1950Me08 from a private communication from K. Street, Jr., unpublished data; also quoted in a book by 1964Hy02 from a private communication from 1952Sk82). 1964Hy02 and 1952Sk82 references not available to the evaluators.

 226 Ac-Q(α): From 2021Wa16.

- ²²⁶Ac-%α decay: Measured %α=0.006 2 (1975VaZD).
- 1987Mi10: 226 Ac formed 232 Th(γ ,X),E=40-150 MeV, using 40-80 μ g/cm² thick target and bremsstrahlung beam. Measured α -radiation using a solid-state detector, and deduced half-life of 226 Ac decay.
- 1974Va28, 1975VaZD: 226 Ac produced in Th(p,X),E(p)=600–MeV. Measured E γ , I γ , I α . 1975VaZD deduced α branching from β^- and ε branchings measured by 1974Va28.
- 1950Me08: 226 Ac produced in Th(d,X),E(d)=60 MeV at the Berkeley 184-in cyclotron. 226 Ac identified by α particle emission from 226 Th daughter. Half-life of 29 h was quoted in this paper from a private communication with K. Street, Jr. See 1948Se40 (Table of Isotopes, p635) for firm identification of 226 Ac as β^- parent of 226 Th and reference to K. Street, R.A. James and G.T. Seaborg, unpublished data, July 1948. See also 2013Fr03 for the first identification of 226 Ac isotope.

²²²Fr Levels

 $\frac{\text{E(level)}}{0} \quad \frac{\text{J}^{\pi}}{2^{-}} \quad \frac{\text{T}_{1/2}}{14.2 \text{ min } 3} \quad \frac{\text{Comments}}{\text{J}^{\pi}, \text{T}_{1/2}: \text{ from the Adopted Levels.}}$

α radiations

E α E(level)I α *HF†Comments5399 5010058 20E α : measurement by 1975VaZD. Other measurement: 1964Mc21.
I α : only one α group has been observed, thus assumed 100%.

[†] The nuclear radius parameter $r_0(^{222}Fr)=1.53825\ 28$ is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides from 2020Si16.

 $^{^{\}ddagger}$ For absolute intensity per 100 decays, multiply by 6×10^{-5} 2.