Adopted Levels

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, M. S. Basunia, Jun Chen et al.,	NDS 192,315 (2023)	25-Sep-2023

 $Q(\beta^{-})=4581 \ 16; \ S(n)=3901 \ 21; \ S(p)=6110 \ 25; \ Q(\alpha)=5310 \ 30 \ 2021Wa16$

S(2n)=9565 21, S(2p)=14580 300 (syst) (2021Wa16).

1989Bu09: ²²²At produced and identified in ²³²Th(p,X),E=600 MeV by spallation with a negative ion source where chemically pure beams of halogen elements were produced at the ISOLDE-CERN facility. The reaction products were mass separated, and the half-life of ²²²At decay, as well as the isotopic yield were measured.

2010Li02: measured mass excess using Schottky mass spectrometry at GSI.

2010Al24: measurement of production cross-section in ${}^{9}Be({}^{238}U,X),E=1$ GeV/nucleon reaction at GSI.

Theoretical calculations:

2022Xu10: calculated α -decay half-life using an improved semi-empirical formula.

2021Sa52: calculated Q(2α), T_{1/2}(2α) with and without deformation effects using modified generalized liquid drop model (MGLDM), Coulomb and proximity potential model (CPPM) for double α decay.

2012Zh46: calculated binding energy, rotational correction energy, β_2 using covariant density functional theory with the point-coupling interaction PC-PK1.

²²²At Levels

E(level)	T _{1/2}	Comments
$\frac{E(\text{level})}{0}$ 5	54 s 10	 %β⁻=100 Only the β⁻ decay mode has been observed. Measured yield=110 atoms/s (1989Bu09) in ²³²Th(p,X),E=600 MeV. E(level): observed activity is assumed to correspond to the ground state of ²²²At. T_{1/2}: measured by 1989Bu09 from β⁻ decay curve. Theoretical β-decay half-life of 25.8 s and 10^{11.8} s for α decay in 2019Mo01 suggest dominant β decay mode. Other theoretical T_{1/2} for β decay: ≈100 s (1973Ta30, β-decay gross theory); 21.5 s (1984K106, microscopic theory using Tamm-Dancoff approximation (TDA)).