Adopted Levels, Gammas

History									
Туре				Author	Citation	Literature Cutoff Date			
Full Evaluation Ashok Ja		Ashok Jain,	Sukhjeet	Singh, Suresh Kumar, Jagdish Tuli	NDS 108,883 (2007)	15-Jan-2007			
$Q(\beta^{-}) = -1.56 \times 10^{-10}$ Note: Current ev	0^3 5; S(n)=5 valuation has	5378 <i>10</i> ; S(p s used the fo)=5808 6; llowing Q	$\begin{array}{llllllllllllllllllllllllllllllllllll$	08 6 6880.4 20 2003	Au03.			
				²²¹ Ra Levels					
				Cross Reference (XREF) Flag	8				
				A 225 Th α decay B 210 Pb(14 C,3n γ)					
E(level) [†]	J ^{π‡}	T _{1/2}	XREF		Comments				
0.0 [#]	5/2+	28 s 2	Α	 %α=100 μ=-0.1799 <i>17</i> (1988Ah02,2005St24); Q=1.98 <i>11</i> (1989Ne03,2005St24) μ,Q: LASER. Other Q measurement: 1.90 <i>20</i> (1988Ah02). J^π: spin was measured (1988Ah02; LASER spectroscopy). Parity from measured magnetic dipole moment. Magnetic dipole moment and electric quadrupole moment were calculated by 1988Ah02 for the 5/2[633] orbital, and by 1988Le13 for K=5/2, including octupole deformation with β₂≈β₃≈0.1, by using the reflection-asymmetric rotor model. T_{1/2}: from 1958To25. Other measurement: 30 s 2 (1951Me10). ¹⁴C decay was not observed: <1.2×10⁻¹¹ % (1986Ba26,1985Pr01). See 1991Cw01 for level energy calculations. For calculated heavy-ion emission rates, see 1985Po14, 1986De32, 1986Gr20, 1986Ir01, 1986Pi11, 1986Po15, 1987Sh04, 1988Ba01, 1988B111, 1988Sh29, 1989Bu06, 1989Ci03 and 1990Sh01. 					
53.14 [#] 8	$(7/2)^+$		Α	J^{π} : 53.2 γ to 5/2 ⁺ g.s. is M1; α hindrance factor and level are consistent with its being the 7/2 member of the g.s. rotational band					
103.61 [@] 11	$(5/2)^{-}$	A J^{π} : 103.5 γ to 5/2 ⁺ g.s. is E1: 50.5 γ to (7/2) ⁺ level.							
121.95 [#] 10	$(9/2^+)$	A J^{π} : 68.8 γ to (7/2) ⁺ is (M1).							
146.81 [@] 20	(7/2) ⁻		A	J ^{π} : 146.8 γ to 5/2 ⁺ g.s. is E1. Assignment as the 7/2 ⁻ member of the K=5/2 band was proposed by 1989Ac01.					
174? 5			Α						
210.9 [@] 4 299.16 8	$(11/2^+)$ $(7/2)^+$		B A	J ^{π} : 299.2 and 246.0 γ 's to 5/2 ⁺ and (7/2) ⁺ levels are M1. From the low hindrance factor for the α decay from 3/2 ⁺ ²²⁵ Th, 1989Ac01 suggested that this level contains a large K=3/2 amplitude, and suggested the possibility of octupole deformation.					
318.9 [#] 5	$(13/2^+)$		В						
321.39 ^{&} 9	$(3/2)^+$		A	J ^π : 321.4γ to 5/2 ⁺ is M1. K=3/2 o by 1989Ac01.	rbital with octupole defo	ormation was suggested			
341.5 [@] 5	$(13/2^{-})$		В						
359.02 ^{&} 8	$(5/2)^+$		A	J ^{π} : 305.9 and 359.0 γ 's to 5/2 ⁺ and consistent with the assignment.	d $(7/2)^+$ levels are M1;	α hindrance factor is			
438.0 [@] 5	$(15/2^+)$		В						
440.4 ^{#} 5	$(15/2^{-})$		В						
450.33 16	<i>I</i> 6 (5/2 ⁻) A J^{π} : 151.2 γ to (7/2) ⁺ level is (E1); 128.9 γ to (3/2) ⁺ level.								
485.41 11	$(3/2^{-}, 5/2^{-})$.)	A	J ^{π} : 164.0 and 126.4 γ 's to (3/2) ⁺ a	nd $(5/2)^+$ levels are (E1).			
566.0 ^w 5	$(17/2^{-})$		В						

Adopted Levels, Gammas (continued)

²²¹Ra Levels (continued)

E(level) [†]	J ^π ‡	XREF	E(level) [†]	Jπ‡	XREF	E(level) [†]	Jπ‡	XREF
573.1 ^{#} 5	$(17/2^+)$	В	866.9 [#] 5	$(21/2^+)$	В	1197.4 [#] 6	$(25/2^+)$	В
688.4 [#] 5	(19/2 ⁻)	В	990.4 [#] 5	$(23/2^{-})$	В	1344.4 [#] 6	$(27/2^{-})$	В
711.6 [@] 5	$(19/2^+)$	В	1025.9 [@] 5	$(23/2^+)$	В	1375.8 [@] 6	$(27/2^+)$	В
849.6 [@] 5	$(21/2^{-})$	В	1180.5 [@] 6	$(25/2^{-})$	В			

[†] From least-squares adjustment of $E\gamma$.

[±] Based on suggested band assignments and other arguments given. J^{π} for levels seen only in (¹⁴C,3n γ) are from 1991Fe07 based on DCO-deduced multipolarities and band assignments. Similar band structure has been observed in ²²³Th isotone (1991Fe07).

Band(A): 5/2[633].

[@] Band(B): 5/2[752]. [&] Band(C): K=3/2.

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α #
53.14	$(7/2)^+$	53.2.2		$0.0 5/2^+$	M1(+E2)	0.22 + 10 - 22	29.8
103.61	$(5/2)^{-}$	50.5 2	13 4	$53.14 (7/2)^+$	()		
	.,,	103.5 2	100 20	$0.0 5/2^+$	E1		0.1022
121.95	$(9/2^+)$	68.8 2	100 10	53.14 (7/2)+	(M1)		9.77
		121.9 2	24 6	$0.0 5/2^+$			
146.81	$(7/2)^{-}$	146.8 2		$0.0 5/2^+$	E1		0.1919
210.9	$(11/2^+)$	89.0 <i>3</i>	100	$121.95 (9/2^+)$			
299.16	$(7/2)^+$	177.2 <i>1</i>	19.1 9	121.95 (9/2+)			
		246.0 1	100 3	$53.14 (7/2)^+$	M1		1.294
		299.2 1	16 <i>3</i>	$0.0 5/2^+$	M1		0.753
318.9	$(13/2^+)$	108.0 <i>3</i>	100	210.9 (11/2 ⁺)			
321.39	$(3/2)^+$	217.7 2	1.7 3	103.61 (5/2)-	(E1)		0.0744
		321.4 <i>I</i>	100	$0.0 5/2^+$	M1		0.619
341.5	$(13/2^{-})$	130.6 <i>3</i>	100	$210.9 (11/2^+)$	E1		
359.02	$(5/2)^+$	212.0	4.4 22	146.81 (7/2)-			
		305.9 1	100 10	53.14 (7/2)+	M1		0.709
		359.0 <i>1</i>	100 12	$0.0 5/2^+$	M1		0.458
438.0	$(15/2^+)$	96.5 <i>3</i>	100	341.5 (13/2 ⁻)	E1		
440.4	$(15/2^{-})$	121.5 <i>3</i>	100	318.9 (13/2 ⁺)	E1		
450.33	$(5/2^{-})$	128.9 2	22 5	321.39 (3/2)+			
		151.2 2	100 8	299.16 (7/2)+	(E1)		0.179
485.41	$(3/2^{-}, 5/2^{-})$	126.4 2	45 10	359.02 (5/2)+	(E1)		0.277
		164.0 2	100 36	321.39 (3/2)+	(E1)		0.1471
		381.8 2	88 18	103.61 (5/2)-			
		485.4 2	18 6	$0.0 5/2^+$			
566.0	$(17/2^{-})$	128.0 <i>3</i>	100	438.0 (15/2 ⁺)	E1		
		224.5 [@] 3	21	$341.5 (13/2^{-})$			
573.1	$(17/2^+)$	132.7 <i>3</i>	100	440.4 (15/2-)			
		254.2 <i>3</i>	48	$318.9 (13/2^+)$			
688.4	$(19/2^{-})$	115.3 <i>3</i>	100	573.1 (17/2+)	E1		
		248.0 <i>3</i>	28	440.4 (15/2 ⁻)	E2		
711.6	$(19/2^+)$	145.6 <i>3</i>	100	566.0 (17/2-)	E1		
		273.6 <i>3</i>	43	$438.0 (15/2^+)$			
849.6	$(21/2^{-})$	138.0 <i>3</i>	100	711.6 (19/2+)	E1		
		161.2 <i>3</i>	32	688.4 (19/2 ⁻)			
		283.6 <i>3</i>	25	566.0 (17/2 ⁻)	E2		

 γ (²²¹Ra)

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult.
866.9	$(21/2^+)$	178.5 <i>3</i>	100	688.4	$(19/2^{-})$	E1
		293.8 <i>3</i>	28	573.1	$(17/2^+)$	E2
990.4	$(23/2^{-})$	123.5 <i>3</i>	100	866.9	$(21/2^+)$	
		140.8 <i>3</i>	39	849.6	$(21/2^{-})$	
		302.0 <i>3</i>	78	688.4	$(19/2^{-})$	E2
1025.9	$(23/2^+)$	176.3 <i>3</i>	100	849.6	$(21/2^{-})$	E1
		314.3 <i>3</i>	43	711.6	$(19/2^+)$	
1180.5	$(25/2^{-})$	154.6 <i>3</i>	100	1025.9	$(23/2^+)$	
		330.9 <i>3</i>	84	849.6	$(21/2^{-})$	E2
1197.4	$(25/2^+)$	207.0 3	100	990.4	$(23/2^{-})$	E1
		330.5 <i>3</i>	53	866.9	$(21/2^+)$	
1344.4	$(27/2^{-})$	147.0 <i>3</i>	74	1197.4	$(25/2^+)$	
		354.0 [@] 3	100	990.4	$(23/2^{-})$	
1375.8	$(27/2^+)$	195.2 <i>3</i>	100	1180.5	$(25/2^{-})$	
		349.8 [@] 3	47	1025.9	$(23/2^+)$	

[†] Relative photon intensities deexciting each level.

[‡] From α decay, (¹⁴C,3n γ). Multipolarities for transitions in (¹⁴C,3n γ) are based on DCO ratios. See (¹⁴C,3n γ) for multipolarities suggested by 1991Fe07 but not adopted here.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $\gamma(^{221}\text{Ra})$ (continued)

²²¹₈₈Ra₁₃₃

²²¹₈₈Ra₁₃₃

Adopted Levels, Gammas

²²¹₈₈Ra₁₃₃