Adopted Levels

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh ENSDF 15-Jun-2013

 $Q(\beta^{-})=2991\ 24;\ S(n)=3561\ 26;\ S(p)=8330\ SY;\ Q(\alpha)=5110\ SY$ 2012Wa38

Estimated uncertainty of 300 for S(p) and $Q(\alpha)$.

S(2n)=9050 25, S(2p)=15080 400 (syst) (2012Wa38).

2010Ch19, 2012Ch19: ²²¹Po isotope produced and identified in ⁹Be(²³⁸U,X),E=670 MeV/nucleon fragmentation reaction, separated by Fragment Recoil Separator (FRS) at GSI facility. The fragments were then injected into the electron cooler experimental storage ring (ESR) for mass and half-life measurement of ²²¹Po g.s. by time-resolved Schottky Mass spectrometry technique.

2010Al24: 221 Po produced in 9 Be(238 U,X),E=1 GeV/nucleon, reaction products analyzed by FRS at GSI facility, measured production σ and compared with COFRA and EPAX calculations.

Mass measurement: 2012Ch19, 2010Ch19.

2012Zh46, 1983Sa22: theoretical calculations of binding energies and and other properties.

Alvarez Pol, 2010Al24).

2012Sa31: theoretical calculation of half-life for cluster decay.

²²¹Po Levels

E(level) $T_{1/2}$ Comments $\begin{array}{c}
T_{1/2} \\
0 \\
112 \text{ s} + 58 - 28
\end{array}$ Main decay mode possible is only β^- . From theoretical $T_{1/2}(\alpha) = 10^{+8.4}$ s and $T_{1/2} = 3.2$ s (1997Mo25), α decay mode is expected to be negligible. $Q(\beta^- n)$ is negative thus this decay mode is not possible. $T_{1/2}$: measured by 2010Ch19 for highly-charged (probable mixture of bare, H-like and He-like) ions. J^{π} : $9/2^+$ (syst,2012Au07), $3/2^+$ (theoretical prediction,1997Mo25). Production $\sigma = 0.000116$ mb in ${}^9\text{Be}({}^{238}\text{U},\text{X})$,E=1 GeV/nucleon (e-mail reply of Oct 29, 2010 from H.