Adopted Levels, Gammas

		History				
Туре	Author	-	Citatio	n	Literature Cutoff Date	
Full Evaluation	Ashok Jain, Sukhjeet Singh, Suresh	Kumar, Jagdish Tuli	NDS 108,883	3 (2007)	15-Jan-2007	
$Q(\beta^{-})=314$ 7; $S(n)=6276$ 7 Note: Current evaluation has	$S(p) = 4624 5; Q(\alpha) = 6457.8 14 20$ as used the following Q record 314	12Wa38 6 6276 6 4624	5 6457.8 14	2003Au03		

²²¹Fr Levels

1977LiYX and 1990Li46 suggest strong coriolis coupling among parity doublet bands, $K^{\pi}=1/2\pm$ and $3/2\pm$. See 1977LiYX for levels calculated including couplings between 1/2[541], 3/2[521] and 3/2[532] bands, and for amplitudes of each state in these bands. See 1988Le13 for energies of states calculated in a model by coupling a deformed shell model including octupole deformation to a reflection-asymmetric rotor core. See 1992Kv03 for intrepretation of levels in terms of quasipartice plus phonon model.

Cross Reference (XREF) Flags

A	225 Ac α decay
В	221 Rn β^- decay

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0 [‡]	5/2-	4.9 min 2	AB	%α=100; %β ⁻ <0.1 μ=+1.58 3 (1985Co24,1987Du13,2005St24) Q=-0.98 6 (1985Co24,2005St24) Limit on %β ⁻ was determined from absence of ²²¹ Ra α groups in the decay of ²²¹ Fr (1964Va20). ¹⁴ C decay observed by 1994Bo28, 1986Ba26,1985Pr01. See 1989Ci03, 1988Sh29, 1988B111, 1987Sh04, 1987Pr08, 1986Ir01,1986Gr20 and 1990Sh01 for calculations of partial T _{1/2} (¹⁴ C); see 1986Pr06 for calculations of decay rates by ¹⁴ C, ¹² C, ⁸ Be, ¹⁵ N, ¹³ C, ¹¹ B, ¹⁶ O and ¹⁵ C emission. μ: For calculated values, see 1986Ek02 and 1988Le13. Q: LASER spectroscopy. J ^π : spin measured by 1978Ek02 (atomic-beam magnetic resonance). Parity from magnetic moment. See 1986Ek02 and 1987Co19 for deduced deformation parameters. Isotope shift relative to ²¹² Fr (d2 line): -23570 2 MHZ (1986Ba45), -23569 8 MHZ (1987Co19). T _{1/2} : from 1967LoZZ. Other values: 5 min (1947En03), 4.8 min (1950Ha52).
26.00 [‡] 4	(1/2)-		AB	J^{π} : parity from E1 character of 73.9 γ from 99.85-keV level. The 526.09 γ from (3/2 ⁻) state at 552.05 keV rules out 9/2 ⁻ assignment. The 74.6-keV transition from 100.89-keV level is (M1+E2) in conflict with Δ' (J).
36.64 [@] 4	$(3/2)^{-}$	1.5 ns 2	AB	$T_{1/2}$: from (α)(ce)(t) data of 1978LiZN.
38.54 [‡] 6	(9/2)-		AB	J ^{π} : 38.5 E2 γ to 5/2 ⁻ g.s. and the log <i>ft</i> value of 7.4 for the β branch from 7/2 ⁽⁺⁾ ²²¹ Rn limit J ^{π} to 5/2 ⁻ , 7/2 ⁻ , 9/2 ⁻ . J(38.5 level)=9/2 deduced by 1975PeZO from their (α)(γ)(θ) data (not given in the report) is also consistent with $\alpha\gamma$ coin measurements of 2003Ku44.
99.62 [‡] 5	(3/2)-	80 ps <i>30</i>	AB	T _{1/2} : determined by 1978AgZX (Doppler-shift method). J ^{π} : 134.86 γ from (5/2) ⁺ state at 234.51 keV is E1(2003Ku44).
99.85 [#] 7	$(3/2)^+$	160 ps <i>30</i>	AB	T _{1/2} : determined by 1978AgZX (Doppler-shift method). J ^π : 99.8γ to 5/2 ⁻ g.s. is E1; β branch from 7/2 ⁽⁺⁾ ²²¹ Rn suggests $J^{\pi} \neq 3/2^+$.
100.89 [@] 5	(5/2)-		AB	J ^{π} : parity is from 64.3 keV, M1+E2 transition to 36.64 keV level. The 100.8 γ M1+(E2) to 5/2 ⁻ g.s. and log <i>ft</i> for β branch from 7/2 ⁽⁺⁾ ²²¹ Rn limit spin to 5/2 and 7/2. J ^{π} =5/2 ⁻ , since J ^{π} (36.6 level)=3/2 ⁻ (2003Ku44).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²²¹Fr Levels (continued)

E(level)	$J^{\pi^{\dagger}}$	T _{1/2}	XREF	Comments
108.41 [@] 5	(7/2)-	≈280 ps	AB	$T_{1/2}$: determined by 1978AgZX (Doppler-shift method). J ^π : 108.4γ to g.s. is M1+E2; log <i>ft</i> for the β ⁻ feeding from ²²¹ Rn. 126.15 keV γ from 234.51 keV level at (5/2) ⁺ to this level is (E1).
145.91 [#] 8	$(1/2)^+$		Α	
150.07 [#] 6	$(7/2)^+$	80 ps 20	AB	$T_{1/2}$: determined by 1978AgZX (Doppler-shift method). J ^π : 150.1γ to g.s. is E1; 111.5γ to (9/2) ⁻ state. Spin and parity assignments are consistent with αγ coin measurements of 2003Ku44.
195.77 [‡] 7	(7/2)-	20 ps 5	AB	T _{1/2} : determined by 1978AgZX (Doppler-shift method). J ^{π} : 195.8 γ to 5/2 ⁻ g.s. and 157.3 γ to (9/2) ⁻ , 38.54 keV level are M1+E2.
224.64 ^{&} 6	$(3/2)^+$	35 ps 10	AB	T _{1/2} : determined by 1978AgZX (Doppler-shift method). J ^{π} : E1 188.0 γ to (3/2) ⁻ ; M1 78.8 γ to (1/2) ⁺ .
234.51 [#] 6	$(5/2)^+$		AB	J^{π} : 134.86 and 126.15 γ 's to (3/2) ⁻ state at 99.62 and (7/2) ⁻ state at 108.41 keV are (E1).
253.56 ^{&} 4	(5/2)+	35 ps 15	AB	T _{1/2} : determined by 1978AgZX (Doppler-shift method). J ^π : parity from (E1) transitions to negative parity levels; 253.54γ to 5/2 ⁻ g.s. and the log <i>ft</i> value for the β branch from 7/2 ⁽⁺⁾ ²²¹ Rn limit J ^π to 5/2 ⁺ , 7/2 ⁺ . Since J ^π (36.64 level)=3/2 ⁻ , J ^π (253.56 level)=5/2 ⁺ .
272.6 6	(7/2 ⁻ ,9/2 ⁻)		Α	
279.21 ^{&} 10	$(7/2)^+$		AB	J^{π} : parity from E1 character of 178.3 γ to 100.89-keV level; 279.3 γ to 5/2 ⁻ g.s. and 240.7 γ to (9/2) ⁻ state at 38.54 keV limit J^{π} to 7/2 ⁺ .
288.08 16	(9/2)-		Α	
294.66 ^{&} 14	(9/2)+		AB	J ^{π} : 186.3 γ to 108.41 level is E1; 144.7–keV, (M1+E2) transition to (7/2) ⁺ 150.07 level and 256.0-keV transition to (9/2) ⁻ state at 38.54 keV limit J ^{π} to 7/2 ⁺ ,9/2 ⁺ . 1977Vy02 suggest J ^{π} =9/2 ⁺ from absence of transition to g.s which is consistent with $\alpha\gamma$ coin measurements of 2003Ku44.
393.35 7	(5/2,7/2)+		AB	J^{π} : 197.77 γ to (7/2) ⁻ state at 195.77 keV is (E1); Spin and parity assignments are consistent with $\alpha\gamma$ coin measurements of 2003Ku44.
400.75 19	$(7/2^{-})$		Α	
410.2 12			A A	
517.81.72	$(5/2^+)^{b}$		Δ	
552.05 5	$(3/2)^{-c}$		A	J ^{π} : favored α decay from (3/2 ⁻) ²²⁵ Ac rules out the possibility of 5/2 ⁻ assignment of 2003Ku44.
570.81 16	$(5/2^+, 7/2^+)^{b}$		A	
602.2 7	(5/2 ⁻)		Α	
630.71 <i>13</i>	$(5/2^+)^a$		Α	
637.72 10			A	
/12.5			A	
749 16 20			A A	
780.2 4			A	
824.2 7			A	

[†] From band assignments, model calculations (1992Kv03), and alpha decay (2003Ku44), unless given explicitly.

[‡] Band(A): $K^{\pi} = 1/2^{-}$, 1/2[541] (1992Kv03). Assignment was suggested by 1977LiYX, 1988Sh12 and 1992Kv03. The band was interpreted by 1988Sh12 in terms of the $1/2^{-}$ octupole deformed band.

[#] Band(B): $K^{\pi} = 1/2^+$, $1/2[411] + (1/2[541] + Q_{30})$ (1992Kv03). Aassignment was suggested by 1992Kv03 and 1990Li46.

^(e) Band(C): $K^{\pi}=3/2^{-}$, $3/2[532]+(3/2[402]+Q_{30})(1992Kv03)$. Assignment was suggested by 1988Sh12 and 1992Kv03. Strongly coriolis mixed with $5/2\pm$ parity doublets (1990Li46).

[&] Band(D): $K^{\pi}=3/2^+$, $3/2[402]+(3/2[532]+Q_{30})$ (1992Kv03) Assignment was suggested by 1992Kv03 and 1990Li46.

Adopted Levels, Gammas (continued)

²²¹Fr Levels (continued)

^a Configuration 5/2[523] +(1/2[541]+Q₂₂) suggested by 1992Kv03.
 ^b Configuration 5/2[402]+(5/2[523]+Q₃₀) suggested by 1992Kv03.
 ^c Configuration 3/2[521]+(7/2[514]+Q₂₂) suggested by 1992Kv03.

	Adopted Levels, Gammas (continued)														
	$\frac{\gamma(^{221}\mathrm{Fr})}{}$														
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#	α [@]	$I_{(\gamma+ce)}$	Comments					
26.00	(1/2)-	26.0 1	100 33	0.0	5/2-	(E2)		5.94×10 ³ 15		$ \begin{array}{l} \alpha(L)=4.39\times10^{3} \ 11; \ \alpha(M)=1.18\times10^{3} \ 3; \\ \alpha(N+)=378 \ 9 \\ \alpha(N)=307 \ 8; \ \alpha(O)=63.3 \ 15; \ \alpha(P)=8.01 \ 19; \\ \alpha(Q)=0.00946 \ 22 \end{array} $					
36.64	(3/2)-	10.642 2		26.00	(1/2)-				5.2×10 ⁴ 12	$I_{(\gamma+ce)}$: from $I(\gamma+ce)(10.642\gamma)/I(\gamma+ce)(36.7\gamma) = 0.47$ 11.					
		36.7 1	100 9	0.0	5/2-	E2(+M1)		6.×10 ² 6		B(E2)(W.u.)=44 7 α (L)=4.E2 4; α (M)=1.1×10 ² 11; α (N+)=4.E1 4 α (N)=3.E1 3; α (O)=6 6; α (P)=0.8 7; α (Q)=0.0035 16 Mult : M1 admixture <10% (2003Ku44).					
38.54	(9/2)-	38.5 1	100 9	0.0	5/2-	E2		863 17		$\alpha(L) = 637 \ 12; \ \alpha(M) = 171 \ 4; \ \alpha(N+) = 55.1 \ 11 \\ \alpha(N) = 44.7 \ 9; \ \alpha(O) = 9.23 \ 18; \ \alpha(P) = 1.173 \ 23; \\ \alpha(Q) = 0.00158 \ 3$					
99.62	(3/2)-	62.9 <i>1</i>	61.4 29	36.64	(3/2)-	M1		10.87		$\alpha(L)=8.25\ 13;\ \alpha(M)=1.97\ 3;\ \alpha(N+)=0.651\ 10$ $\alpha(N)=0.516\ 8;\ \alpha(O)=0.1154\ 17;\ \alpha(P)=0.0185\ 3;$ $\alpha(Q)=0.001035\ 16$ $B(M1)(W,u)=0.056\ 22$					
		73.5 1	3.6 10	26.00	(1/2)-	E2+M1		22 16		B(E2)(W.u.)=48 22 α (L)=16 <i>I</i> 2; α (M)=4 <i>4</i> ; α (N+)=1.4 <i>I</i> 0 α (N)=1.1 <i>9</i> ; α (O)=0.24 <i>I</i> 7; α (P)=0.032 2 <i>I</i> ; α (O)=0.0004 <i>3</i>					
		99.6 5	100 9	0.0	5/2-	M1+E2	0.18 5	3.04 14		$\alpha(L)=2.30 \ I0; \ \alpha(M)=0.56 \ 3; \ \alpha(N+)=0.183 \ 9 \\ \alpha(N)=0.146 \ 7; \ \alpha(O)=0.0323 \ I5; \ \alpha(P)=0.00509 \\ I8; \ \alpha(Q)=0.000264 \ 7 \\ B(M1)(W.u.)=0.022 \ 9; \ B(E2)(W.u.)=23 \ I6 $					
99.85	(3/2)+	73.9 1	26.4 17	26.00	(1/2)-	E1		0.240		$\alpha(L)=0.182 \ 3; \ \alpha(M)=0.0439 \ 7; \ \alpha(N+)=0.01401 \ 21 \ \alpha(N)=0.01129 \ 17; \ \alpha(O)=0.00238 \ 4; \ \alpha(P)=0.000329 \ 5; \ \alpha(Q)=1.091\times10^{-5} \ 16 \ R(E1)(Wn)=0.00053 \ 12$					
		99.8 <i>1</i>	100 11	0.0	5/2-	E1(+M2)		0.1076		$\begin{aligned} \alpha(L) = 0.0816 \ I2; \ \alpha(M) = 0.0196 \ 3; \\ \alpha(N+) = 0.00631 \ 9 \\ \alpha(N) = 0.00507 \ 8; \ \alpha(O) = 0.001080 \ I6; \\ \alpha(P) = 0.0001538 \ 22; \ \alpha(Q) = 5.58 \times 10^{-6} \ 8 \\ B(E1)(W_{\rm H}) = 0.00081 \ I9 \end{aligned}$					
100.89	(5/2)-	64.3 1	47 5	36.64	(3/2)-	M1+E2	0.45 13	20 6		$\begin{array}{l} \alpha(L)=15 \ 4; \ \alpha(M)=3.9 \ 11; \ \alpha(N+)=1.3 \ 4\\ \alpha(N)=1.0 \ 3; \ \alpha(O)=0.22 \ 6; \ \alpha(P)=0.031 \ 7; \\ \alpha(O)=0.00084 \ 7 \end{array}$					
		74.6 <i>4</i>	29 9	26.00	(1/2)-	(E2)		35.0 11		$\alpha(L)=25.8 \ \beta; \ \alpha(M)=6.98 \ 21; \ \alpha(N+)=2.26 \ 7 \ \alpha(N)=1.83 \ \beta; \ \alpha(O)=0.378 \ 12; \ \alpha(P)=0.0485 \ 15;$					

From ENSDF

 $^{221}_{87}\mathrm{Fr}_{134}$ -4

L

	Adopted Levels, Gammas (continued)														
	γ (²²¹ Fr) (continued)														
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α@	Comments						
									$\alpha(Q)=9.11\times10^{-5}$ 24						
100.80	$(5/2)^{-}$	100.8.2	100.8	0.0 5	/2-	M1 + (E2)		63	Mult.: Adopted from $\Delta'(J^{\pi})$. Measured M1+E2.						
100.89	(3/2)	100.8 2	100 8	0.0 5/	12	WII + (L2)		0.5	$\alpha(\mathbf{E}) = 4.2 \ 21, \ \alpha(\mathbf{M}) = 1.1 \ 0, \ \alpha(\mathbf{M} +) = 0.30 \ 19$ $\alpha(\mathbf{N}) = 0.29 \ 16; \ \alpha(\mathbf{O}) = 0.06 \ 4; \ \alpha(\mathbf{P}) = 0.008 \ 4; \ \alpha(\mathbf{Q}) = 0.00015 \ 12$						
108.41	$(7/2)^{-}$	69.87 5	1.9 5	38.54 (9	9/2)-	E2+M1		28 20	B(E2)(W.u.)≈49						
									$\alpha(L)=21 \ 15; \ \alpha(M)=5 \ 4; \ \alpha(N+)=1.8 \ 13$						
		71.4 3	5.8 12	36.64 (3	$3/2)^{-}$	(E2)		43.2 11	$\alpha(N)=1.4$ 11; $\alpha(O)=0.50$ 22; $\alpha(P)=0.04$ 5; $\alpha(Q)=0.0004$ 4 $\alpha(L)=31.8$ 8; $\alpha(M)=8.60$ 22; $\alpha(N+)=2.78$ 7						
				,	, ,				$\alpha(N)=2.25$ 6; $\alpha(O)=0.466$ 12; $\alpha(P)=0.0597$ 15; $\alpha(Q)=0.0001083$ 24						
									B(E2)(W.u.) \approx 55 Mult - Adopted from A' ($I_{\rm T}$) Macaured M1+E2						
		108.4 1	100 5	0.0 5	/2-	M1+E2	0.53 13	10.3 5	$\alpha(K)=7.2 \ 8; \ \alpha(L)=2.30 \ 24; \ \alpha(M)=0.58 \ 7; \ \alpha(N+)=0.190 \ 22$						
					,				$\alpha(N)=0.152 \ 18; \ \alpha(O)=0.033 \ 4; \ \alpha(P)=0.0048 \ 4; \ \alpha(Q)=0.000171 \ 16$						
145.01	$(1/2)^+$	1622	500	00.62 (2	$(\mathbf{n}) =$			0.941	B(M1)(W.u.)≈0.0033; B(E2)(W.u.)≈26						
143.91	$(1/2)^{-1}$	40.2 2	5.99 100 5	26.00 (1	$\frac{5}{2}$			0.841							
150.07	$(7/2)^+$	49.1 2	1.1 1	100.89 (5	5/2)-	(E1)		0.716 13	α(L)=0.542 10; α(M)=0.1322 24; α(N+)=0.0418 8						
									$\alpha(N)=0.0338$ 6; $\alpha(O)=0.00699$ 13; $\alpha(P)=0.000918$ 16;						
									$\alpha(\mathbf{Q}) = 2.65 \times 10^{-3} 5$ P(E1)(W ₁₁) = 0.00012 4						
		111.5 <i>1</i>	44 2	38.54 (9	9/2)-	(E1)		0.363	$\alpha(K)=0.283 4$; $\alpha(L)=0.0609 9$; $\alpha(M)=0.01462 21$;						
									α(N+)=0.00470 7						
									$\alpha(N)=0.00378\ 6;\ \alpha(O)=0.000808\ 12;\ \alpha(P)=0.0001162\ 17;$						
									$\alpha(\mathbf{Q}) = 4.35 \times 10^{-6}$ 7 B(E1)(Wu) = 0.000/1.11						
		150.1 <i>1</i>	100 5	0.0 5/	/2-	E1		0.1764	$\alpha(K)=0.1396\ 20;\ \alpha(L)=0.0280\ 4;\ \alpha(M)=0.00669\ 10;$						
									α(N+)=0.00216 3						
									$\alpha(N)=0.001733\ 25;\ \alpha(O)=0.000374\ 6;\ \alpha(P)=5.49\times10^{-5}\ 8;$						
									$\alpha(Q) = 2.22 \times 10^{-6} 4$ B(E1)(Wu) = 0.00038 10						
195.77	$(7/2)^{-}$	87.4 <i>1</i>	70.6 41	108.41 (7	7/2)-	M1		4.17	$B(M1)(W.u.)=0.10 \ 3$						
									α (L)=3.16 5; α (M)=0.754 <i>11</i> ; α (N+)=0.249 4						
		94.9 1	26.3.25	100.89 (*	5/2)-	M1(+E2)		74	$\alpha(N)=0.198$ 5; $\alpha(O)=0.0442$ 7; $\alpha(P)=0.00709$ 11; $\alpha(Q)=0.000396$ 6 B(M1)(W u)=0.028 8						
		<i>yy</i> 1	20.5 25	100.09 (2	5/2)	1111(122)		, ,	$\alpha(L)=5 \ 3; \ \alpha(M)=1.4 \ 9; \ \alpha(N+)=0.5 \ 3$						
		0675	0.0.16	00 (0 (10.2.2	α (N)=0.37 22; α (O)=0.08 5; α (P)=0.011 5; α (Q)=0.00017 14						
		96.7 5	8.8 16	99.62 (3	5/2)	(E2)		10.3 3	$\alpha(L) = 7.55 \ 22; \ \alpha(M) = 2.05 \ 0; \ \alpha(N+) = 0.662 \ 19$ $\alpha(N) = 0.536 \ 16; \ \alpha(O) = 0.111 \ 4; \ \alpha(P) = 0.0143 \ 4; \ \alpha(O) = 3.54 \times 10^{-5} \ 8$						
									$B(E_2)(W.u)=3.2\times10^2 I_2$						
									Mult.: Adopted from Δ' (J^{π}). Measured M1+E2, δ =0.69 27,						
									$\alpha = 6.0 \ 14.$						

S

From ENSDF

 $^{221}_{87}\mathrm{Fr}_{134}\text{-}5$

	Adopted Levels, Gammas (continued)													
	γ ⁽²²¹ Fr) (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	J_f^π	Mult. [#]	$\delta^{\#}$	α [@]	Comments					
									This γ was interpreted by 1988Sh12 to be doublet with about 85% E2 and 15% M2 transitions decaying to the 99.62 and 99.85 keV levels, respectively. The assumed M2 part would be highly enhanced, having a B(M2)(W.u.) value of about 3200 which rules out this assumption.					
195.77	(7/2)-	157.3 2	100 6	38.54	(9/2)-	M1+E2		2.7 13	B(M1)(W.u.)=0.023 7; B(E2)(W.u.) \leq 13 α (K)=1.7 15; α (L)=0.70 12; α (M)=0.18 4; α (N+)=0.059 13 α (N)=0.047 11; α (O)=0.0101 20; α (P)=0.00144 14; α (Q)=4.E-5 4					
		169.9	3.8 <i>3</i>	26.00	$(1/2)^{-}$									
		195.8 2	38.4 19	0.0	5/2-	M1+E2	0.8 2	1.53 20	$\alpha(\text{K})=1.11\ 20;\ \alpha(\text{L})=0.314\ 5;\ \alpha(\text{M})=0.0785\ 17;\ \alpha(\text{N}+)=0.0258\ 5$ $\alpha(\text{N})=0.0206\ 5;\ \alpha(\text{O})=0.00448\ 8;\ \alpha(\text{P})=0.000667\ 15;\ \alpha(\text{Q})=2.6\times10^{-5}\ 5$ $\text{B}(\text{M}1)(\text{W.u.})=0.0030\ 12;\ \text{B}(\text{E2})(\text{W.u.})=16\ 8$ $\text{B}(\text{E2})(\text{W.u.}):\ \text{B}(\text{E2})(\text{W.u.})<\approx47.$					
224.64	(3/2)+	78.8	2.4 3	145.91	$(1/2)^+$	M1		5.63	α (L)=4.27 6; α (M)=1.019 15; α (N+)=0.337 5 α (N)=0.267 4; α (O)=0.0597 9; α (P)=0.00958 14; α (Q)=0.000536 8 B(M1)(W,u,)=0.015 5					
		123.8 <i>I</i>	16.0 9	100.89	(5/2)-	[E1]		0.282	$\alpha(K)=0.221 4; \alpha(L)=0.0462 7; \alpha(M)=0.01108 16; \alpha(N+)=0.00357 5 \alpha(N)=0.00287 4; \alpha(O)=0.000615 9; \alpha(P)=8.92\times10^{-5} 13; \alpha(Q)=3.43\times10^{-6} 5 B(E1)(W,u)=0.00021 7$					
		124.8 <i>1</i>	5.33 22	99.85	(3/2)+	M1+E2		5.6 21	B(M1)(W.u.) \approx 0.005; B(E2)(W.u.) \approx 68 α (K)=3 3; α (L)=1.7 6; α (M)=0.45 18; α (N+)=0.15 6 α (N)=0.12 5; α (O)=0.025 10; α (P)=0.0035 10; α (Q)=8.E-5 7					
		186.1	2.44 22	38.54	(9/2)-									
		188.0 <i>1</i>	100 4	36.64	(3/2)-	E1		0.1023	$\alpha(K)=0.0816\ 12;\ \alpha(L)=0.01570\ 22;\ \alpha(M)=0.00375\ 6;\ \alpha(N+)=0.001216\ 17$					
									$\alpha(N)=0.000972$ 14; $\alpha(O)=0.000211$ 3; $\alpha(P)=3.14\times10^{-5}$ 5; $\alpha(Q)=1.338\times10^{-6}$ 19 $P(E1)(W_R)=0.00028$ 11					
		198.4 <i>3</i>	3.78 22	26.00	(1/2)-	[E1]		0.0899	$\begin{array}{l} \alpha(K) = 0.0718 \ 11; \ \alpha(L) = 0.01370 \ 20; \ \alpha(M) = 0.00327 \ 5; \\ \alpha(N+) = 0.001061 \ 16 \end{array}$					
									$\alpha(N)=0.000848 \ I3; \ \alpha(O)=0.000184 \ 3; \ \alpha(P)=2.75\times10^{-5} \ 4; \\ \alpha(Q)=1.186\times10^{-6} \ I7 \\ B(E1)(W,u)=1.2\times10^{-5} \ 4$					
		224.7 1	21.8 11	0.0	5/2-	[E1]		0.0668	$\alpha(K)=0.0536\ 8;\ \alpha(L)=0.01004\ 14;\ \alpha(M)=0.00239\ 4;\ \alpha(N+)=0.000777\ 11$ $\alpha(N)=0.000621\ 9;\ \alpha(O)=0.0001352\ 19;\ \alpha(P)=2.04\times10^{-5}\ 3;$					
									$\alpha(Q)=9.00\times10^{-7} I3$ B(E1)(W.u.)=4.8×10^{-5} I5					
234.51	$(5/2)^+$	126.15 10	21.2 61	108.41	$(7/2)^{-}$	(E1)		0.269	$\alpha(K)=0.211$ 3; $\alpha(L)=0.0440$ 7; $\alpha(M)=0.01055$ 15; $\alpha(N+)=0.00340$ 5					

6

From ENSDF

	Adopted Levels, Gammas (continued)													
	γ ⁽²²¹ Fr) (continued)													
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α [@]	Comments						
								$\alpha(N)=0.00273 \ 4; \ \alpha(O)=0.000586 \ 9; \ \alpha(P)=8.50\times10^{-5} \ 12; \ \alpha(Q)=3.29\times10^{-6}$						
234.51	(5/2)+	133.64 5	39.4 61	100.89	(5/2)-	(E1)	0.234	5 $\alpha(K)=0.184 \ 3; \ \alpha(L)=0.0378 \ 6; \ \alpha(M)=0.00906 \ 13; \ \alpha(N+)=0.00293 \ 5$ $\alpha(N)=0.00235 \ 4; \ \alpha(O)=0.000504 \ 7; \ \alpha(P)=7.35\times10^{-5} \ 11; \ \alpha(Q)=2.89\times10^{-6}$						
		134.86 5	84.8 9	99.62	(3/2)-	(E1)	0.229	$\alpha(K)=0.180 \ 3; \ \alpha(L)=0.0369 \ 6; \ \alpha(M)=0.00885 \ 13; \ \alpha(N+)=0.00286 \ 4 \ \alpha(N)=0.00229 \ 4; \ \alpha(O)=0.000493 \ 7; \ \alpha(P)=7.19\times10^{-5} \ 10; \ \alpha(Q)=2.83\times10^{-6} \ 4$						
253 56	$(5/2)^+$	197.9 57.8.2	100 9	36.64 195 77	$(3/2)^{-}$ $(7/2)^{-}$	(E1)	0 463 8	$\alpha(L)=0.350.6$; $\alpha(M)=0.0851.15$; $\alpha(N+1)=0.0270.5$						
233.30	(3/2)	57.0 2	1.1.5	175.77	(1/2)		0.105 0	$\alpha(D) = 0.0218 \ 4; \ \alpha(Q) = 0.0001455 \ 8; \ \alpha(P) = 0.000611 \ 10; \ \alpha(Q) = 1.87 \times 10^{-5} \ 3$						
		103.6 2	0.9 2	150.07	$(7/2)^+$	[M1+E2]	10 3	B(E1)(W.u.)=0.00012 7 $\alpha(K)=555; \alpha(L)=3.718; \alpha(M)=1.06; \alpha(N+)=0.3217$						
		145.2 <i>1</i>	46.5 22	108.41	(7/2)-	(E1)	0.191	$\begin{array}{l} \alpha(\mathrm{N})=0.25 \ 14; \ \alpha(\mathrm{O})=0.05 \ 3; \ \alpha(\mathrm{P})=0.007 \ 3; \ \alpha(\mathrm{Q})=0.00014 \ 11 \\ \alpha(\mathrm{K})=0.1512 \ 22; \ \alpha(\mathrm{L})=0.0305 \ 5; \ \alpha(\mathrm{M})=0.00729 \ 11; \ \alpha(\mathrm{N}+)=0.00236 \ 4 \\ \alpha(\mathrm{N})=0.00189 \ 3; \ \alpha(\mathrm{O})=0.000407 \ 6; \ \alpha(\mathrm{P})=5.97\times10^{-5} \ 9; \ \alpha(\mathrm{Q})=2.39\times10^{-6} \ 4 \\ \alpha(\mathrm{N})=0.00189 \ 3; \ \alpha(\mathrm{O})=0.000407 \ 6; \ \alpha(\mathrm{P})=5.97\times10^{-5} \ 9; \ \alpha(\mathrm{Q})=2.39\times10^{-6} \ 4 \\ \alpha(\mathrm{N})=0.00189 \ 3; \ \alpha(\mathrm{O})=0.000407 \ 6; \ \alpha(\mathrm{P})=5.97\times10^{-5} \ 9; \ \alpha(\mathrm{Q})=2.39\times10^{-6} \ 4 \\ \alpha(\mathrm{N})=0.00189 \ 3; \ \alpha(\mathrm{O})=0.000407 \ 6; \ \alpha(\mathrm{O})=0.000407 \ $						
		152.6 2	7.0 4	100.89	(5/2)-	[E1]	0.1695	B(E1)(W.u.)=0.00026 13 $\alpha(K)=0.1342 \ 20; \ \alpha(L)=0.0268 \ 4; \ \alpha(M)=0.00641 \ 10; \ \alpha(N+)=0.00207 \ 3$ $\alpha(N)=0.001660 \ 24; \ \alpha(O)=0.000358 \ 6; \ \alpha(P)=5.27\times10^{-5} \ 8;$ $\alpha(Q)=2.14\times10^{-6} \ 3$						
		153.9 <i>1</i>	67.2 33	99.62	(3/2)-	E1	0.1660	B(E1)(W.u.)= 3.4×10^{-5} 16 α (K)=0.1315 19; α (L)=0.0262 4; α (M)=0.00627 9; α (N+)=0.00203 3 α (N)=0.001624 23; α (O)=0.000351 5; α (P)= 5.16×10^{-5} 8; α (Q)= 2.10×10^{-6} 3						
		216.9 2	100 52	36.64	(3/2)-	(E1)	0.0726	B(E1)(W.u.)=0.00032 15 α (K)=0.0582 9; α (L)=0.01096 16; α (M)=0.00261 4; α (N+)=0.000849 12 α (N)=0.000678 10; α (O)=0.0001475 21; α (P)=2.22×10 ⁻⁵ 4; α (Q)=9.73×10 ⁻⁷ 14 B(E1)(W.u.)=0.00017 12						
		228.2 4	1.5 4	26.00	$(1/2)^{-}$	([21]	0.0502	D(E1)(W.u.) = 0.0001772						
		253.54 5	42.8 22	0.0	5/2	[EI]	0.0503	$\alpha(K)=0.0405\ 6;\ \alpha(L)=0.00/46\ 11;\ \alpha(M)=0.001/75\ 25;\ \alpha(N+)=0.0005/8$						
								α (N)=0.000461 7; α (O)=0.0001007 15; α (P)=1.526×10 ⁻⁵ 22; α (Q)=6.91×10 ⁻⁷ 10 B(E1)(W.u.)=4.5×10 ⁻⁵ 22						
272.6 279.21	$(7/2^{-}, 9/2^{-})$ $(7/2)^{+}$	236.0 <i>6</i> 129.2 2	100 <i>13</i> 8 8 <i>16</i>	36.64 150.07	$(3/2)^{-}$ $(7/2)^{+}$		5020							
219.21	(1/2)	170.7 2	68 4	108.41	$(7/2)^{-}$	(E1)	0.1291	α (K)=0.1027 <i>15</i> ; α (L)=0.0201 <i>3</i> ; α (M)=0.00480 <i>7</i> ; α (N+)=0.001554 <i>23</i> α (N)=0.001244 <i>18</i> ; α (O)=0.000269 <i>4</i> ; α (P)=3.99×10 ⁻⁵ <i>6</i> ; α (O)=1.662×10 ⁻⁶ <i>24</i>						
		178.3 2	56 4	100.89	(5/2)-	E1	0.1162	$\alpha(Q) = 1.002 \times 10^{-2.24}$ $\alpha(K) = 0.0925 \ 14; \ \alpha(L) = 0.0180 \ 3; \ \alpha(M) = 0.00429 \ 7; \ \alpha(N+) = 0.001391 \ 20$ $\alpha(N) = 0.001112 \ 16; \ \alpha(O) = 0.000241 \ 4; \ \alpha(P) = 3.58 \times 10^{-5} \ 6;$ $\alpha(O) = 1.507 \times 10^{-6} \ 22$						
		240.7 2	40 4	38.54	(9/2)-		0.0568	$u(Q) = 1.307 \times 10^{-5} 22$						

 \neg

					Ado	pted Levels	s, Gammas (co	ontinued)
						γ ⁽²²¹ F	r) (continued)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	$\alpha^{@}$	Comments
279.21	(7/2)+	279.3 3	100 8	0.0	5/2-	E1	0.0402	$\begin{aligned} \alpha(\mathbf{K}) = 0.0325 \ 5; \ \alpha(\mathbf{L}) = 0.00591 \ 9; \ \alpha(\mathbf{M}) = 0.001404 \ 20; \\ \alpha(\mathbf{N}+) = 0.000457 \ 7 \\ \alpha(\mathbf{N}) = 0.000365 \ 6; \ \alpha(\mathbf{O}) = 7.98 \times 10^{-5} \ 12; \ \alpha(\mathbf{P}) = 1.215 \times 10^{-5} \ 18; \\ \alpha(\mathbf{O}) = 5 \ 60 \times 10^{-7} \ 8 \end{aligned}$
288.08	(9/2)-	179.8 <i>3</i> 187.2	78.3 <i>49</i> 74.2 25	108.41 100.89	$(7/2)^{-}$ $(5/2)^{-}$		1.8 10	
		249.6 2	100 8	38.54	$(9/2)^{-}$		1.083	
294.66	$(9/2)^+$	144.7 2	11.1 28	150.07	$(7/2)^+$	M1+E2	3.5 16	α (K)=2.2 <i>19</i> ; α (L)=0.96 <i>23</i> ; α (M)=0.25 <i>8</i> ; α (N+)=0.081 <i>23</i> α (N)=0.065 <i>19</i> ; α (O)=0.014 <i>4</i> ; α (P)=0.0020 <i>4</i> ; α (Q)=5.E-5 <i>5</i>
		186.3 4	100 8	108.41	(7/2)-	E1	0.1045 <i>16</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0834 \ 13; \ \alpha(\mathbf{L}) = 0.01607 \ 25; \ \alpha(\mathbf{M}) = 0.00383 \ 6; \\ &\alpha(\mathbf{N}+) = 0.001244 \ 19 \\ &\alpha(\mathbf{N}) = 0.000995 \ 15; \ \alpha(\mathbf{O}) = 0.000216 \ 4; \ \alpha(\mathbf{P}) = 3.21 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{Q}) = 1.365 \times 10^{-6} \ 21 \end{aligned}$
		256.0 2	16.7 56	38.54	(9/2)-		0.0492	
393.35	(5/2,7/2)+	114	3.3 4	279.21	$(7/2)^+$	M1	9.86	$\alpha(K)=7.93 \ 12; \ \alpha(L)=1.466 \ 21; \ \alpha(M)=0.350 \ 5; \ \alpha(N+)=0.1156 \ 17 \ \alpha(N)=0.0917 \ 13; \ \alpha(O)=0.0205 \ 3; \ \alpha(P)=0.00329 \ 5; \ \alpha(Q)=0.000184 \ 3$
		139.6	5.2 9	253.56	$(5/2)^+$	M1+E2	3.9 17	$\alpha(K)=2.4\ 21;\ \alpha(L)=1.1\ 3;\ \alpha(M)=0.29\ 9;\ \alpha(N+)=0.09\ 3$ $\alpha(N)=0.075\ 24;\ \alpha(O)=0.016\ 5;\ \alpha(P)=0.0023\ 5;\ \alpha(Q)=6.E-5\ 5$
		168.86 <i>13</i>	30 4	224.64	$(3/2)^+$		2.1 11	
		197.77 12	100 9	195.77	(7/2)-	E1	0.0905	$\alpha(K)=0.0724 \ 11; \ \alpha(L)=0.01381 \ 20; \ \alpha(M)=0.00329 \ 5; \alpha(N+)=0.001070 \ 15 \alpha(N)=0.000855 \ 12; \ \alpha(O)=0.000186 \ 3; \ \alpha(P)=2.78\times10^{-5} \ 4; \alpha(Q)=1.195\times10^{-6} \ 17 $
		243.2 <i>I</i>	13.0 13	150.07	$(7/2)^+$		1.162	
		284.8 <i>1</i>	27.4 22	108.41	$(7/2)^{-}$		0.0385	
		354.8 2	10.0 13	38.54	$(9/2)^{-}$		0.0235	
400.75	$(7/2^{-})$	112.8 2	42.9 48	288.08	$(9/2)^{-}$		10.16	
		204.7 3	26.2 95	195.77	(1/2)		0.200	
410.2		502.2 4 137.6	100 10	272.6	(9/2) $(7/2^{-}0/2^{-})$		0.388	
497 3		458 8 4	100 38	38 54	$(1/2, 3/2)^{-}$			
517.81	$(5/2^+)$	321.8 4	10.3 14	195.77	$(7/2)^{-}$			
	(-/-)	368.3 6	2.1 7	150.07	$(7/2)^+$			
		417.9 <i>3</i>	16.6 14	99.62	$(3/2)^{-}$			
		481.1 2	100 7	36.64	$(3/2)^{-}$			
		492.6 6	0.7 4	26.00	$(1/2)^{-}$			
550.05	(2 0) =	517.9 2	52 4	0.0	$5/2^{-}$			
552.05	$(3/2)^{-}$	298.6 <i>3</i>	2.0 6	253.56	(5/2)			
		317.4°	>0.11	234.51	$(5/2)^+$			
		256 6	0.01.13	105 55				

 ∞

$\gamma(^{221}\text{Fr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	α [@]
552.05	$(3/2)^{-}$	406.1 1	7.5 5	145.91	$(1/2)^+$	0.01757
	< / <i>/</i>	450.1 7	3.6 9	100.89	$(5/2)^{-}$	
		452.4 1	100 6	99.62	$(3/2)^{-}$	0.213
		512.5 7	0.56 22	38.54	$(9/2)^{-}$	
		515.40 5	21.4 11	36.64	$(3/2)^{-}$	0.1504
		526.09 5	37.1 23	26.00	$(1/2)^{-}$	0.1424
		552.0 <i>1</i>	6.3 5	0.0	$5/2^{-}$	0.1253
570.81	$(5/2^+, 7/2^+)$	317.4 <mark>&</mark>	3.12 5	253.56	$(5/2)^+$	
		375.0 7	53 <i>13</i>	195.77	$(7/2)^{-}$	
		462.4 6	25 9	108.41	$(7/2)^{-}$	
		469.5 <i>3</i>	88 <i>9</i>	100.89	$(5/2)^{-}$	
		571.0 2	100 16	0.0	$5/2^{-}$	
602.2	$(5/2^{-})$	565.6 7	100	36.64	$(3/2)^{-}$	
630.71	$(5/2^+)$	435.0 <i>3</i>	34 4	195.77	$(7/2)^{-}$	
		522.1 2	25 4	108.41	$(7/2)^{-}$	
		529.7 <i>3</i>	100 10	100.89	$(5/2)^{-}$	
		531.2 <i>3</i>	56 7	99.62	$(3/2)^{-}$	
		591.4 7	10 <i>3</i>	38.54	$(9/2)^{-}$	
		594.6 <i>3</i>	39 8	36.64	$(3/2)^{-}$	
637.72		403.4 <i>3</i>	53	234.51	$(5/2)^+$	
		538.1 <i>1</i>	≈27	99.62	$(3/2)^{-}$	
		601.0 <i>3</i>	100 24	36.64	$(3/2)^{-}$	
		637.1 7	≈2.7	0.0	$5/2^{-}$	
714.2		568.3 6	100	145.91	$(1/2)^+$	
749.16		603.5 5	100 25	145.91	$(1/2)^+$	
		649.5 2	75 19	99.62	$(3/2)^{-}$	
780.2		545.8 6	84 17	234.51	$(5/2)^+$	
		629.9 7	50 17	150.07	$(7/2)^+$	
		680.4 <i>6</i>	100 33	99.85	$(3/2)^+$	
		780.6 6		0.0	$5/2^{-}$	
824.2		824.2 7	100	0.0	5/2-	

[†] From ²²⁵Ac α decay and ²²¹Rn β^- decay.

[‡] Relative photon intensity deexciting each level, adopted from ²²⁵Ac α decay and ²²¹Rn β^- decay. [#] From ce data taken in ²²⁵Ac α decay and ²²¹Rn β^- decay. Multipolarities in brackets are from decay scheme; they are added with the purpose of calculating γ transition probabilities, when the level's half-life is known.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed.

 $^{221}_{87} {\rm Fr}_{134}$

Adopted Levels, Gammas

 $^{221}_{87}\mathrm{Fr}_{134}$

12

 $^{221}_{87}\mathrm{Fr}_{134}\text{-}12$

From ENSDF

 $^{221}_{87}\mathrm{Fr}_{134}\text{-}12$

Adopted Levels, Gammas

