224 U α decay **2014Lo10**

History

Type Author Citation Literature Cutoff Date
Full Evaluation E. Browne, J. K. Tuli ENSDF 30-Nov-2014

Parent: 224 U: E=0.0; J^{π} =0+; $T_{1/2}$ =396 μ s 17; $Q(\alpha)$ =8633 8; % α decay=100.0

 $^{224}\text{U-Q}(\alpha)$: Deduced by compilers from 8479α branch to g.s. 2012Wa38 list $8620\ 12$.

²²⁴U-T_{1/2}: From evaporation residue (ER)–8479 α (t) correlations (2014Lo10). T_{1/2}=561 μ s 132 from (ER)–8095 α correlated events (2014Lo10). Others: T_{1/2 1/2}(²²⁴U)=0.7 ms +0.5-0.2, measured by 1991An13; 1.0 ms 4, measured by 1992To02.

 ^{224}U - $\%\alpha$ decay: $\%\alpha$ =100 from Adopted Levels of ^{224}U .

Compiled (unevaluated) dataset from 2014Lo10:

Eur Phys J A 50, 132 (2014).

Compiled by J.C. Batchelder (ORNL/ORAU) and C.D. Nesaraja (ORNL), October 27, 2014.

Additional information 1.

²²⁴U produced using the fusion evaporation reaction ²⁰⁶Pb(²²Ne,4n), with 119 MeV ²²Ne beam produced at FLNR facility (Dubna). Evaporation residue (ER) was separated using SHELS separator and then passed through a TOF system and implanted into a DSSD in front of a HPGe. Position and time-correlated α decays were used to identify ER. Measured Eα, Iα, Eγ, Iγ, $\alpha\gamma$ -coin, (ER)α-coin and $T_{1/2}$ of ²²⁴U g.s.

Cross section with lower limit of 600 nb 100 was obtained.

 $\%\alpha(^{224}\text{U})=100$ in 1997Ar05, from a calculated upper limit for ε decay branch of <1.2×10⁻⁴% (1973Ta30). The partial half-life of $^{224}\text{U}\beta^+$ decay has been calculated as >100 s in 1997Mo25.

²²⁰Th Levels

 $\frac{\text{E(level)}}{0}$ $\frac{\text{J}^{\pi}}{0^{+}}$ $\frac{\text{T}_{1/2}}{9.7 \ \mu\text{s} \ 6}$ 386.50 10 2+

Comments

 $\overline{T_{1/2}}$: From Adopted Levels.

E(level): from Ey. E α =8095 11 feeding this level gives level energy of 391 14. The energies of the 2⁺ to 0⁺ and 4⁺ to 2⁺ transitions in ²²⁰Th were previously assigned as 373.3 keV 1 keV and and 386.5 keV 1 (2006Re15), respectively. Based on the observation of (8095 α)(386.5 γ)-coin, and on the energy of 8095 α group relative to that of 8479 α , 2014Lo10 suggest that previous assignment is incorrect, and that the ordering of the 373.3- and 386.5-keV transitions should be reversed, thus defining 386.5 keV as the first excited 2⁺ state in ²²⁰Th.

α radiations

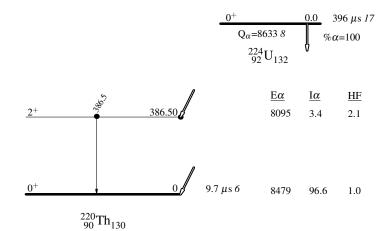
Εα	E(level)	$I\alpha^{\ddagger \#}$	ΗF [†]
8095 11	386.50	3.4 8	2.1 6
8479 8	0	96.68	1.0

- [†] From 2014Lo10 using Preston's spin independent equation.
- [‡] Deduced by compilers using $I(8095\alpha)/I(8479\alpha)=0.035$ 8 measured in 2014Lo10.
- # Absolute intensity per 100 decays.

 γ (220Th)

 $\frac{\text{E}_{\gamma}}{386.5 \ l} = \frac{\text{E}_{i}(\text{level})}{386.50} = \frac{\text{J}_{i}^{n}}{2^{+}} = \frac{\text{E}_{f}}{0} = \frac{\text{J}_{f}^{n}}{0^{+}}$

Comments


 E_{γ} : from Adopted Levels, where it is taken from 2006Re15. Authors in 2014Lo10 measured 386.7 18, where large uncertainty is due to poor statistics.

²²⁴U α decay **2014Lo10**

Legend

Decay Scheme

Coincidence

