$^{224}{\rm Th}~\alpha$ decay 1970Va13,1961Ru06

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 112, 1115 (2011)	31-Oct-2010

Parent: ²²⁴Th: E=0; $J^{\pi}=0^+$; $T_{1/2}=1.05$ s 2; $Q(\alpha)=7298$ 6; % α decay=100.0 Additional information 1.

²²⁰Ra Levels

E(level) [†]	J^{π}
0	0^{+}
178.4 <i>1</i>	2+
412.9 <i>1</i>	(1^{-})
474.1 2	(3-)

[†] From Adopted Levels.

 α radiations

$E\alpha^{\dagger}$	E(level)	$\mathrm{I}\alpha^{\dagger}^{@}$	HF [#]	Comments
6700	474.1	0.3 [‡] 1	4.5 10	
6770	412.9	1.2 [‡] 4	2.0 5	
7000 10	178.4	19 2	0.96 7	Eα: From 1970Va13. Others: 7000 20 (1989An13), 6990 (1961Ru06), 6984 15 (2000He17).
7170 10	0	79 2	1.00	Iα: Others: 20 5 (1989An13), 19 3 (1970Va13). Iα=17 4, 13 3 (2000He17). Iα: Others: 80 5 (1989An13), Iα=100–Iα(7000)=81 3 (1970Va13), 87 8 (2000He17). Eα: From 1970Va13. Others: 7170 20 (1989An13), 7156 10 (2000He17).

[†] From 1961Ru06, unless otherwise noted. [‡] From γ -ray transition intensity balance. [#] HF(7170 α)=1.00 yields r₀(²²⁰Ra)=1.536 6. [@] Absolute intensity per 100 decays.

$\gamma(^{220}\text{Ra})$

I γ normalization: I γ are photons per 100 α decays.

Eγ‡	$I_{\gamma}^{\ddagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α^{\dagger}	Comments
177 2	92	178.4	2+	0 0+	E2	0.92 5	$\alpha(K)=0.203 5; \ \alpha(L)=0.53 3; \ \alpha(M)=0.143 8; \ \alpha(N+)=0.0470$ 25 $\alpha(N)=0.0377 20; \ \alpha(O)=0.0081 5; \ \alpha(P)=0.00119 7;$ $\alpha(O)=1.02\times10^{-5} 4$
235 <i>3</i>	0.4 3	412.9	(1-)	178.4 2+	[E1]	0.0616 <i>21</i>	$\alpha(Q) = 1.02 \times 10^{-7} 4$ Mult.: $\alpha(K) \exp = 0.22$ from (K x ray)(α)/(γ)(α) (1961Ru06); theory: $\alpha(K) = 0.203$. $\alpha(K) = 0.0494$ 17; $\alpha(L) = 0.0093$ 4; $\alpha(M) = 0.00223$ 8; $\alpha(N+) = 0.00073$ 3 $\alpha(N) = 0.000582$ 21: $\alpha(Q) = 0.000130$ 5: $\alpha(P) = 2.14 \times 10^{-5}$ 8:
297 <i>3</i>	0.3 1	474.1	(3 ⁻)	178.4 2+	[E1]	0.0360 10	$\begin{array}{l} \alpha(\mathrm{N}) = 0.00302 \ 21, \ \alpha(\mathrm{O}) = 0.000130 \ 5, \ \alpha(\mathrm{I}) = 2.11 \text{ (AIO} = 0.0, \\ \alpha(\mathrm{Q}) = 1.32 \times 10^{-6} \ 5 \\ \alpha(\mathrm{K}) = 0.0290 \ 8; \ \alpha(\mathrm{L}) = 0.00530 \ 15; \ \alpha(\mathrm{M}) = 0.00126 \ 4; \\ \alpha(\mathrm{N}+) = 0.000418 \ 12 \end{array}$

					2	224 Th α d	lecay	1970Va13,1961Ru06 (continued)	
							$\gamma(2)$	²²⁰ Ra) (continued)	
E _γ ‡	$I_{\gamma}^{\ddagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments	
								α (N)=0.000331 <i>10</i> ; α (O)=7.39×10 ⁻⁵ <i>21</i> ; α (P)=1.23×10 ⁻⁵ <i>4</i> ; α (Q)=7.96×10 ⁻⁷ <i>21</i>	
410 3	0.8 3	412.9	(1 ⁻)	0	0+	[E1]	0.0178	$\begin{array}{llllllllllllllllllllllllllllllllllll$	

[†] Additional information 2. [‡] From 1961Ru06. RI are photons per 100 α decays. [#] Absolute intensity per 100 decays.

²²⁴Th α decay 1970Va13,1961Ru06

Decay Scheme

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$
 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$
 $I_{\gamma} > 10\% \times I_{\gamma}^{max}$

Legend

²²⁰₈₈Ra₁₃₂